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 Abstract—Incompressible Navier-Stokes equations are reviewed 

in this work. Three-dimensional Navier-Stokes equations are solved 
analytically. The Mathematical derivation shows that the solutions 
for the zero and constant pressure gradients are similar. Descriptions 
of the proposed formulation and validation against two laminar 
experiments and three different turbulent flow cases are reported in 
this paper. Even though, the analytical solution is derived for non-
reacting flows, it could reproduce trends for cases including 
combustion. 

 
Keywords—Navier-Stokes Equations, potential function, 

turbulent flows. 

I.  INTRODUCTION 
HE importance of Navier Stokes equations comes from 
their wide applicability for different kind of flows, 

ranging from thin films to large scale atmospheric even 
cosmic flows. However, Navier-Stokes equations are 
nonlinear in nature and it is difficult to solve these equations 
analytically. In order to perform this task, some 
simplifications are elucidated, such as linearization or 
assumptions of weak nonlinearity, small fluctuations, 
discretization, etc.  

Despite the concentrated research on Navier Stokes 
equations, their universal solution is not achieved. The full 
solution of the three-dimensional Navier-Stokes equations 
remains one of the open problems in mathematical physics. 
Computational Fluid Dynamics (CFD) approaches discritise 
the equations and solve them numerically. Although such 
numerical methods are successful, they are still expensive and 
there must be approximation errors associated with them. 

The development of high speed computers eventually 
makes discretization methods more advanced and it enables 
the numerical treatment of turbulent flow. Solution of 
turbulent flows mainly depends on solving Navier Stokes 
equations and using ad-hoc models to close the solution.  

The numerical approaches are Reynolds Averaged Navier 
Stokes (RANS) which provides averaged solution of the flow, 
Large Eddy Simulation (LES) which solves the big scales and 
model the small ones, and Direct Numerical Simulations 
(DNS) which solve all the flow scales.  
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With respect to the computational cost, DNS is the most 
expensive numerical approach and it is still limited to small 
scale research problems. LES guarantees more economical 
computational time as compared to DNS and the results are 
not much different than DNS results when appropriate subgrid 
scale (SGS) models are used [1]. The cost of computation 
depends also on the dimension of the case and on the coupling 
with other equation as well, like the case of turbulent reacting 
flow. On top of the high cost of the numerical approaches, the 
necessary models play a major role on right predictions and 
can form a weakness to the solutions. 

There is a large number of research concentrating on 
formulating efficient numerical schemes to solve Navier 
Stokes equations, such as the recent work as described in 
[1,2]. However, the computational costs are still high for 
handling accurate numerical simulations except for simple 
problems in engineering limited to small scale. In particular, it 
is known that in finite time interval, the solution of the Navier-
Stokes equations may either be blown up or split up, losing its 
regularity, and beginning to form branches [3,4]. In fact, 
depending on the values of the relevant parameters, a 
stationary boundary value problem can have a unique solution, 
several solutions, or even no solutions at all.    

In order to tackle this problem, the existence and 
smoothness theorem is widely applied to the mathematical 
analysis of Navier-Stokes equations as describe in many 
literatures. For example, nonstationary Navier-Stokes 
equations in the entire three-dimensional space are observed 
by Panel and Pokorny [5]. Some criteria on certain 
components of gradient velocity are given to ensure global 
smoothness in time [6]. 

On the other hand, the best way to overcome the above 
described numerical difficulties is to find classes of exact 
solutions to the full Navier-Stokes equations. Therefore, 
searching some classes of exact solutions of full Navier-
Stokes equations is highly demanded from practical viewpoint 
[7]. Exact solutions will also provide theoretical understanding 
in paving the way to full global solutions. They may 
contribute to the global smoothness in time.  

Unfortunately, only a few analytical works are currently 
present in literature. One of them is the transformation of 
Navier-Stokes equations to Schrodinger equation by 
application of Riccati equation [8]. It has good prospects since 
Schrodinger equation is linear and has well defined solutions. 
The method of Lie group theory is also applied in order to 
transform the original partial differential equations into 
ordinary differential systems [9]. It is concluded that an 
approximate series solution is obtained. The same route is 
performed, to transform the Navier-Stokes equations to 
solvable linear systems [10,11]. 

T 
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In this work, the objective is to find an analytical solution to 
the three-dimensional incompressible Navier Stokes equations 
by utilizing transformation coordinate. A potential function is 
proposed, and the three velocity vector are transformed into a 
single equation thorough the sum product of gradient and curl 
of the potential function. The mathematical derivation is 
carried out in two parts; first is by considering the cases in 
which the effect of the pressure gradient term is neglected and 
second by implementing constant pressure gradient in Navier-
Stokes equations. The results are also validated with some 
experimental data for various cases.  

II. ANALYTICAL SOLUTIONS 
Navier Stokes equations in Cartesian form for 

incompressible fluids are written as, 
 
At x-direction:  

2 2 2

2 2 2
1u u u u p u u uu v w

t x y z x x y z
υ υ υ

ρ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + = − + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

   (1a) 

At y-direction: 
2 2 2

2 2 2
1v v v v p v v vu v w

t x y z y x y z
υ υ υ

ρ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + = − + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 (1b) 

At z-direction: 
2 2 2

2 2 2
1w w w w p w w wu v w

t x y z z x y z
υ υ υ

ρ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + = − + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

    (1c) 

 
The continuity equation is written as, 
 

         0u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

                                 (1d) 

 
where p  is static pressure, ρ  is fluid density and υ  is 
kinematic viscosity. The solution of the system of equations 
describes the three velocity components in the three spatial 
directions, i.e., ( ), , ,u u x y z t= , ( ), , ,v v x y z t= and 

( ), , ,w w x y z t= . The three velocity components are 
interlinked and coupled together such as the velocity 
magnitude in vertical sum can be written as, 

( )1 22 2 2U u v w= + + . 

Consider a potential function Φ , in which its derivatives are 
the velocity components which is expressed in vectorial form 
as, 

  
            V = ∇Φ +∇×Φ                                   (2a) 

 
with ( ), ,x y z∇ = ∂ ∂ ∂ ∂ ∂ ∂ . The spatial coordinates are 
transformed into a single coordinate through the following 
transformation, 

 
kx ly mz ctξ = + + −                              (2b) 

 

where mlk ., , and c  are transformation constants. The 
velocity components in equation (2a) can be rewritten 
including the new coordinate. Then, substituting to the Navier-
Stokes equations and add them all to give, 

 

     
2 2 3

2 2 3
d Pa b eν

ξ ρ ξξ ξ ξ
∂ Φ ∂ Φ ∂Φ ∂ ∂ Φ

− + =− +
∂ ∂∂ ∂ ∂

                 (3) 

 
with , ,a b d  and e  are constant due to coordinate 
transformation. Dropping the pressure gradient term, and 
integrating once to have solution for ξ∂Φ ∂ . By performing 
integration once more, the expression for Φ  is produced as 

 
  ( )ln 1 BA e C Dξ ξ+ + +                       (4) 

where , ,A B C  and D  are also constants from integration. 
Thus, by implementing the coordinate relation (2b), the 
explicit analytical solution is obtained. 

Now equation (3) is recalled back for constant pressure 
gradient case, 

2 2 3

2 2 3
d Pa b eν

ξ ρ ξξ ξ ξ
∂ Φ ∂ Φ ∂Φ ∂ ∂ Φ

− + = − +
∂ ∂∂ ∂ ∂

 

 
and can be written with consideration of constant pressure 
gradient. Implementing Q ξ= ∂Φ ∂  and taking bQ a R− =  to 
get shorter expression. Taking S R ξ= ∂ ∂  and differentiating 
once will yield,    

 

                 
2

2
S

R
α∂

=
∂

                                    (5) 

 
And by integrating equation (5) twice, the following result 

is obtained,  
 

              2R R Rα β γ
ξ
∂

= + +
∂

                             (6) 

 
By transforming back to R , and by rearranging 

bQ a R− = , the solution for Q  is produced and for potential 
function. The obtained equality is similar to zero pressure 
gradient case,  

 
             ( )ln 1 hg ke f jξ ξΦ = + + +                        (7) 

 
where g, k, h, f and j are the integration constants. Therefore, 
by substituting equation (2b), the explicit analytical solution is 
reproduced.  

III. RESULTS AND DISCUSSIONS 
The analytical solution is validated at early stage and the 

validation cases are presented in this paper. The validation 
procedure started with laminar cases. The first validation case 
is the laminar free jet experiment due to Symons and Labus 
[12].  
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Fig. 1 Decay velocity along downstream direction produced by 
analytical solution (solid line) and the experimental data (points) for 

laminar free jet flow for (a) Re 255 and (b) Re 1839 [12] 
 
 

The prescribed data is the normalised downstream velocity. 
Fig. 1 shows that the analytical solution could reproduce the 
decay of the measured downstream velocity with longitudinal 
distance from the nozzle. Here both experimental data and 
analytical calculations are normalized. It is observed that the 
comparison for higher velocity (higher Re) is more accurate as 
depicted in Fig. 1a.  It may be due to the characteristic of the 
solution itself. Analytical solutions are obtained through the 
simple coordinate transformation. By dimensional analysis, it 
is clear that contributions of viscous terms are weakened for 
higher Reynolds number as described below, 

 

                         21.
Re

U U U P U
η

∂
+ ∇ = −∇ + ∇

∂
                   (8) 

 
with WtΩ = , Lη = Ω , U u W=  and Re WL v= . 

 
The other similar experiment used for validation is the 

laminar free jet due to Eappen [13]. The transverse velocity is 
the one used for comparison here. Fig. 2 shows a comparison 
of the analytical solution predictions with the measured 
values. The inlet boundary condition is based on parabolic 
velocity profile to reproduce the profile of the experiment set 

up. The calculated values follow the same trend as the 
measured ones with high accuracy. However, at some other 
locations there is slight deviation which can be attributed to 
the vortex formation around the longitudinal axis immediately 
when the flow jets out of the nozzle exit. Different from the 
decay velocity, comparisons for transverse velocity profile 
show that calculation for higher velocity is less accurate than 
the other as shown in Fig. 2a. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Fig. 2 Velocity profile in transverse coordinate performed by 
analytical solution (solid line) and the experimental data (points) for 

laminar free jet for (a) Re 5 and (b) Re 20 [13] 
 

It is well known that turbulent flows are much more 
complicated than laminar flows. Thus some naive approaches 
will fail for turbulent flows prediction even if they were 
successful for simple laminar flows prediction. Therefore, the 
analytical solution needed to go through a second stage of 
validation against turbulent flow cases.  

The first turbulent case chosen for this validation stage is a 
boundary layer in atmospheric flow experiment due to Farrel 
and Iyengar [14]. In this experiment, data were produced in a 
1.7 m wide, 1.8 m high and 16 m long test section of the St. 
Anthony Falls Laboratory tunnel. The experimental simulation 
technique was based on the use of quarter-elliptic, constant-
wedge angle spires with height of  1.2 m and a castellated 
barrier wall to produce the necessary initial momentum defect 
in the boundary layer, followed by a fetch of roughness 
elements representative of the terrain under consideration.  
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Fig. 3 gives a comparison of the calculated boundary layer 
velocity profile produced by the analytical solution and the 
measured profile from the experiment. The analytical results 
are found to be in good agreement with the experimental data. 
However, the conformity showed here is the averaged quantity 
of turbulent flows. The fluctuating parts which are represented 
in energy transfer between eddies is a matter of further 
research.  

 

Fig. 3 Trend of boundary layer velocity profile produced by 
analytical solution (solid line) and measured values (points) for 

boundary layer flow [14] 
 
 

Note that the analytical solutions described here are similar 
to the famous Blasius solution for boundary layer flows. Even 
though some prefer to use numerical methods for Blasius 
equation, the analytical solution can be produced easily for 
rectangular coordinate as follows, 

 
                      2 ''' '' 0f ff+ =                                    (9) 
 

where all parameters above are non dimensional. Equation (9) 
is a class of quasi linear differential equation. Following the 
technique used for constant pressure gradients cases. By 
integrating (9) once to get, 

 
           2 '' 'f ff+ = constant                       (10) 

 
Equation (10) is similar to equation (3) and its solutions 

resemble previous solutions. Thus, it is not surprising that 
analytical solutions performed here can describe boundary 
layer flows. 

The second challenging case used for validation in this 
stage is the recently published combustion experiment due to 
Cuoci et al. [15]. The fuel is fed in a central tube (3.2 mm 
internal diameter and 1.6 mm wall thickness), centered in a 15 
cm x 15 cm square test section, 1m long, with flat Pyrex 
windows on the four sides.  

 
 
 
 

Fig. 4 Measured mean axial velocity along flame centre line in radial 
direction (points) for combustion [15] against the analytical solution 

(solid line) 
 
 
 

The fuel molar composition is 39.7% CO, 29.9 H2, 29.7 N2 
and 0.70 CH4. Ammonia was added in different amounts up 
to 1.64%; in the absence of ammonia, methane was not 
included in the fuel mixture. The average fuel flow velocity 

was 54.6 m/s with a resulting Reynolds number of ~8500; and 
the inlet flow air velocity was 2.4 m/s. The inlet temperature 
of both streams is ~300K. Several radial profiles of velocity, 
temperature and species concentrations are available at 
different distances from the fuel inlet.  

As shown in Fig. 4, the analytical solution could reproduce 
the velocity change throughout the axial line with good 
agreement with the measured values. Detailed analysis for this 
case needs other equations (energy, species and 
thermodynamic state) to be solved simultaneously and to 
describe turbulence-reaction interactions properly. This is of 
course a very challenging task and less tractable by 
considering that full mathematical theory for Navier-Stokes 
equations is not yet complete. However, the comparison here 
is to show the potentiality of the simple analytical solution to 
cover complex cases.  

IV. CONCLUSION 
Three-dimensional incompressible Navier-Stokes equation 

with continuity equations are solved analytically in this work. 
Derivations show that the two solutions for the zero and 
constant pressure gradients are similar. Furthermore, the 
proposed analytical solution is validated against experimental 
data for different cases. For the laminar nozzle jet flows, the 
analytical solutions are able to follow the decay and 
transversal velocity profiles. They also give good results for 
boundary layer flows and found to agree with combustion 
experiment 
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