
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

86

Resource Matching and a Matchmaking Service
for an Intelligent Grid

Xin Bai, Han Yu, Yongchang Ji, and Dan C. Marinescu

Abstract—We discuss the application of matching in the area of
resource discovery and resource allocation in grid computing. We
present a formal definition of matchmaking, overview algorithms to
evaluate different matchmaking expressions, and develop a
matchmaking service for an intelligent grid environment.

Keywords—Grid, Matchmaking, Ontology

I. INTRODUCTION

EBSTER dictionary defines the verb “to match” as “to
be equal, similar, suitable, or corresponding to in some

way”. In computer science, the term matching refers to a
process of evaluation of the degree of similarity of two
objects. Each object is characterized by a set of
properties/attributes; each property is a tuple (name, value),
with name a string of characters and value either a constant (a
number – integer or real, a Boolean constant – “true” or
“false”, or a string of characters), or an expression that returns
a constant. The “matching degree”, m, is a real number.
Typically, 0 m 1, with m=0 meaning a total mismatch and
m=1 a perfect match.

Matching is a common operation in many areas of computer
science. In this paper we discuss the application of matching
in the area of resource discovery and resource allocation in
grid computing.

A grid is an open system, a large collection of autonomous
systems giving individual users the image of a single virtual
machine with a rich set of hardware and software resources. A
set of core grid services provide access to various grid
resources. For example, a resource discovery service assists
users, or their proxies, to locate needed resources on the grid.
In more traditional computing systems, resources are managed
centrally under the control of a single administrative authority
by the resource management component of an operating
system or by a distributed operating system. The central
management of resources on a grid is unthinkable because of
the scale of the system and because it would violate the

autonomy of individual resource providers, a critical aspect of
grid.

Manuscript received December 16, 2004. This work was supported in part
by National Science Foundation grants MCB9527131, DBI0296107,
ACI0296035, and EIA0296179.

Xin Bai, Han Yu, and Yongchang Ji are with the School of Computer
Science, University of Central Florida, P. O. Box 162362, Orlando, FL 32816-
2362. (e-mail: [xbai, hyu, yji]@cs.ucf.edu).

Dan C. Marinescu is a professor in the School of Computer Science,
University of Central Florida, P. O. Box 162362, Orlando, FL 32816-2362.
(phone: 407-823-4860; fax: 407-823-5419; e-mail: dcm@cs.ucf.edu).

The grid matchmaking process involves three types of
agents: consumers (requesters), producers (providers), and a
matchmaking service. A matchmaking service uses a
matching algorithm to evaluate a matching function which
computes the matching degree, see Fig.1.

Fig. 1. The four-step grid matchmaking process: 1) Providers send resource
descriptions to the matchmaking service; 2) A request is sent to the
matchmaking service; 3) The matchmaking service executes a matchmaking
algorithm and returns a set of ranked resources to the requester; 4) The
requester chooses a resource from the set the contacts the corresponding
resource provider.

In this paper we introduce several types of resource matching
functions for a grid environment and discuss briefly a
matchmaking service. In a related paper [1] we present an
evaluation of this service.

II. RELATED WORK

ATCHMAKING has been a hot topic of MAS (Multi-

Agent Systems) research, related to question on how to
find a suitable agent for a specific problem. The notable
results in this area are ACLs (Agent Communication

Languages) and matchmaking algorithms based on these
languages. One of the earliest results in this area is ABSI [2]
(Agent-Based Software Interoperability) facilitator which uses
KQML (Knowledge Query and Manipulation Language)
specification and KIF (Knowledge Interchange Format) as the
content language. The matchmaking of an advertisement and
a request is made through the unification of equality predicate.
In the COIN system [3], the matchmaking algorithm is based
on a unification process similar to Prolog. The InfoSleuth [4]
uses KIF as the content language. The matchmaking algorithm
is based on constraints, i.e., the advertisement and the request
match if the constraints are satisfied. SDL (Service

Description Language) was proposed in [5] to describe

W

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

87

services. The matchmaking algorithm finds k-nearest services
for a request according to the distance between the service
names (pairs of verb and noun terms) and the request. CDL

(Capability Description Language) was proposed in [6]. It
supports reasoning through the notions of subsumption and
instantiation. LARKS (Language for Advertisement and

Request for Knowledge Sharing) was proposed in [7] for
describing service capability and service request. It supports
ITL (Information Terminological Language) [8] concept
language. The relations among concepts are used to compute
semantic similarities. The matchmaking in MAS involves
semantic service matchmaking using the concept relationship
and word distance to determine the semantic similarities of
advertisements and requests. The matchmaking in MAS does
not involve other resource types and the matchmaking results
are exact, i.e., only “true” and “false” are allowed.

Research for service discovery in the Internet involves
ontology-based matchmaking. The traditional methods of
service discovery include name matchmaking and keyword
matchmaking. Some new methods are based on ontologies. In
[9] a semantic matchmaking framework based on DAML-S, a
DAML (DARPA Agent Markup Language)-based language for
service description, was proposed for semantic matchmaking
of web services capabilities. The basic idea is that an
advertisement matches a request when the service provided by
the advertisement can be of some use to the requester. The
matchmaking is performed on the outputs and inputs of the
advertisement and the request based on the ontologies
available to the matchmaker. Through the subsumption
relationship of one concept of the input/output of the
advertisement and one concept of the input/output of the
request, four levels of matching can be determined: exact,
plug-in, subsume, and fail. The idea of checking the concepts
of input and output is similar to the one in the MAS research.

The matchmaking framework of Condor [10] system uses a
semi-structured data model [11] called classified
advertisements (classads) to describe resources and requests.
A classad is a mapping from attribute names to expressions.
Condor matchmaking takes two classads and evaluates each
one with the other. A classad has an attribute named
“Constraint” that is used to be evaluated in the context of this
classad and the classad being matched with this classad. Only
when the values of attribute “Constraint” of both classads are
evaluated to be true, can these two classads be thought to be
matched. A classad has an attribute named “Rank” that
measures the desirability of a match. The evaluation value of
“Rank” identifies how much the two classads match. The
larger the value, the better they match. The Condor system
requires the provider and the requester to know each other's
classad structure. The evaluation result of the attribute “Rank”
is generally not normalized and can not tell explicitly how
well two classads match.

The matchmaking framework in Condor supports the
selection of only one resource. Based on the Condor

matchmaking, in [12], an extension, called set-extended
classad syntax, was proposed to support the multiple resource

selection. The matchmaking algorithm evaluates a set-
extended classad with a set of classads and returns a classad

set with the highest rank. When the size of the classad set is
large, it is not feasible to evaluate all of the possible
combinations of the resources. A greedy heuristic algorithm is
used to find the classad set with the highest rank. This set-
extended resource selection framework can perform both
resource discovery and resource allocation.

In [13], a service selection model was proposed based on
the quality of service of different service providers. Each time
after a service is used the user sends a feedback to the
matchmaker. When a request arrives, the matchmaker finds
the most appropriate service according to the inputs specified
by the request based on the feedbacks it receives.

III. THE GRID MATCHMAKING PROBLEM

IVEN a request and a set of resources, our goal is to
find a set of resources that best match the request. A

request is a (n+1)-tuple consisting of n attributes (a1, a2, …,
an) and a function of these attributes to be evaluated in the
context of resources, i.e., request = [a1, a2, ..., an, f(a1, a2, ...,
an)]. An attribute of a request is a mapping from an attribute
name to an attribute expression. A resource is an m-tuple
consisting of m attributes (a1, a2, ..., am). An attribute of a
resource is a mapping from an attribute name to an attribute
value. The resource that returns the largest value of function f

is considered as the one that best matches the request.
Attribute names should be constructed according to the

corresponding resource ontologies. Resource ontologies are a
critical component of the matchmaking framework. An
ontology is an explicit specification of a conceptualization and
a conceptualization is an abstract and simplified view of the
world that we wish to represent for some purpose. An
ontology defines a common structure that facilitates the
sharing of information. It includes machine-interpretable
definition of the basic concepts in a domain and their
relations. Entities in the matchmaking framework, i.e., the
providers, the requesters, and the matchmaking services,
which are generally not in the same domain, must share the
same ontology structure.

The structure of a category of entities is described as a
Protégé class [14]. Fig. 2 shows the hierarchical relationship
among grid resource classes. A class consists of one or more
slots. A slot describes one attribute of the class and consists of
a name and a value. An instantiation of a class is called an
instance of that class. The type of a slot value may be simple
types, such as integer, float, Boolean, and string, or an
instance of a class.

Fig. 2. The hierarchical relationship among grid resource classes.

G

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

88

The rules for constructing the attribute name for an attribute
are:
1. If the attribute refers to a slot of the resource class, the

attribute name is the slot name.
2. If a slot of the resource class refers to an instance of other

class and the attribute refers to a slot of this instance, the
attribute name is the combination of the two slot names
connected by “.”.

The attribute names of a cluster in Fig. 3 are constructed
according to the above rule.

Fig. 3. Example of a resource instance: the cluster Boticelli and Bond.

For a request = [a1, a2, ..., an, f(a1, a2, ..., an)], the function f

is an expression that is the combination of attribute
expressions f1(a1), f2(a2), ..., and fn(an) through mathematical
and/or logical operators, where f1(a1), f2(a2), ..., and fn(an) are
to be evaluated in the context of the corresponding attributes
of the resource.

The expression for function f may involve:
1. Boolean expressions can be combined with the use of

Boolean operators “&” and/or “|”. Fig. 4(a) is an
example for this case.

2. Arithmetic expressions can be combined with the use
of arithmetic operators, such as “+”, “-”, “*”, and “/”.
Fig. 4(b) is an example for this case.

3. Fuzzy expressions can be combined with the use of
fuzzy operators “&&”. The evaluation result of
multiple fuzzy numbers connected by “&&” are the
average of these fuzzy numbers. Fig. 4(c) is an
example of this case.

4. A Boolean expression can be combined with an
arithmetic expression or a fuzzy expression through
Boolean operator “&”. If the Boolean expression
returns 1, they are evaluated to the value returned by
the arithmetic expression or the fuzzy expression. If the
Boolean expression returns 0, they are evaluated as 0.
Fig. 4(b) and Fig. 4(c) are examples for this case.

5. Expressions are combined through “if”, “then”, and
“else” constructs. Fig. 4(b) and Fig. 4(c) are examples
for this case.

We define three types of matching functions. A matching
function f may contain Boolean expressions and return a
Boolean constant (“true”, 1 or “false”, 0), see Fig. 4(a). f may
also contain arithmetic expressions and return a positive real
number, see Fig. 4(b). We also allow f to contain fuzzy

expressions and return a fuzzy number in [0, 1], as shown in
Fig. 4(c). The higher the returned value, the better a request
can be satisfied.

Fig. 4. Boolean, arithmetic, and fuzzy requests.

To evaluate f of Fig. 4(a) in the context of the two clusters
in Fig. 3, Boticelli and Bond returns 1. To evaluate f of Fig.
4(b) in the context of Boticelli, “f = 1 & (132 / 40) + (140.8 /
50) + (3520 / 30) = 123.45”. To evaluate f of Fig. 4(b) in the
context of Bond, “f = 1 & (128 / 40) + (115.2 / 50) + (3480 /
30) = 121.5”. The cluster that best matches the request is
Boticelli. To evaluate f of Fig. 4(c) in the context of Boticelli,
“f = 1 & 1 & 1 & 1 & 1 & (3 / 4) && 1 = 0.875”. To evaluate
f of Fig. 4(c) in the context of Bond, “f = 1 & 1 & 1 & 1 & 1
& 1 && 1 = 1”. The cluster best matching the request is Bond.

IV. A MATCHMAKING SERVICE

E implemented a matchmaking service in an
intelligent grid environment, the BondGrid [15]. The

matchmaking framework includes a resource specification
component, a request specification component, and
matchmaking algorithms. A request specification includes a
matchmaking function and possibly two additional constraints,
a cardinality threshold and a matching degree threshold. The
cardinality threshold specifies how many resources are
expected to be returned by the matchmaking service. The
matching degree threshold specifies the least matching degree
of one of resources returned by the service.

The matchmaking service executes a matchmaking
algorithm for each request sent by the requester. The input of
the algorithm is the request and the grid resource instances
stored in the knowledge base of the matchmaking service. The
matchmaking algorithm evaluates the request function in the
context of each resource instance in the knowledge base. The
output of the algorithm is a number of grid resources ranked
according to their matching degrees. Let n denote the

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

89

cardinality threshold specified by the request. The
matchmaking algorithm returns the grid resources that have
the n largest matching degrees to the requester. Fig. 5 shows
the pseudo code of the matchmaking algorithm.

Fig. 5. The original matchmaking algorithm performs an exhaustive database
search.

A matchmaking service maintains a knowledge base with a
large number of resource instances. Performing an exhaustive
matchmaking involving all resources in the knowledge base is
very expensive for large knowledge bases. In a modified
matchmaking algorithm shown in Fig. 6, the algorithm
finishes searching the knowledge base when k*n (where k is a
constant) resources are found with the required matching
degrees (not less than the matching degree threshold).

Fig. 6. The modified matchmaking algorithm performs a restricted database
search; it stops when the cardinality of a set of resources that match the
request reaches k*n.

We conducted performance studies regarding the variation
of the response time with the size of the knowledge base in
BondGrid environment [15]. Our measurements indicate that
when the knowledge base contains more than 3000 resource
records it is preferable to use a database rather than a local
file. The measurements also show that requests with different
levels of complexity of the evaluation function have similar
response time. This indicates to us that the complexity of a
request has little effect on the efficiency of the algorithm;
indeed, the knowledge base access time is the major
contributor to the response time. The response time of a

matchmaking service running the modified matchmaking
algorithm in Fig. 6, is considerably lower than that of a
service running the original matchmaking algorithm in Fig. 5.
The modified algorithm greatly improves the efficiency of
matchmaking without sacrificing the quality of the
matchmaking results.

V. SUMMARY

In this paper we introduce for the first time a more
comprehensive resource matching scheme that supports a
variety of matching functions including fuzzy functions. We
implemented a matchmaking service for an intelligent grid
environment and our evaluation results indicate that the
complexity of the matching function has little effect on the
response time dominated by the network and database access
time.

REFERENCES

[1] X. Bai, H. Yu, Y. Ji, and D. C. Marinescu. “Evaluation of a
matchmaking service for a grid environment.” The Fourteenth
International Heterogeneous Computing Workshop, Denver, Colorado,
April 4, 2005(submitted).

[2] N. Singh. "A common Lisp API and facilitator for ABSI: version 2.0.3."
Technical Report Logic-93-4, Logic Group, Computer Science
Department, Stanford University, 1993.

[3] D. Kuokka and L. Harada. “Matchmaking for information agents.”
Proceedings of 14th IJCAI, 672-678, 1995.

[4] R. J. Bayardo Jr., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal,
V. Kashyap, T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M.
Rusinkiewicz, R. Shea, C. Unnikrishnan, A. Unruh, and D. Woelk.
“InfoSleuth: agent-based semantic integration of information in open
and dynamic environments.” Reading in Agents, Morgan Kaufmann,
CA, 205-216, 1998.

[5] V. S. Subrahmanian, J. Dix, and F. Ozcan. “Heterogeneous agent
systems.” The MIT Press, 2000.

[6] G. J. Wickler. “Using expressive and flexible action representations to
reason about capabilities for intelligent agent cooperation.” PhD thesis,
University of Edinburgh, 1999.

[7] K. Sycara, S. Wido, M. Klusch, and J. Lu. “LARKS: dynamic
matchmaking among heterogeneous software agents in cyberspace.”
Autonomous Agents and Multi-Agent Systems, 5, 173-203, 2002.

[8] K. Sycara, J. Lu, and M. Klusch. “Interoperability among heterogeneous
software agents on the Internet.” Carnegie Mellon University, PA,
Technical Report CMU-RI-TR-98-22.

[9] M. Paolucci, N. Srinivasan, K. Sycara, and T. Nishimura. "Towards a
semantic choreography of Web services: From WSDL to DAML-S."
Proceedings of ICWS'03.

[10] R. Raman, M. Livny, and M. Solomon. “Matchmaking: distributed
resource management for high throughput computing.” In Proceedings
of the Seventh IEEE International Symposium on High Performance
Distributed Computing, July 1998.

[11] S. Nestorov, A. Abiteboul, and R. Motwani. "Inferring structure in
semistructured data." In Proceedings of the Workshop on Management
of Semistructured Data, Rucson, Arizona, May 1997.

[12] C. Liu, L. Yang, I. Foster, and D. Angulo. “Design and evaluation of a
resource selection framework for grid applications.” In Proceedings of
the 11th IEEE Symposium on High-Performance Distributed
Computing, 2002.

[13] Z. Zhang and C. Zhang. “An improvement to matchmaking algorithms
for middle agent.” AAMAS, Bologna, Italy, 2002.

[14] http://protege.stanford.edu/
[15] X. Bai, H. Yu, G. Wang, Y. Ji, D. C. Marinescu, G. M. Marinescu, and

L. Bölöni. “Intelligent grids.”, “Grid computing: software environments
and tools”, Jose C. Cunha and O.F. Rana Eds, Springer Verlag,
Heidelberg, 2004 (in print).

