
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:8, 2012

974

On a new numerical analysis for the symmetric

shortest queue problem
Tayeb Lardjane, Rabah Messaci

Abstract—We consider a network of two M/M/1 parallel queues
having the same poisonnian arrival stream with rate λ. Upon his
arrival to the system a customer heads to the shortest queue and stays
until being served. If the two queues have the same length, an arriving
customer chooses one of the two queues with the same probability.
Each duration of service in the two queues is an exponential random
variable with rate μ and no jockeying is permitted between the two
queues. A new numerical method, based on linear programming and
convex optimization, is performed for the computation of the steady
state solution of the system.

Keywords—steady state solution, matrix formulation, convex set,
shortest queue, linear programming.

I. INTRODUCTION

IN this paper we consider two identical M/M/1 queues in

parallel with a JSQ (joining the shortest queue) policy. The

customers arrive to the system in accordance with a Poisson

process of rate λ. Upon his arrival to the system, the customer

joins the shortest queue and stays in the queue until being

served. If the two queues have the same length, the customer

joins one of the two queues with the same probability. The

duration of each service is an exponential random variable

with rate μ. No jockeying is permitted between the two queues.

The goal of the present paper is the numerical computation of

the steady state probability p(i, j) where i is the number of

customers in queue 1 and j the number of customers in queue

2.

The shortest queue problem was initially proposed by

Haight ([?]). A successful model for the symmetric case was

given when the jockeying between the two queues is allowed.

Kingman ([7]) obtained some asymptotic results for the joint

steady state distribution of the number of customers in the

two queues. Flatto and Mckean ([3]) used generating function

techniques to give some limiting properties for the steady state

probability. A numerical approach, using matrix geometric

([9]) technique was developed by Gertsbakh ([4]). Cohen and

Boxma ([2]) showed that the analysis of the shortest queue

problem can be reduced to the solution of a boundary value

problem.

Halfin ([6]) performed a linear programming method for the

problem by giving a lower and an upper bound for the

probability distribution of the total number of customers in

the system. Zhao and Grassmann ([13]) used the Flatto and

McKean ([3]) results and analysis tools in order to develop

a numerical solution. Adan, Wessels and Zijm ([1]) showed
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that the steady state distribution of the queue length is a

mixture of product form distributions. Wang and Locker ([11])

presented a model where the state space of the related Markov

process was truncated into banded arrays, so they derive the

probability of queue length and the customer sojourn time.

Yao and Knessl ([12]) considered the JSQ problem with two

M/M/∞ queues; they perform an analytical and a numerical

computation of the steady state solution . Recently Tarabia

([10]) presented a solution for the problem when jockeying

is permitted and the capacity of each queue is finite. In this

paper, we present an easy computation method adapted for this

type of problems, based on a new formulation of the steady

state balance equations. The probabilities p(i, j) are linear

expressions of the diagonal probabilities p(i, i). An algorithm

based on a linear program will permit us to get a convex set

which contains the last probabilities. This new method was

succesfully tested for two infinite server parallel queues in

[8]. The software available for the simplex method allows us

to make a computation with a high precision for a large range

of values of the intensity traffic ρ =
λ

μ
.

II. STEADY STATE ANALYSIS OF THE SYSTEM

We consider the two dimensional stochastic process

(Xt, Yt)t where Xt (resp. Yt) is the number of customers in

the queue 1 (resp. queue 2) at time t. The process (Xt, Yt)t is

a recurrent positive Markov process if and only if ρ =
λ

μ
< 2

(Kingman 1961). For (i, j) ∈ E = N × N; let p(i, j) =
lim
t→∞P (Xt = i, Yt = j) the steady state probability for the

process. The corresponding generator matrice is denoted by

Q = (q (e, e′))(e,e′)∈N2×N2

Notation 1: For k ≥ 1 we define the following (k+1)× 1
vectors and (k + 1)× (k + 1) matrices:

X2k =

⎛
⎜⎜⎜⎜⎜⎜⎝

p(2k, 0)
p(2k − 1, 1)

.

.
p(k + 1, k − 1)

p(k, k)

⎞
⎟⎟⎟⎟⎟⎟⎠
X2k+1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

p(2k + 1, 0)
p(2k, 1)

.

.
p(k + 2, k − 1)
p(k + 1, k)

⎞
⎟⎟⎟⎟⎟⎟⎠

A2k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0. 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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A2k+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Notation 2: The (k + 1) × 1 vectors B2k and B2k+1 are

also defined as follows:

For k = 1

B2 =

( (
(1 + ρ) ρ

2 − ρ
2

)
p(0, 0)

p(1, 1)

)

For k ≥ 2

B2k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 + ρ) p(2k − 1, 0)
(2 + ρ) p(2k − 2, 1)− ρp(2k − 2, 0)
(2 + ρ) p(2k − 3, 2)− ρp(2k − 3, 1)

.

.
(2 + ρ) p(k + 1, k − 2)− ρp(k + 1, k − 3)
(2 + ρ) p(k, k − 1)− ρp(k, k − 2)− αk

p(k, k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where αk =
ρ

2
p(k − 1, k − 1)

For k ≥ 1

B2k+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 + ρ) p(2k, 0)
(2 + ρ) p(2k − 1, 1)− ρp(2k − 1, 0)
(2 + ρ) p(2k − 2, 2)− ρp(2k − 2, 1)

.

.
(2 + ρ) p(k + 1, k − 1)− ρp(k + 1, k − 2)

(2 + ρ) p(k, k)− 2ρp(k, k − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Theorem 3: The steady state system of balance equations

can be written as follows:

A2kX2k = B2k and A2k+1X2k+1 = B2k+1 for k ≥ 1

Proof: For all n ≥ 1, as showed in the transition

diagram in figure 1; the system of balance equations

expresses the probabilities {p(i, j), i+ j = n+ 1}
in terms of the probabilities {p(i, j), i+ j = n} and

{p(i, j), i+ j = n− 1} . So we distinguish two cases:

Case 1: n = 2k k ≥ 2
Because of the symmetry, the system of balance equations is

reduced to:

(λ+ μ) p(2k − 1, 0) = μp(2k, 0) + μp(2k − 1, 1)

for 0 < i < k − 1 :

(λ+ 2μ) p(2k − 1− i, i) = λp(2k − 1− i, i− 1)

+ μp(2k − i, i) + μp(2k − 1− i, i+ 1)

i

j

λ

λ

λ

2

λ

2

μ

μ

μ

μ

μ

μ

i+j=ni+j=n−1 i+j=n+1

i=j

Fig. 1. The Transition diagram

and

(λ+ 2μ) p(k, k − 1) =
λ

2
p(k − 1, k − 1) + λp(k, k − 2)

+ μp(k, k) + μp(k + 1, k − 1)

Which is equivalent to:

p(2k, 0) + p(2k − 1, 1) = (1 + ρ) p(2k − 1, 0) (1)

for 0 < i < k − 1 :

p(2k − i, i) + p(2k − 1− i, i+ 1) = (2 + ρ) p(2k − 1− i, i)

− ρp(2k − 1− i, i− 1)

and

p(k, k) + p(k + 1, k − 1) = (2 + ρ) p(k, k − 1)

− ρ

2
p(k − 1, k − 1)− ρp(k, k − 2)

This last system leads to the formulation: A2kX2k = B2k

Case 2: n = 2k + 1 k ≥ 1

Again, because of the symmetry, the system of balance equa-

tions can be written as:

(λ+ 2μ) p(k, k) = 2λp(k, k − 1) + 2μp(k + 1, k) (2)

for 0 < i < k

(λ+ 2μ)p(k + i, k − i) = λp(k + i, k − i− 1)

+ μp(k + i+ 1, k − i) + μp(k + i, k − i+ 1)

and

(λ+ μ) p(2k, 0) = μp(2k + 1, 0) + μp(2k, 1) (3)

or:

2p(k + 1, k) = (2 + ρ) p(k, k)− 2ρp(k, k − 1) (4)
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for 0 < i < k

p(k + i+ 1, k − i) + p(k + i, k − i+ 1)

= (2 + ρ) p(k + i, k − i)− ρp(k + i, k − i− 1)

and

p(2k, 1) + p(2k + 1, 0) = (1 + ρ) p(2k, 0) (5)

Which is the formulation: A2k+1X2k+1 = B2k+1

Proposition 4: For j = 1, 2, .., k + 1 the jth component of

the vectors X2k (resp. X2k+1) is of the form:

(
i=k∑
i=1

α
(2k)
i,j xi + α

(2k)
0,j

)
x0

(resp.

(
i=k∑
i=1

α
(2k+1)
i,j xi + α

(2k+1)
0,j

)
x0)

where α
(2k)
i,j , α

(2k+1)
i,j ∈ R , xix0 = p (i, i) for i ≥ 1 and

p(0, 0) = x0 > 0
Proof: We use a recurrence argument. For k = 1, we get

from the formulas of theorem 1:

X2 =

(
p(2, 0)
p(1, 1)

)
=

(
1 −1
0 1

)( (
(1 + ρ) ρ

2 − ρ
2

)
x0

x1x0

)

=

(
1
2x0

(
ρ2 − 2x1

)
x1x0

)

X3 =

(
p(3, 0)
p(2, 1)

)
=

(
1 −1

2
0 1

2

)(
1
2ρ

2 (ρ+ 1)x0
x0
(
2x1 + ρx1 − ρ2

) )

=

(
1
2x0 (ρ+ 2)

(
ρ2 − x1

)
(− 1

2

) (
ρ2 − ρx1 − 2x1

)
x0

)

with x1x0 = p(1, 1). We note that the expressions of X2 and

X3 gives the coefficients α
(2)
1,j , α

(3)
1,j for j = 1, 2.

Now, we assume that X2k−1 satisfies the proposition, then

because of the expressions giving the vectors X2k and X2k+1

(B2k is given in terms of the X2k−2 and X2k−1 components,

B2k+1 is given in terms of the X2k and X2k−1 components),

the needed epressions of X2k and X2k+1 are obtained. So the

coefficients α
(n)
i,j are computed by a recursion.

Remark 5: This last proposition shows that if

i + j = n then p (i, j) is expressed in terms of

p (0, 0) , p(1, 1), p(2, 2), ......p
([

n
2

]
,
[
n
2

])
where [x] is

an integer having the property: [x] ≤ x < [x] + 1
Notation 6: In the following sections, for each integer n,

we introduce the real numbers denoted {rn(i, j), i + j ≤ n}
satisfying the system of equilibrium equations

rn(e)
∑
e′ �=e

q(e, e′) =
∑
e′ �=e

rn(e
′)q(e′, e) (6)

where (e) = (i, j); i+ j ≤ n− 1; so we put:

rn(0, 0) = y
(n)
0 , rn(0, 1) = rn(1, 0) =

ρ

2
rn(0, 0), rn(i, i) =

y
(n)
i y

(n)
0 for i ≥ 1

Y
(n)
2k =

⎛
⎜⎜⎜⎜⎜⎜⎝

rn(2k, 0)
rn(2k − 1, 1)

.

.
rn(k + 1, k − 1)

rn(k, k)

⎞
⎟⎟⎟⎟⎟⎟⎠
Y

(n)
2k+1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

rn(2k + 1, 0)
rn(2k, 1)

.

.
rn(k + 2, k − 1)
rn(k + 1, k)

⎞
⎟⎟⎟⎟⎟⎟⎠

D
(n)
2 =

( (
(1 + ρ) ρ

2 − ρ
2

)
rn(0, 0)

rn(1, 1)

)

For k ≥ 2 and 2k ≤ n

D
(n)
2k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 + ρ) rn(2k − 1, 0)
(2 + ρ) rn(2k − 2, 1)− ρrn(2k − 2, 0)
(2 + ρ) rn(2k − 3, 2)− ρrn(2k − 3, 1)

.

.
(2 + ρ) rn(k + 1, k − 2)− ρrn(k + 1, k − 3)
(2 + ρ) rn(k, k − 1)− ρrn(k, k − 2)− βk

rn(k, k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where βk =
ρ

2
rn(k − 1, k − 1)

For k ≥ 1 and 2k + 1 ≤ n

D
(n)
2k+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 + ρ) rn(2k, 0)
(2 + ρ) rn(2k − 1, 1)− ρrn(2k − 1, 0)
(2 + ρ) rn(2k − 2, 2)− ρrn(2k − 2, 1)

.

.
(2 + ρ) rn(k + 1, k − 1)− ρrn(k + 1, k − 2)

(2 + ρ) rn(k, k)− 2ρrn(k, k − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The vectors Y
(n)
2k and Y

(n)
2k+1 are then defined by the recursive

formulas:

A2kY
(n)
2k = D

(n)
2k and A2k+1Y

(n)
2k+1 = D

(n)
2k+1 for k ≥ 1

We also have: the (k + 1) components of the vectors Y
(n)
2k

(resp Y
(n)
2k+1) are of the form:

(
i=k∑
i=1

α
(2k)
i,j y

(n)
i + α

(2k)
0,j

)
y
(n)
0

(resp.

(
i=k∑
i=1

α
(2k+1)
i,j y

(n)
i + α

(2k+1)
0,j

)
y
(n)
0 )

where α
(2k)
i,j , α

(2k+1)
i,j ∈ R , 1 ≤ j ≤ (k + 1)

Proposition 7: For n ≥ 2, let the R[
n
2 ] sub set Cn defined

as follows:

Cn =

⎧⎨
⎩
⎛
⎝y1, y2, ......, y[n

2

]
⎞
⎠ / yl > 0 for l = 1, 2, ...

[
n
2

]
,

r (i, j) > 0 if i+ j = n }
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then for Y (n) =

⎛
⎝y(n)1 , y

(n)
2 , ......, y

(n)[n
2

]
⎞
⎠ ∈ Cn; the set

of real numbers {rn(i, j); i+ j ≤ n} (obtained in terms of

components of the vector Y (n) in Cn ) is a positive solution

for the system of equilibrium equations (6)

Proof: Cn is nonempty while it contains the vector(
p(1, 1), p(2, 2), ......p

([n
2

]
,
[n
2

]))
up to a multiplicative

factor and if y
(n)
i =

p(i, i)

p(0, 0)
for 1 ≤ i ≤

[n
2

]
and

y
(n)
0 = p(0, 0) the corresponding rn (i, j) , i + j = n are

exactly p (i, j); i+ j = n.
The condition rn (i, j)> 0 if i + j = n gives for those

real numbers the properties of the steady state probabili-

ties p (i, j) ; i + j = n. then {rn (i, j) ; i+ j ≤ n− 1} (

from which we build up {rn (i, j) ; i+ j = n} over the sys-

tem of equilibrium equations (6) ; with y
(n)
i playing the

role of p (i, i), 1 ≤ i ≤
[n
2

]
) have the same proper-

ties than {p (i, j) ; i+ j ≤ n− 1} . So if y
(n)
0 > 0 and⎛

⎝y(n)1 , y
(n)
2 , ......, y

(n)[n
2

]
⎞
⎠ ∈ Cn the builded system of real

numbers {rn(i, j); i+ j ≤ n} is a positive solution for the

equilibrium equations (6).

Corollary 8: If we note:

Sn =

⎧⎨
⎩
⎛
⎝y1(n), y2(n), ......, y[n

2

](n), .......
⎞
⎠ so that yl > 0

∀l ≥ 1 , r (i, j) > 0 for i+ j = n}
then (Sn)n is a decreasing sequence of sets (Sn ⊂ Sn−1)

and the limit ∩Sn is so that lim
n→+∞

(
y
(n)
i y

(n)
0

)
i≥1

is exactly

the entire diagonal probabilities p(i, i) i ≥ 1 .

Proof: Let

⎛
⎝y(n)1 , y

(n)
2 , ......, y

(n)[n
2

], ........
⎞
⎠ ∈ Sn , we

note first that the components y
(n)
l for l >

[
n
2

]
are free

from the constraints rn (i, j) > 0 for i + j = n then

those components are identic for the two sets Sn and Sn−1.

While the components

⎛
⎝y(n)1 , y

(n)
2 , ......, y

(n)[n
2

]
⎞
⎠ have also to

fulfil the constraints {rn(i, j) > 0; i+ j = n− 1} (previous

proposition) then Sn ⊂ Sn−1. So, when n goes to the infinity

and due to the unicity of the positive solution for the infinite

linear system of balance equations (the related Markov process

is ergodic), the set Sn has for limit the single point of

R
N which is the diagonal probabilities (p (i, i))i≥1 up to a

multiplicative factor.

Remark 9: All element of Cn can be viewed as an approx-

imation of the vector (p(1, 1), ....
....., p

([
n
2

]
,
[
n
2

])
) up to a multiplicative factor.

Remark 10: While for all n , p (i, j); i+j = n is expressed

in terms of p (0, 0) , p(1, 1), p(2, 2),
......, p

([
n
2

]
,
[
n
2

])
, then the first step of computation is

0.82 0.84 0.86 0.88 0.90 0.92

0.
0

0.
2

0.
4

0.
6

y1

y 2

C4

C5

proj(C6)

Fig. 2. Evolution of the feasible regions

to get an approximation of those last probabilities by

y
(n)
0 , y

(n)
0 y

(n)
1 , ......y

(n)
0 y

(n)

[n2 ]
respectively, y

(n)
0 is a multiplica-

tive factor and y
(n)
1 , ......y

(n)

[n2 ]
are computed under the con-

straints given in the definition of Cn. We then choose n
suficiently large in order to get a good approximation. In

other words y
(n)
1 y

(n)
0 , y

(n)
2 y

(n)
0 , .........., y

(n)
n y

(n)
0 are almost the

diagonal probabilities: p(1, 1), ...., p(n, n). In order to show

the geometric behavior of the set Cn in the plane we choose

ρ = 1.5 and we sketch C4, C5 and the projection of C6 on the

plane containing the first two coordinates (y1, y2) (Figure 2)

III. COMPUTATION METHODOLOGY

In practice we need a finite number of the the probabilities

{p (i, i)}.The sequence {p (i, i)}i is decreasing after some

integer K (see [13]) and have the limit 0 (see Figure 3).

The problem is then reduced to evaluate an integer N large

enough so that the sum
∑

{(i,j)/i+j≤N}
p (i, j) is very close

to 1. To do this, we use the bounds for

∞∑
n=N

πn where

πn =
∑

{(i;j)/i+j=n}
p (i, j) given in Halfin ([6]). We then have

:

For σ =
ln 2+ρ

(2−ρ)(1+ρ)

ln (1 + ρ)
and:

√
2 ≤ ρ < 2, N ≥ σ + 1

∞∑
n=N

πn ≤
(ρ
2

)N−σ

1 ≤ ρ <
√
2, N ≥ 2

∞∑
n=N

πn ≤
(ρ
2

)N 2 + ρ

1 + ρ

For 0 < ρ < 1, we have:

πn ≤
(ρ
2

)n 1

2 (1 + ρ)

(
2 + ρ− ρ2 (1 + ρ)

n

(1 + ρ)
n − 1

)

+
ρ2

2 (1 + ρ)

1

(1 + ρ)
n − 1
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which implies that:

πn ≤
(ρ
2

)n
+

1

(1 + ρ)
n

so

∞∑
n=N

πn ≤
(ρ
2

)N 1

1− ρ

2

+

(
1

1 + ρ

)N−1
1

ρ

This last bound is not intersting if ρ is close to 0. In this

case, we considere the intensity flows for a Markov process

in equilibrium as invoked in Halfin [6] and having the form:

λπn−1 = μπ−
n + 2μπ+

n where π−
n = 2p (n, 0) and π+

n =∑
{i+j=n,i>0,j>0}

p(i, j) (πn = π−
n + π+

n ), we get:

πn =
λ

μπ−
n + 2μπ+

n

πn

πn−1 =
λ

μ

(
1 +

π+
n

πn

)πn−1 so, πn ≤

ρn which is more intersting if 0 < ρ < 1, with a special look

for ρ close to 0. Thus:

∞∑
n=N

πn ≤ ρN

1− ρ
.

So, for a given precision ε, the computation of the integer

N satisfying

∞∑
n=N+1

πn ≤ ε can be done easily. As an

example for ρ = 1 and ε = 10−10 we find N = 34. We then

need p (i, i) 1 ≤ i ≤ 17. The determination of N can also be

regarded as the stopping rule for the computation algorithm

described below. We note that the upper bound ε of the error

is made on the total sum of probabilities. We see further in the

numerical results that ε is around the upper bound of the error

made between the computed value of p (i, i) and p (i, i) itself.
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Fig. 3. Evolution of the diagonal probabilities

IV. COMPUTATION OF THE STEADY STATE PROBABILITIES

AND NUMERICAL RESULTS

A. Computation of y(N)
i 1 ≤ i ≤

[
N

2

]

We recall that the integer N is so that all the probabilities

{p(i, j)/i+ j ≥ N + 1}, having a total sum smaller than a

given ε, are neglected.

While the

[
N

2

]
+1 components of the vector Y

(N)

2[N2 ]
are of

the forme:⎛
⎜⎝

i=[N2 ]∑
i=1

α
(N)
i,j y

(N)
i + α

(N)
0,j

⎞
⎟⎠ y

(N)
0 ; 1 ≤ j ≤

[
N

2

]
+ 1

then the unknowns

{
y
(N)
i ; 1 ≤ i ≤

[
N

2

]}
are in the set

solution of the system of linear inequalities:

i=[N2 ]∑
i=1

α
(N)
i,j y

(N)
i + α

(N)
0,j > 0 and y

(N)
i > 0 (7)

for 1 ≤ j ≤ [N2 ]+ 1 and 1 ≤ i ≤ [N2 ] .
We use the simplex algorithm to obtain a lower and an upper

bound for each y
(N)
i noted respectively y

(N)
i,min and y

(N)
i,max.

Because of the unicity due to the ergodicity of the related

Markov process, those bounds are almost equal for a large

value of N , as to be seen in further computation (see table 1).

While y
(N)
i > 0, we can take the objective function

[N2 ]∑
1

y
(N)
i

( or any linear function of
{
y
(N)
i ; 1 ≤ i ≤ [N2 ]

}
) and

the constraints (7). While
∑

p(i, i) =
1

1 + ρ
(see

[6]), we then compute y
(N)
0 as a constant of normali-

sation by: y
(N)
0

⎛
⎜⎝1 +

[N2 ]∑
1

y
(N)
i

⎞
⎟⎠ =

1

1 + ρ
or y

(N)
0 =

1

(1+ρ)

⎛
⎜⎜⎜⎝1+

[N2 ]∑
1

y
(N)
i

⎞
⎟⎟⎟⎠

where
(
y
(N)
i

)
1≤i≤[N2 ]

is any solu-

tion for (7). We can take the arithmetic mean: y
(N)
i =

1
2

(
y
(N)
i,min + y

(N)
i,max

)

B. Algorithm description

Step 1: set up a value of ρ.
Step 2: set up a precision ε and compute the corresponding

value of N.

Step 3: put y
(N)
i .y

(N)
0 = rN (i, i) 1 ≤ i ≤

[
N

2

]
and get

(by using a formal calculus) the

[
N

2

]
+ 1 components of the

vector Y
(N)

2[N2 ]
denoted by

i=[N2 ]∑
i=1

α
(2[N2 ])
i,j y

(N)
i +α

(2[N2 ])
0 1 ≤
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j ≤
[
N

2

]
+ 1. This can be done whithout solving the formal

systems of linear equations AnY
(N)
n = D

(N)
n for n = 2k and

n = 2k+1. It’s due to the fact that the inverse of the matrix:

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 . . 0
0 1 1 0 . .
. 0 1 1 0 .
. . 0 1 1 0
. . . 0 1 1
0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

has one of the two forms:

⎛
⎜⎜⎜⎜⎝

1 −1 1 −1 1
0 1 −1 1 −1
. 0 1 −1 1
. . 0 1 −1
0 . . 0 1

⎞
⎟⎟⎟⎟⎠

or

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 1 −1 1 −1
0 1 −1 1 −1 1
. 0 1 −1 1 −1
. . 0 1 −1 1
. . . 0 1 −1
0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and the inverse of the matrix:⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 . . 0
0 1 1 0 . .
. 0 1 1 0 .
. . 0 1 1 0
. . . 0 1 1
0 . . . 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

has one of the two forms:

⎛
⎜⎜⎜⎜⎝

1 −1 1 −1 1
2

0 1 −1 1 − 1
2

. 0 1 −1 1
2

. . 0 1 − 1
2

0 . . 0 1
2

⎞
⎟⎟⎟⎟⎠

or

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 1 −1 1 − 1
2

0 1 −1 1 −1 1
2

. 0 1 −1 1 − 1
2

. . 0 1 −1 1
2

. . . 0 1 − 1
2

0 . . . 0 1
2

⎞
⎟⎟⎟⎟⎟⎟⎠

So in the computation program we put: Y
(N)
n = A−1

n D
(N)
n

for n = 2k or 2k + 1.
Step 4: use the simplex method with objective function
i=[N2 ]∑
i=1

y
(N)
i and constraints:

i=[N2 ]∑
i=1

α
(m)
i,j y

(N)
i +α

(m)
0,j ≥ 0 1 ≤ m ≤

[
N

2

]
+ 1

y
(N)
i ≥ 0 1 ≤ i ≤

[
N

2

]
.

Step 5: get a lower and an upper bound for y
(N)
i de-

noted respectively y
(N)
i,min and y

(N)
i,max and put y

(N)
i =

1

2

(
y
(N)
i,max + y

(N)
i,min

)
. So the set solution is a convex set

denoted C
′
N .

Step 6: return to the matrix formulation for the computation

of p (i, j) i+ j ≤ N.

C. Numerical results and error analysis

Proposition 11: If we note e0 and ei the error computation

made on p(0, 0) and
p(i, i)

p(0, 0)
respectively then:

e0 ≤

[N2 ]∑
i=1

(
y
(N)
i,max − y

(N)
i,min

)

(1 + ρ)

⎛
⎜⎝1 +

[N2 ]∑
i=1

y
(N)
i,min

⎞
⎟⎠

2 +

ε

⎛
⎜⎝1 +

[N2 ]∑
i=1

y
(N)
i,max

⎞
⎟⎠

⎛
⎜⎝1 +

[N2 ]∑
i=1

y
(N)
i,min

⎞
⎟⎠

2 =

ε0 and ei ≤
(
y
(N)
i,max − y

(N)
i,min

)
= ε1,i

Proof: We know that p(0, 0) =

lim
N→+∞

1

(1 + ρ)

(
1 +

∞∑
i=1

y
(N)

i,0

) where
(
y

(N)

i,0

)
i≥1

is a sequence of real positive numbers having

the property: y
(N)
i,min ≤ y

(N)

i,0 ≤ y
(N)
i,max 1 ≤

i ≤ N for

(
y
(N)
1 , y

(N)
2 , ......, y

(N)

[n2 ]

)
∈ Cn. Then

p(0, 0)

⎛
⎜⎝1 +

[N2 ]∑
i=1

y
(N)
i,0

⎞
⎟⎠ =

1

1 + ρ
− α1 which leads to:

p(0, 0) =
1− (1 + ρ)α1

(1 + ρ)

⎛
⎜⎝1 +

[N2 ]∑
i=1

y
(N)
i,0

⎞
⎟⎠

with 0 < α1 < ε and

the integer N satisfying:

∞∑
n=N+1

πn ≤ ε . So, the computed

value of p(0, 0) is y
(N)
0 =

1

(1 + ρ)

⎛
⎜⎝1 +

[N2 ]∑
1

y
(N)
i

⎞
⎟⎠

where

the sequence
(
y
(N)
i

)
1≤i≤[N2 ]

is chosen in the set Cn.
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We then have:

|p(0, 0)− y0| =∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− (1 + ρ)α1

(1 + ρ)

⎛
⎜⎝1 +

[N2 ]∑
i=1

y
(N)

i,0

⎞
⎟⎠

− 1

(1 + ρ)

⎛
⎜⎝1 +

[N2 ]∑
1

y
(N)
i

⎞
⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1− (1 + ρ)α1)

⎛
⎜⎝1 +

[N2 ]∑
1

y
(N)
i

⎞
⎟⎠−

⎛
⎜⎝1 +

[N2 ]∑
i=1

y
(N)

i,0

⎞
⎟⎠

(1 + ρ)

⎛
⎜⎝1 +

[N2 ]∑
i=1

y
(N)

i,0

⎞
⎟⎠
⎛
⎜⎝1 +

[N2 ]∑
1

y
(N)
i

⎞
⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤

[N2 ]∑
i=1

(
y
(N)
i,max − y

(N)
i,min

)

(1 + ρ)

⎛
⎜⎝1 +

[N2 ]∑
i=1

y
(N)
i,min

⎞
⎟⎠

2 +

ε

⎛
⎜⎝1 +

[N2 ]∑
i=1

y
(N)
i,max

⎞
⎟⎠

⎛
⎜⎝1 +

[N2 ]∑
i=1

y
(N)
i,min

⎞
⎟⎠

2

While the true value of p(i, i) is given by: p(i, i) =

p(0, 0)( lim
N→+∞

y
(N)
i ) where: y

(N)
i,min ≤ y

(N)
i ≤ y

(N)
i,max for any i

and N such that 1 ≤ i ≤ [N2 ], then y
(N)
i,min ≤ p (i, i)

p (0, 0)
≤ y

(N)
i,max

We denote further ε1 = max ε1,i the upper bound of the

error commited on the probabilities p(i, i) .

It is well known that the convergence to the solution is fast

for small values of ρ (ρ < 1) . More ρ is close to 2, more

the convergence is slow. This can be seen in the plots made

in figure 3. We give then a sample of results obtained for

different values of ρ. After each computation of a system of

probabilities p(i, j) we add a table in which we indicate the

values of:

- ε of the error made on the total sum of probabilities

- ε0 the upper bound of the error made on the computation

of p(0, 0)
- ε1 the upper bound of the error made on the computation

of the
p (i, i)

p (0, 0)
i ≥ 1

- The integer N having the property
∑

i+j≥N+1

p(i, j) ≤ ε

- The computed sum
∑

i+j≤N

p(i, j)

While the diagonal probabilities are of a special interest we

also give them for ρ = 0.2 and ρ = 1.9. Some other cases of

computation are made in further tables with values of ρ close

to 2.

Results comments: The obtained results match those given

in [13]. The powerfulness of the method described in the

present paper allows us to make computations for all values

of ρ and this is done for ρ = 0.2 and ρ = 1.9. In addition to

the precision with which are obtained the probabilities p(i, j),
this method allows us (by using the bounds given in [6]) to

make an easy choice of the finite state space Eε in which

the computation is made. If E is the whole state space of the

process (Xt, Yt)t then E − Eε represents the missing states

with P (E − Eε) ≤ ε.
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TABLE I: SOME SIDES OF

[
N
2

]
∏
i=1

[
y
(N)
i,min, y

(N)
i,max

]
FOR ρ = 1.5

[
N

2

]
= 60

i y
(N)
i,max y

(N)
i,min

1 0.91576961624328916380 0.91576961624328916379
10 0.00581353037003270174 0.00581353037003270100
20 0.00001843593794715056 0.00001843593794713455
30 0.58464266523450423613 10−7 0.58464266389157826824 10−7

40 0.18540258000034771549 10−9 0.18540205570576079581 10−9

50 0.58795091077701311566 10−12 0.58695403207873375878 10−12

60 0.19227829860516430820 10−14 0.64269894149493612264 10−15

TABLE II: THE p(i, j)′s FOR ρ = 0.2

j\i 0 1 2 3 4 5 6 7 8
0 8.17 10−1

1 8.17 10−2 1.5 10−2

2 7.12 10−4 8.5 10−4 1.6 10−4

3 3.52 10−6 4.2 10−6 8.5 10−6 1.6 10−6

4 1.68 10−8 2.0 10−8 4.0 10−8 8.5 10−8 1.6 10−8

5 7.99 10−11 9.5 10−11 1.9 10−10 4.0 10−10 8.5 10−10 1.6 10−10

6 3.81 10−13 4.5 10−13 9.2 10−13 1.9 10−12 4.0 10−12 8.5 10−12 10−12

7 1.82 10−15 2.1 10−15 4.3 10−15 9.2 10−15 1.9 10−14 4.0 10−14 8 10−14 10−14

8 2.08 10−17 1.2 10−17 2.1 10−16 4.3 10−17 9.0 10−17 1.9 10−16 4 10−16 8 10−16 10−16

9 1.24 10−17 2.4 10−18 4.5 10−19 8.0 10−20 1.3 10−20 1.9 10−21 2 10−22 2 10−23

10 1.24 10−17 2.4 10−18 4.3 10−19 7.2 10−20 1.0 10−20 1.3 10−21 1 10−22

11 1.25 10−17 2.3 10−18 4.0 10−19 6.1 10−20 7.8 10−21 7.1 10−22

12 1.27 10−17 2.3 10−18 3.4 10−19 4.6 10−20 4.2 10−21

13 1.29 10−17 2.1 10−18 2.8 10−19 2.6 10−20

14 1.33 10−17 1.8 10−18 1.7 10−19

ε ε0 ε1 N the computed Sum
10−12 0.981 10−12 0.109 10−20 20 1.000000000000

TABLE III: THE p(i, j)′s FOR ρ = 1.9

i\j 0 1 2 3 4 5 6 7
0 1.99 10−2

1 1.89 10−2 2.85 10−2

2 7.56 10−3 1.95 10−2 2.82 10−2

3 2.44 10−3 6.32 10−3 1.81 10−2 2.60 10−2

4 7.55 10−4 1.96 10−3 5.60 10−3 1.64 10−2 2.36 10−2

5 2.31 10−4 6.00 10−4 1.72 10−3 5.03 10−3 1.48 10−2 2.13 10−2

6 7.08 10−5 1.84 10−4 5.26 10−4 1.54 10−3 4.54 10−3 1.34 10−2 1.92 10−2

7 2.17 10−5 5.62 10−5 1.61 10−4 4.71 10−4 1.39 10−3 4.09 10−3 1.21 10−5 1.74 10−2

8 6.63 10−6 1.72 10−5 4.92 10−5 1.44 10−4 4.24 10−4 1.25 10−3 3.69 10−3 1.09 10−2

9 2.03 10−6 5.26 10−6 1.51 10−5 4.41 10−5 1.30 10−4 3.83 10−4 1.13 10−3 3.33 10−3

10 6.21 10−7 1.61 10−6 4.61 10−6 1.35 10−5 3.98 10−5 1.17 10−4 3.46 10−4

11 1.90 10−7 4.92 10−7 1.41 10−6 4.13 10−6 1.22 10−5 3.59 10−5

12 5.81 10−8 1.51 10−7 4.31 10−7 1.26 10−6 3.72 10−6

13 1.78 10−8 4.61 10−8 1.32 10−7 3.86 10−7

14 5.44 10−9 1.41 10−8 4.03 10−8

ε ε0 ε1 N the computed Sum
10−5 0.2 10−6 1.5 10−5 226 1.00000
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V. CONCLUSION

This new numerical method is very simple for use and easily

implemented for computation. The tools used are classical

linear algebra and simplex method for which the software is

available for solving big linear systems of inequalities and a

great number of variables. Just a formal calculus (in terms

of
{
y
(N)
i ; 1 ≤ i ≤ [N2 ]

}
) of {rN (i, j) ; i+ j = N} and the

use of the simplex algorithm ( known as one of the most

efficient algorithm regarding it’s complexity) for solving the

system of inequalities {rN (i, j) ≥ 0; i+ j = N} . This will

permit us to get the unknown steady state probabilities with

a desired precision. For small values of ρ this method seems

faster compared with the other ones. More ρ is close 0 more

the number of operations is greater (see for example [13]). An

other point of interest is the adaptation of the method for other

cases (due to the same structure of the steady state balance

equations) of the shortest queue problem.
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