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Ranking - convex risk minimization
Wojciech Rejchel

Abstract—The problem of ranking (rank regression) has become
popular in the machine learning community. This theory relates to
problems, in which one has to predict (guess) the order between
objects on the basis of vectors describing their observed features. In
many ranking algorithms a convex loss function is used instead of the
0−1 loss. It makes these procedures computationally efficient. Hence,
convex risk minimizers and their statistical properties are investigated
in this paper. Fast rates of convergence are obtained under conditions,
that look similarly to the ones from the classification theory. Methods
used in this paper come from the theory of U -processes as well as
empirical processes.
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I. INTRODUCTION

T
HE problem of ranking has become an interesting field

for researchers in machine learning community. There are

a few reasons for that, but, undoubtedly, the most important

ones are applications of this theory in many branches of econ-

omy - whenever one compares some objects (products). For

instance, a financial institution can be interested in comparing

credit risks of its clients or a department of quality control in a

factory can use results of this theory to indicate which machine

damages earlier. Other important applications contain survival

analysis or information retrieval, when one can compare

documents (web pages) by the degree of relevance for a given

request.

In ranking, in a nutshell, one wants to predict (guess) the

order between objects on the basis of their observed features.

This problem is closely related to the well-known part of

machine learning - the classification theory [1], [2]. The

statistical framework of ranking, that is considered here, is

similar to [3]. Empirical risk minimizers, i.e. machine learning

analog of M -estimators, are investigated in this paper. Since

the empirical risk is a U -statistic, the theory of U -statistics (U -

processes) plays a significant role in argumentation. Important

facts about these objects can be found in the monographs of

de la Pena [4] or Serfling [5].

At the beginning, a development of ranking (similarly to

the classification theory) was slowed down by problems in

applications, since one minimized the discontinuous criterion

function. It created serious computational problems and was

not effective [6], [7]. To overcome these problems the dis-

continuous loss function was replaced by a convex surrogate

designed to serve a similar purpose. This trick allowed to

invent effective algorithms, such as support vector machines

[8], [9] or boosting [10], [11]. Except algorithmic details,

statistical properties of convex risk minimizers should be better

recognized - that is one of the main aims of this paper. In the
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paper [12] the attention was focused on linear ranking rules

and conditions for the strong consistency and the asymptotic

normality of convex risk minimizers were found. On the other

hand, confidence intervals for the risk and the excess risk of

empirically chosen ranking rules were developed in [3]. They

obtained bounds for both convex risks of the order 1
√

n
. It has

been already mentioned, that ranking and the classification

have much in common. It was noticed in the latter theory, that

there are some conditions standing behind an improvement of

the rate of convergence even to 1
n
. Namely, these assumptions

concern controlling the variance of the risk by its expected

value. They were obtained using ”low noise” requirements

[13]. And this is also the goal of this paper - developing new

probabilistic inequalities for ranking, which indicate that one

can get better rates than 1
√

n
.

The importance of the theory of U -statistics and U -

processes should be emphasized. Indeed, the empirical risk, as

a U -statistic, can be split into a sum of iid random variables

and a degenerate U -process. For the latter term there are some

exponential inequalities [14], [15], which allow to bound this

component by 1
n
. However, the first (empirical) element in

Hoeffding decomposition of U -statistics is the leading one.

It is well-known (for instance [1] or [16]) that it can be

bounded by 1
√

n
(with respect to the constant), if one uses

standard methods such as the bounded differences inequality,

symmetrization lemma or contraction principle. With addi-

tional, but reasonable (comparing to the classification theory)

conditions and basing on more powerful tools (Tallagrand

inequality in place of the bounded differences one), one can

obtain faster convergence, with rates up to 1
n

(in fact, up to
lnn
n

). Methods used in the classification theory [17], [18] were

the core for studies of the empirical term. They has been

transferred to the field of ranking.

The paper is organized as follows: in the next section the

statistical framework of ranking is introduced. The third part

is devoted to empirical terms in Hoeffding decomposition in

the case of the risk of ranking rules and the excess risk. In

section four tools, that are helpful to handle a degenerate U -

process, are developed. Main results can be found in the fifth

section, which contains also applications of proved theorems

to commonly used algorithms, for instance boosting.

II. PROBLEM OF RANKING

First, it is assumed that there are two objects Z = (X,Y )
and Z ′ = (X ′, Y ′), which take values in X × R, where

X ⊂ R
d, and they are independent and identically distributed

(according to the distribution P ) random vectors. X and X ′

are considered as vectors describing observed or measured



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1989

features of the objects, while Y and Y ′ are their unseen labels.

By the definition, the object Z is ”better” than Z ′ if Y > Y ′.

The task is to predict (guess) the order between instances in the

best possible way. To do it, one constructs functions (ranking

rules) f : X ×X → R, which guess the order between objects

in the following way

if f(x, x′) > 0 then y > y′.

The quality of ranking rules is measured by the probability of

incorrect ranking, which is defined as

L(f) = P ( sgn(Y − Y ′)f(X,X ′) < 0), (1)

so the task is to find the ranking rule minimizing (1) in f ∈ F ,
where F is a family of ranking rules.

Moreover, let Z1 = (X1, Y1), . . . , Zn = (Xn, Yn), be

a learning sample, that is a collection of independent and

identically distributed (also according to P ) random vectors

for which the ordering of components Yi is observable. The

sample analog of (1)

Ln(f) =
1

n(n− 1)

∑

i 6=j

I[sgn(Yi − Yj)f(Xi,Xj) < 0]

can be considered and one wants to find the ranking rule,

which minimizes this expression. This approach to the ranking

problem is hardly used, because the function Ln(f), that is

to minimize, is discontinuous, so the task is computationally

difficult. This inconvenience can be overcome using instead of

the 0 − 1 loss function its convex surrogate.

Therefore, let ψ be a convex, nonnegative real function,

which bounds the 0 − 1 loss from above. Denote the convex

risk of a ranking rule f by

A(f) = E ψ[ sgn(Y − Y ′) f(X,X ′)]. (2)

Now one looks for a minimizer of (2) in f ∈ F . The typical

approach to this problem is to find a minimizer of an empirical

analog of (2) of the form

An(f) =
1

n(n− 1)

∑

i 6=j

ψf (Zi, Zj),

where ψf (z, z
′) denotes ψ[sgn(y − y′) f(x, x′)]. Note that

An(f) is, for each f , a U -statistic of order two, so properties

of U -processes should be used to study the performance of

fn = argminfAn(f). Studies on the quality of fn will go

twofold. On the one hand, bounds for the risk of fn in terms

of its empirical analog are looked for. On the second hand,

the excess risk, i.e. when one compares the risk of fn to the

risk of the best ranking rule in the class, is considered.

First, it can be assumed, for simplicity, that the class F is

uniformly bounded, so for every x, x′ ∈ X and f ∈ F one

has |f(x, x′)| ≤ A1 for some constant A1 > 0. Moreover,

it is considered here and in the sequel, for convenience, that

f(x, x′) = −f(x′, x), which implies that the kernel of An(f)
is symmetric. The first tool, that is needed, is Hoeffding

decomposition of U -statistics [5]:

A(f) −An(f) = 2Pn[A(f) − P ψf ] − Un(hf ),

where

P ψf (z) = E[ψf (Z,Z
′)|Z = z],

Pn(g) =
1

n

n
∑

i=1

g(Zi),

hf (Z1, Z2) = ψf (Z1, Z2) − Pψf (Z1) − Pψf (Z2) +A(f)

Un(hf ) =
1

n(n− 1)

∑

i 6=j

hf (Zi, Zj).

Hoeffding decomposition breaks a U -statistic into the sum

of iid random variables and a degenerate U -statistic Un(hf ).
The degeneration of a U -statistic means that the conditional

expectation of its kernel is the zero-function. Using expo-

nential inequalities one can bound the U -process Un(hf ) by
1
n

with high probability. Moreover, some methods from the

classification theory will be borrowed to develop probabilistic

inequalities for the empirical term with proper rates.

Now the excess risk of a ranking rule, i.e. A(fn) −
inff∈F A(f), is considered. One more assumption will be

made: there exists f∗ ∈ F satisfying A(f∗) = inff∈F A(f).
This condition can be weakened, because one can consider

functions that are only close to achieving minimum. This

generalization is not very hard, but makes results less transpar-

ent. Hoeffding decomposition can be applied to the U -statistic

An(f) −An(f
∗) :

A(f) −A(f∗) − [An(f) −An(f
∗)] =

2Pn[A(f)−A(f∗)−Pψf+Pψf∗ ]−[Un(hf )−Un(hf∗)]. (3)

The procedure is similar to the one in the previous case.

III. EMPIRICAL TERM

In order to obtain the proper rate for the empirical term

in Hoeffding decomposition one has to assume that variances

of functions from an adequate family are upper bounded by

the linear transformation of their expectations. The general

theorem for empirical processes is presented and applied to the

appropriate class of functions. At the beginning, one needs a

few preliminaries - the first one refers to the sub-root function:

Definition 1: A function φ : [0,∞) → [0,∞) is a sub-

root function if it is nonnegative, non-decreasing and for each

r > 0 the function r 7−→ φ(r)/
√
r is non-increasing.

There are a lot of useful properties of sub-root functions, for

example they are continuous and have the unique fixed point

r∗ (the positive solution of the equation φ(r) = r). Proofs of

these facts can be easily find in the literature [1], [17].

Thus, let G = {g : X → R} be a class of real functions.

Let two iid sequences be given: Z1, . . . , Zn as before and

σ1, . . . , σn such that P (σi = 1) = P (σi = −1) = 1/2 for

i = 1, . . . , n (Z’s and σ’s are also independent). Rademacher

average of a class G is defined as

ERn(G) = E sup
g∈G

1

n

n
∑

i=1

σi g(Zi),

where the expectation is taken with respect to both samples.

Finally, let Pg denote the expectation of g, so Pg = Eg(Z).
The above-mentioned theorem, which can be also found for

instance in [17] or [19], is stated:
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Theorem 2: Let the class G of functions with ranges in

[a, b] be such that Pg2 ≤ B Pg for some constant B and every

g ∈ G. Moreover, if there exists a sub-root function φ with

the fixed point r∗, which satisfies

φ(r) ≥ B ERn(g ∈ G∗ : Pg2 ≤ r)

for every r ≥ r∗, then for every K > 1 and x > 0, with

probability at least 1 − e−x

∀g ∈ G Pg ≤
K

K − 1
Pn(g)+

6K

B
r∗+[11(b−a)+5BK]

x

n
.

The class G∗ is just a star-hull of G, i.e.

G∗ = {α g : g ∈ G, α ∈ [0, 1]}.

Here Rademacher average of G∗ is used, but the similar

theorem can be proved without this modification. Of course,

making a class star-shaped increases it, but as it will be seen

later it is not significant, for instance in the sense of covering

numbers, which is essential in this paper.

Theorem 2 says that to get proper bounds for the empirical

term one needs to find good bounds for the fixed point r∗

of a sub-root φ, but there is no general method for choosing

φ. In this paper ERn(g ∈ G∗ : Pg2 ≤ r) is used as a sub-

root. The nonnegativity of this function is obvious. Moreover,

it is non-decreasing, because it is enough to notice that {g :
Pg2 ≤ r} ⊂ {g : Pg2 ≤ r′} for r ≤ r′. The last property

from the definition of a sub-root function is also not difficult.

Using the above-mentioned sub-root one can show that the

rate of the empirical process can be essentially better than
1

√

n
. Namely, the fixed point of such chosen sub-root function

will be bounded by lnn
n

and this is the best known order [20],

[21].

As it has been already mentioned, two cases are considered:

the first one relies on rewarding bounds for the ’typical’

risk A(f). The second one refers to the excess risk, i.e. the

difference between the risks A(f) and A(f∗). The former sit-

uation is quite easy, since the appropriate class is nonnegative

and bounded. This trivially implies the relation between the

variance and the expectation of its elements. The latter case is

more complicated, since the class of functions does not have

to be nonnegative. So one needs more effort to get proper

bounds. The convexity of a loss function plays a crucial role

in this investigation.

Let the class

PψF = {Pψf : f ∈ F}

be considered, where F consists of uniformly bounded func-

tions and ψ is a convex, nonnegative loss function (so ψ is

also locally Lipschitz with respect to the euclidean distance on

the real line). There is one more assumption on the class F ,

namely it is euclidean. This condition is not very restrictive

and often fulfilled by commonly used classes (for example a

class with finite Vapnik-Chervonenkis dimension or a family

used by boosting). This property of the class F allows to

bound its covering number in a ”nice” way. Its definition is

introduced below. More details on euclidean families may be

found in [22].

For every probability measure Q on X ×X one can define

the L
2-distance on F by

d(f, g) =

√

∫

|f − g|2dQ.

The covering number N (ε,F , d) of the class F with radius

ε > 0 and with respect to d is the smallest cardinality of a

subclass F1 of F such that for every f ∈ F one can find

f1 ∈ F1 for which d(f, f1) ≤ ε. Thus, the definition of a

euclidean class can be written:

Definition 3: The class F is euclidean, if there exist

positive constants A and V with the property: for every ε > 0
and a probability measure Q

N (ε,F , d) ≤ Aε−V .

The constants must not depend on Q.

Now one can state the theorem concerning the empirical

term, when the attention is focused on the risk A(f):
Theorem 4: For every K > 1 and x > 0, with probability

at least 1 − 2e−x

∀f ∈ F A(f) ≤
K

K − 1
Pn(Pψf ) +D

lnn

n
+ E

x

n
,

where F is a euclidean class of functions and D and E are

constants.

Remark 5: The precise forms of constants D and E from

Theorem 4 and Theorem 6 (below) can be given. They are not

introduced here since the order of bound is more important in

this paper.

Proof: The class PψF is nonnegative and bounded,

because ψ is nonnegative and convex, and F is uniformly

bounded. Let the constant A2 be a suitable bound for PψF ,

so |Pψf (z)| ≤ A2 for all f ∈ F and z ∈ X ×R. Using these

two properties

E (Pψf (Z))
2

= A2
2 E

(

Pψf (Z)

A2

)2

≤ A2
2 E

(

Pψf (Z)

A2

)

≤ A2 E(Pψf (Z)),

which confirms that there exists the wanted relation between

the variance and the expectation. Theorem 2 can be used for

the family PψF and the sub-root function

φ(r) = 10A2 ERn(h ∈ (PψF )∗ : Ph2 ≤ r) + 11A2
2

x

n
,

where x is an arbitrary positive number. Of course, φ is a

sub-root, because it is a modification of the sub-root function

ERn(h ∈ (PψF )∗ : Ph2 ≤ r). The sub-root function φ,

which is chosen in this proof, depends on n, so its fixed point

too. From Theorem 2 the probabilistic inequality (with proper

constants D and E) is deduced

A(f) ≤
K

K − 1
Pn(Pψf ) +Dr∗ + E

x

n

for every f ∈ F . To finish the proof the fixed point r∗ of

the sub-root φ should be bounded by a term of the order lnn
n
.

Similar methods to presented here can be found in [17] or
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[23]. Using Corollary 2.2 from the former paper one has with

probability at least 1 − e−x

{h ∈ (PψF )∗ : Ph2 ≤ r∗} ⊂ {h ∈ (PψF )∗ : Pnh
2 ≤ 2r∗},

since

ERn(h ∈ (PψF )∗ : Ph2 ≤ r∗)

≤ ERn(h ∈ (PψF )∗ : Pnh
2 ≤ 2r∗),

so

r∗ ≤ 10A2 ERn(h ∈ (PψF )∗ : Pnh
2 ≤ 2r∗) + 11A2

2

x

n
.

Now Chaining Lemma for empirical processes [24] can be

used to get the following inequality

ERn(h ∈ (PψF )∗ : Pnh
2 ≤ 2r∗)

≤
C
√
n

E

∫

√

2r∗

0

√

lnN (ε, (PψF )∗, L2(Pn)) dε

for some constant C. It is straightforward that having an ε/2 -

cover of the family PψF and an ε/2A2 - cover of the interval

[0,1] one can create an ε-cover of the star-hull of PψF and

N (ε, (PψF )∗, L2(Pn)) ≤ N (ε/2, PψF , L
2(Pn))⌈2A2/ε⌉.

F is euclidean and ψ is locally Lipschitz, hence PψF is also

euclidean, so there exist constants A and V for which

N (ε/2, PψF , L
2(Pn)) ≤ A

(ε

2

)

−V

.

Therefore, with constants C and D, that may change from line

to line

C
√
n

E

∫

√

2r∗

0

√

lnN (ε, (PψF )∗, L2(Pn)) dε

≤
C
√
n

∫

√

2r∗

0

√

ln
D

ε
dε ≤

C
√
n

√

r∗ ln
D

r∗
.

In the last inequality Lemma 3.8 from [23] is used. Joining

together above results one has

r∗ ≤ C

√

lnn

n

√
r∗ +D

x

n
,

which easily implies

r∗ ≤ C
lnn

n
+D

x

n
.

Now the excess risk of a ranking rule is considered. If one

looks at Hoeffding decomposition (3), then Theorem 2 can be

used to handle its empirical term. Obviously, the class

P ψF − P ψf∗ = {P ψf − P ψf∗ : f ∈ F}

is bounded, because |P ψf (z) − P ψf∗(z)| ≤ 2LψA1 with

Lψ being the Lipschitz constant of ψ. But there is one

more assumption in Theorem 2, which concerns variances

of functions from the family PψF − Pψf∗ . The following

inequality is needed: for every f ∈ F

V ar[Pψf (Z) − Pψf∗(Z)] ≤ B[A(f) −A(f∗)] (4)

for some constant B. The class, that is considered, need not

to be nonnegative, so the reasoning as in the previous case

fails. It will be shown in the subsection III.A that with more

assumptions (but not too restrictive) this condition is also

satisfied. The following theorem can be stated:

Theorem 6: For every K > 1 and x > 0, with probability

at least 1 − 2e−x for each f ∈ F

A(f) −A(f∗) ≤
K

K − 1
Pn(Pψf − Pψf∗) +D

lnn

n
+ E

x

n
,

where F is a euclidean class of functions, that satisfies (4)

and D and E are constants.

Proof: The idea is the same as in the proof of Theorem

4. One just takes a slightly different sub-root function

φ(r) = 20LψA1B ERn(h ∈ (PψF − Pψf∗)∗ : Ph2 ≤ r)

+ 44L2
ψ
A2

1

x

n

and bounds its unique fixed point. Since F is euclidean and

ψ is locally Lipschitz, then the family P ψF −P ψf∗ also has

this property.

A. To bound variance by expectation

Theorem 6 in Section III shows that fast rates can be

obtained if one can relate the variance of elements from

PψF − Pψf∗ to their expectation. In this subsection condi-

tions, that are sufficient for even stronger relationship

V ar[ψf (Z,Z
′) − ψf∗(Z,Z ′)] ≤ B[A(f) −A(f∗)],

are found. Moreover, these conditions are not very restrictive

and, as it will be seen later, they will be satisfied in the most

interesting situations.

The key object in further analysis - the modulus of convexity

of the function ψ - will be defined. It is known that this

function is very helpful if one wants to show the similar

relation in the classification theory [18], [21]. With minor

changes one can use the modulus of convexity in the ranking

setting.

Definition 7: The modulus of convexity of ψ is the

function δ : [0,∞) → [0,∞] defined as

δ(ε) = inf

{

ψ(x) + ψ(y)

2
− ψ

(

x+ y

2

)

: |x− y| ≥ ε

}

.

If one looks at the convex risk A(f) of the ranking rule f as

a functional A : F → R and the class F is convex, then the

functional A is also convex. It allows to consider the modulus

of convexity of it, given by

δ̃(ε) = inf

{

A(f) +A(g)

2
−A

(

f + g

2

)

: d(f, g) ≥ ε

}

,

where d is the L
2-distance for f, g ∈ F , so

d(f, g) =
√

E[f(X,X ′) − g(X,X ′)]2 .

The key property of the modulus of convexity is the fact that it

can be often lower bounded by Cεr, for some C, r > 0. This

is satisfied for a large family of convex loss functions, for

instance e−x, ln(1 + e−2x) or (1 − x)2+ (the last case needs

just minor changes in consideration). This property implies
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the similar one for the modulus of the functional A, which is

sufficient for proving the relationship between the variance and

the expectation for functions from the family PψF − Pψf∗ .

The following lemma, which has its origin in [18], can be

stated:

Lemma 8: If there exist constants C, r > 0 for which the

modulus of convexity of ψ satisfies

δ(ε) ≥ Cεr, (5)

then

V ar[ψf (Z,Z
′)−ψf∗(Z,Z ′)] ≤ L2

ψ
Dr[A(f)−A(f∗)]min(1,2/r)

,

where

Dr =

{

(2C)−2/r if r ≥ 2,
21−rA2−r

1 C−1 if r < 2.

Proof: First, the variance of functions of the form ψf −
ψf∗ can be easily bounded if one uses the Lipschitz property

of ψ:

V ar[ψf (Z,Z
′) − ψf∗(Z,Z ′)]

≤ E[ψf (Z,Z
′) − ψf∗(Z,Z ′)]2

≤ L2
ψ
E[sgn(Y − Y ′)f(X,X ′) − sgn(Y − Y ′)f∗(X,X ′)]2

= L2
ψ
d2(f, f∗). (6)

The second step of the proof relies on showing that if the

modulus δ satisfies (5), then its analogue δ̃ also fulfills a

similar condition. Namely, let f, g ∈ F satisfy d(f, g) ≥ ε.

Then

A(f) +A(g)

2
−A

(

f + g

2

)

= E

[

ψf (Z,Z
′) + ψg(Z,Z

′)

2
− ψ f+g

2

(Z,Z ′)

]

≥ E δ(|sgn(Y − Y ′)f(X,X ′) − sgn(Y − Y ′)g(X,X ′)|)

= E δ(|f(X,X ′) − g(X,X ′)|)

≥ CE [f(X,X ′) − g(X,X ′)]r.

This and easy calculation ( as in the proof of Lemma 15 in

[18]) show that the modulus of convexity of the functional A

fulfills

δ̃(ε) ≥ Crε
max(2,r) , (7)

where Cr = C for r ≥ 2 and Cr = C(2A1)
r−2

otherwise.

Moreover, from the definition of the modulus of convexity and

the fact that f∗ is the minimizer of A(f) in the convex class

F :

A(f) +A(f∗)

2
≥ A

(

f + f∗

2

)

+ δ̃(d(f, f∗))

≥ A(f∗) + δ̃(d(f, f∗)).

The bound for the variance (6) and the property (7) of the

modulus δ̃ imply

A(f) −A(f∗) ≥ 2δ̃

(

√

V ar [ψf (Z,Z ′) − ψf∗(Z,Z ′)]

Lψ

)

≥ 2Cr

(

√

V ar [ψf (Z,Z ′) − ψf∗(Z,Z ′)]

Lψ

)max(2,r)

,

which is equivalent to

V ar[ψf (Z,Z
′)−ψf∗(Z,Z ′)] ≤ L2

ψ
Dr[A(f)−A(f∗)]min(1,2/r)

.

Thus, for loss functions that were mentioned at the begin-

ning of this subsection one obtains the exponent in the above

inequality equal to 1, because their modulus of convexity can

be easily lower bounded with r = 2.

IV. DEGENERATE U -PROCESSES

In this section the method, which allows to get exponential

inequalities for degenerate U -processes, is presented. These

inequalities ensure that the second term in Hoeffding decom-

position can be upper bounded by 1
n
, which is the right order

to get better bounds for the risk and the excess risk of ranking

rules.

First, a general U -process






Un(h) =
1

n(n− 1)

∑

i 6=j

h(Zi, Zj) : h ∈ H







, (8)

is considered. H is a euclidean family of uniformly bounded,

degenerate and symmetric functions. At the end of this section

it will be specialized to the case of U -processes, that are

demanded in Hoeffding decompositions described in Section

II.

Theorem 9: If we consider the U -process (8), then for

each x > 0, with probability at least 1 − C1 exp(−x)

sup
h∈H

|Un(h)| ≤
C2x

n
,

where C1 and C2 are positive constants.

Proof: Let λ be a positive number. Symmetrization

Lemma [4] and formulas 3.5 and 3.4 from [25] imply

Eexp

(

λ
√

sup
h∈H

|(n− 1)Un(h)|

)

≤ C1E exp

(

C2λ
2
Eσ sup

h∈H

|(n− 1)Sn(h)|

)

. (9)

The notation Sn(h) = 1
n(n−1)

∑

i 6=j σiσjh(Zi,Zj) has been

used in (9) and Eσ is the conditional expectation with respect

to Rademacher variables. It should be indicated that the

constant C1, C2 and other, that will appear in this proof, may

differ from line to line. Therefore, the problem is reduced to

finding bounds for Eσ suph∈H
|Sn(h)|. This step relies on

Chaining Lemma ([26], Lemma 5) applied to U -processes.

Namely, this lemma is used for the stochastic process

{Jn(h) =
1

n

∑

i 6=j

σiσjh(Zi, Zj) : h ∈ H}.

As it has been already said the sample Z1, . . . , Zn is fixed now

so one can denote h(Zi, Zj) = hij in this case. Furthermore,

let the pseudo-metric d on the family H be defined as

d(h, g) =

√

1

n(n− 1)

∑

i 6=j

(hij − gij)2 .
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For this stochastic process assumptions of Chaining Lemma

are satisfied with the function φ given by exp(x
s
−1), where s

is an appropriate constant. The first and the fourth condition in

Chaining Lemma are obviously fulfilled. Besides, it can be as-

sumed that 0 ∈ H, which easily implies the third assumption,

since the family H is uniformly bounded. The whole difficulty

lies in the second condition. But using Corollary 3.2.6 from

[4] one finds s such that

Eσ exp

(

|Jn(h− g)|

s
√

Eσ[Jn(h− g)]2

)

≤ e.

Furthermore, quick calculation shows that

Eσ[Jn(h− g)]2 =
1

n2

∑

i 6=j

(hij − gij)
2 ≤ d2(h, g),

which implies

Eσφ

(

|Jn(h− g)|

d(h, g)

)

≤ 1.

Finally, using the thesis of Chaining Lemma

Eσ sup
h∈H

|Sn(h)| ≤
C1

n− 1

∫

H

0

[s lnN (ε,H, d) + s] dε,

where H is a bound of the class H. Since the family H is

euclidean, then for some constant C3

Eσ sup
h∈H

|Snh| ≤
C3

n
. (10)

With this inequality the right side of (9) may be bounded by

C1 exp(C2λ
2), because the right side of (10) does not depend

on variables Z1, . . . , Zn. This and Markov Inequality finish

the proof.

The properties of the U -processes






1

n(n− 1)

∑

i 6=j

hf (Zi, Zj) : f ∈ F







(11)

should be studied, where

hf (Zi, Zj) = ψf (Zi, Zj) − Pψf (Zi) − Pψf (Zj) +A(f).

One can use Theorem 9 to handle the U -process (11):

Corollary 10: For every x > 0, with probability at least

1 − C1 exp(−x)

sup
f∈F

∣

∣

∣

∣

∣

∣

1

n(n− 1)

∑

i 6=j

hf (Zi, Zj)

∣

∣

∣

∣

∣

∣

≤
C2x

n
,

where C1 and C2 are positive constants. The same proba-

bilistic inequality, with respect to the constants, holds for the

degenerate term in the case of the excess risk, i.e. when one

takes hf − hf∗ instead of hf .

Proof: Kernels of the U -process considered here are

uniformly bounded (since F is uniformly bounded and ψ

is convex), symmetric and degenerate. Furthermore, the class

{hf : f ∈ F} is euclidean, because it is a sum of euclidean

classes and for families H1 and H2

N (2ε,H1 + H2, d) ≤ N (ε,H1, d)N (ε,H2, d)

for H1 + H2 = {h1 + h2 : h1 ∈ H1, h2 ∈ H2}.

V. CONCLUSIONS: FINAL RESULTS AND EXAMPLES

The task relied on showing that in ranking, similarly to the

classification theory, the risk and the excess risk of ranking

rules can be bounded with better rates than 1
√

n
, which were

proved in [3]. By Hoeffding decomposition the effort was

divided into the empirical term (Section III) and the degenerate

U -process (Section IV). If one takes results of these two parts

together, then the following two theorems can be stated. Main

assumptions about the class F and the function ψ are not

repeated.

Theorem 11: If the class F of ranking rules is euclidean,

then for each x > 0, with probability at least 1 −C exp(−x)

∀f ∈ F A(f) ≤ 3An(f) +D

(

lnn+ x

n

)

,

where C and D are proper constants. In particular, for the

ranking rule fn = argminf∈F
An(f)

A(fn) ≤ 3An(fn) +D

(

lnn+ x

n

)

.

Proof: Hoeffding decomposition of the U -statistic An(f)
can be slightly changed. Namely, for K > 2

(K−2)A(f)−KAn(f)=2Pn[(K−1)A(f)−KP ψf ]−KUn(f).

Applying Theorem 4 and Corollary 10 finishes the proof. For

simplicity K equals 3.

Theorem 12: If the class F of ranking rules is convex

and euclidean, and the modulus of convexity δ(ε) of ψ is

proportional to ε2 on the interval [−A1, A1], then for each

x > 0, with probability at least 1 − C exp(−x) for every

f ∈ F

A(f)−A(f∗) ≤ 3[An(f)−An(f
∗)]+D

(

lnn+ x

n

)

, (12)

where C and D are proper constants. In particular, for the

ranking rule fn = argminf∈F
An(f)

A(fn) −A(f∗) ≤ D

(

lnn+ x

n

)

. (13)

Proof: First, similar changes as in the proof of Theorem

11 are needed in Hoeffding decomposition of the U -statistic

An(f) −An(f
∗). Thus, Theorem 6, Lemma 8 and Corollary

10 are sufficient for the proof of (12). The fact that An(fn)−
An(f) ≤ 0 for every f ∈ F implies (13).

Remark 13: The constant 3 before the first terms on

the right side of inequalities in Theorems 11 and 12 can be

decreased to the number close to 1, but in the same time the

constant D would increase.

The natural problem arises: even if the rule fn is very good

in the convex case, is it accurate in the 0 − 1 loss case? The

relation between risks L(fn) and A(fn), and excess risks

L(fn) − L(f∗) and A(fn) − A(f∗) should be found. The

first situation is quite easy, since typically chosen convex loss

functions are upper-bounds for the 0 − 1 loss. So if A(fn)
is small, then automatically L(fn) is also insignificant. The

latter case is more complicated, because the excess convex

risk does not need to bound the ”primary” one. Results of
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[18] are sufficient to formulate Theorems 11 and 12 in cases

of true risks L(f) and L(f) − L(f∗).
Now two examples are described, where the theorems

written above can be applied. The first one is very simple.

Example 14: Let

F = {f(x, x′) = aT (x− x′) + b : a, x, x′ ∈ R
d, b ∈ R}

be a family of ranking rules. In this case the prediction of

the order between objects depends on the hyperplane that the

vector x − x′ belongs to. It is clear that F is euclidean and

convex. If one takes a ”good” convex function ψ, for instance

one of the mentioned in Subsection III.A, then both Theorems

11 and 12 work. Thus, the rates of the order 1
n

can be obtained

for these ranking rules.

The second application concerns a very famous family of

algorithms called ”boosting”. There are a lot of different

versions of boosting, and here AdaBoost is considered, which

uses the exponential loss function ψ(x) = exp(−x).
Example 15: A class R of binary functions with the fi-

nite Vapnik-Chervonenkis dimension is considered. The output

of Adaboost is an element of a convex T -hull of R, where T

is the number of components (in fact iterations). Namely, it

belongs to the family

convT (R) = {f(x, x′) =

T
∑

j=1

wjrj(x, x
′) :

T
∑

j=1

wj = 1 ,

0 ≤ wj ≤ 1, rj ∈ R for j = 1, . . . , T} .

The class convT (R) is obviously convex. Furthermore, for

some constants A and V

N (ε, convT (R), d) ≤ Aε−TV ,

because the class R is euclidean. This inequality implies that

the family convT (R) is also euclidean. On the other hand, the

modulus of convexity of the function ψ(x) = exp(−x) on the

interval [-1,1] equals to ε2/8e. By Theorems 11 and 12 one

again observes faster rates than previously proved (compare

to [3], Section 7). Of course, these two theorems do not only

work for a fixed number of components. One can deduce

without much effort uniform, in T, results using a union bound

for probability.
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