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Exponential stability analysis for switched cellular
neural networks with time-varying delays and

impulsive effects
Zixin Liu Fangwei Chen

Abstract—In this Letter, a class of impulsive switched cellular
neural networks with time-varying delays is investigated. At the
same time, parametric uncertainties assumed to be norm bounded are
considered. By dividing the network state variables into subgroups
according to the characters of the neural networks, some suffi-
cient conditions guaranteeing exponential stability for all admissible
parametric uncertainties are derived via constructing appropriate
Lyapunov functional. One numerical example is provided to illustrate
the validity of the main results obtained in this paper.

Keywords—Switched systems, exponential stability, cellular neural
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I. INTRODUCTION

S INCE cellular neural networks (CNNs) have been in-
troduced by Chua and Yang [1], they attracted many

researchers’ interest because of their widely use in many
science fields such as image processing, optimal computation,
etc. However, because of the existence of time delays and
impulsive effects, neural dynamical system may be unstable,
even if it is stable without these effects. Thus, the qualitative
properties in the mathematical theory of delayed impulsive
cellular neural networks are very important. In recent years,
a number of mathematicians have been interested in and
developed such properties (see [2-6]), and their studies have
attracted much attention. On the other hand, With the rapid
development of intelligent control, hybrid systems have been
investigated for their extensive applications, (see [7-13]). As a
special class of hybrid systems, switched systems are regarded
as a typical nonlinear system, which are composed of a family
of continuous-time or discrete-time subsystems and a rule that
orchestrates the switching between the subsystems. In past
years, considerable efforts have been focused on analysis and
design of switched systems.

In this paper, we will study a class of impulsive switched
cellular neural networks with time-varying delay via integrat-
ing the theory of switched systems with neural networks.
The individual subsystems of the switched cellular neural
networks are a set of cellular neural networks with time-
varying delay. In addition, the parametric uncertainties are
also considered, some criteria are obtained to guarantee the
switched system to be globally exponentially stable for all
admissible uncertainties.
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II. PRELIMINARIES AND ASSUMPTIONS

The model of cellular neural networks with variable delay
can be expressed as

du(t)
dt

= −u(t) + Af(u(t)) + Bf(u(t − τ(t))) + J, (1)

where u(t) = (u1(t), u2(t), . . . , un(t))T ∈ Rn is the state
vector associated with the neurons, A ∈ Rn×n is the feedback
matrix, B ∈ Rn×n is the delayed feedback matrix, f(u(t)) =
(f1(u1(t)), f2(u2(t)), . . . , fn(un(t)))T is the output function,
J = (J1, J2, . . . , Jn)T is a constant external input vector, and
the output equations are given by

fi(ui(·)) =
1
2
(|ui(·)+1|−|ui(·)−1|), i = 1, 2, . . . , n. (2)

By lemma 2.1 in [2], there exists at least one equilibrium
point for system (1). Let u∗ = (u∗1, u∗2, . . . , u∗n)T be an
equilibrium of system (1), and define x(t) = u(t) − u∗, then
system (1) can be rewritten as

ẋ(t) = −x(t) + Ag(x(t)) + Bg(x(t − τ(t))), (3)

where g(x(·)) = (g1(x1(·)), g2(x2(·)), . . . , gn(xn(·)))T and
gi(xi(·)) = fi(xi(·) + u∗i) − fi(u∗i). Then the origin 0 =
(0, 0, . . . , 0)T is the equilibrium of system (3).

It is known that parametric uncertainty can enter into sys-
tems, as well as cellular neural networks, due to the modelling
inaccuracies and/or changes in the environment of the model.
The model of uncertain cellular neural network with time-
varying delay can be formulated by:

ẋ(t) = −x(t)+(A+ΔA(t))g(x(t))+(B+ΔB(t))g(x(t−τ(t))).

(4)

Based on equation (4), now we consider the following
impulsive switched cellular neural networks

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi(t)

dt
= −xi(t) +

n∑
j=1

(a
(α(t))
ij + Δa

(α(t))
ij (t))g(xj(t))

+

n∑
j=1

(b
(α(t))
ij + Δb

(α(t))
ij (t))g(xj(t − τ (α(t))(t))),

t ≥ 0, t �= tk,

xi(t
+) = Fi(α(t−), α(t+), xi(t

−)),

t = tk, i ∈ {1, 2, . . . , n}, α(t) ∈ ℵ, k = 1, 2, . . . ,

(5)
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or ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)

dt
= −x(t) + (A(α(t)) + ΔA(α(t))(t))g(x(t))

+ (B(α(t)) + ΔB(α(t))(t))g(x(t − τ (α(t))(t))),

t ≥ 0, t �= tk,

x(t+) = F (α(t−), α(t+), x(t−)),

t = tk, k = 1, 2, . . . , α(t) ∈ ℵ,

(6)

where ΔA(t) and ΔB(t) are parametric uncertainties,
which are continuous and norm bounded matrix-valued
functions of t, and satisfy ‖ΔA(t)‖ ≤ β1, ‖ΔB(t)‖ ≤ β2,
where β1, β1 are given positive scalars, α(t) is a
switching signal which takes its values in the finite set
ℵ = {1, 2, . . . , N}, x(·) = [x1(·), x2(·), . . . , xn(·)]T is the
state vector, g(x(·)) = [g1(x1(·)), g2(x2(·)), . . . , gn(xn(·))]T ,
x(t − τ (α(t))(t)) = [x1(t − τ (α(t))(t)), x2(t −
τ (α(t))(t)), . . . , xn(t− τ (α(t))(t))]T , τ (α(t))(t) ≥ 0(α(t) ∈ ℵ)
is the delay parameter, F (α(t−), α(t+), x(t−)) ∈ Rn

satisfying F (α(t−), α(t+), 0) = 0, are the impulses at
moments tk and t1 < t2 < . . . is a strictly increasing
sequence such that limk→∞ tk = +∞. As usual in the
theory of impulsive differential equations, at the points of
discontinuity tk of the solution t �→ xi(t), we assume that
xi(tk) ≡ xi(t−k ). It is clear that, in general, the derivatives
ẋ(tk) do not exist. On the other hand, according to the first
equality of (5) there exist the limits ẋ(t±k ), so we assume
that ẋi(tk) ≡ ẋi(t−k ). It’s easy to see that gi is globally
Lipschitz continuous with Lipschtiz constant μi = 1 for
i = 1, 2, . . . , n, i.e |gi(u) − gi(v)| ≤ |u − v|,∀u, v ∈ R,
and we give the uniform initial conditions for system (5)
as x(t) = φ(t), t ∈ [−τ∗, 0], where φ(t) is continuous on
[−τ∗, 0], τ∗ = max{supt(τ (α(t))(t))}, α(t) ∈ ℵ.

Let x ∈ Rn, A ∈ Rn×n, we use the following notation

‖x‖ =

√√√√ n∑
i=1

x2
i , ‖A‖ = sup

x�=0

‖Ax‖
‖x‖ .

In order to discuss the exponential stability properties of
system (5), we define the concept of exponential stability as
following.

Definition 2.1: The zero solution of system(5) is said to be
exponentially stable if there exist ε ≥ 1, β > 0, such that for
any t ≥ 0 and φ ∈ C([−τ∗, 0], Rn)

‖x(t)‖ ≤ ε‖φ‖e−βt,

where ‖φ‖ =
√

[
∑n

i=1 sup−τ∗≤t≤0 φ2
i (t)], C([−τ∗, 0],Rn)

is the Banach space of continuous functions, which map
[−τ∗, 0] to Rn with the topology of uniform convergence.
For further discussion, we introduce the following lemma.

Lemma 2.1: (Halanays inequality) Let a > b > 0 and
υ(t) be a non-negative continuous function on [t0 − τ, t0],
and satisfy the following inequality:

D+υ(t) ≤ −aυ(t) + b supt−τ≤s≤t υ(s), t ≥ t0,

where τ is a non-negative constant, then there exist con-
stants k, δ > 0 satisfy υ(t) ≤ ke−δ(t−t0)(t ≥ t0), where

k = supt0−τ≤s≤t0 υ(s), and δ is unique positive solution of
the following equation: δ = a − beδτ .

III. MAIN RESULTS

In this section, we consider the exponential stability for the
switched neural networks.

Theorem 3.1: If

max{sup
t

[‖A(α(t))
22 +ΔA

(α(t))
22 (t)‖+‖B(α(t))

22 +ΔB
(α(t))
22 (t)‖]} < 1,

then every subsystems of equation (5) are exponentially stable.
Proof. Consider the ith subsystem
dx(t)

dt
= −x(t) + (A(i) + ΔA(i)(t))(g(x(t))) + (B(i)

+ΔB(i)(t))(g(x(t − τ (i)(t))), i ∈ ℵ. (7)

Let us divide the set H(i) = {1, 2, . . . , n} into subsets
H

(i)
1 , H

(i)
2 and H

(i)
3 , such that: H(i) = H

(i)
1 ∪ H

(i)
2 ∪ H

(i)
3

where H
(i)
1 = {j ∈ H(i)|u(i)

∗j > 1}, H
(i)
2 = {j ∈ H(i)| − 1 ≤

u
(i)
∗j ≤ 1}, H

(i)
3 = {j ∈ H(i)|u(i)

∗j < −1}. We may rearrange
the order of x1, x2, . . . , xn such that H

(i)
1 = {1, 2, . . . , r},

H
(i)
2 = {r+1, r+2, . . . , r+m}, H

(i)
3 = {r+m+1, r+m+

2, . . . , n}, where r,m, n − r − m are non-negative integers.
The variables of system (7) are reordered, but for convenience,
we may use the same symbols as those in system (7).
Let

x(t) = (xT
(1)(t), x

T
(2)(t), x

T
(3)(t))

T

where

x(1)(t) = (x1(t), x2(t), . . . , xr(t))T ,

x(2)(t) = (xr+1(t), xr+2(t), . . . , xr+m(t))T ,

x(3)(t) = (xr+m+1(t), xr+m+2(t), . . . , xn(t))T .

So system (7) can be decomposed into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(1)(t)

dt
= −x(1)(t) + (A

(i)
11 + ΔA

(i)
11 (t))g(x(1)(t))

+ (A
(i)
12 + ΔA

(i)
12 (t))g(x(2)(t))

+ (A
(i)
13 + ΔA

(i)
13 (t))g(x(3)(t))

+ (B
(i)
11 + ΔB

(i)
11 (t))g(x(1)(t − τ (i)(t)))

+ (B
(i)
12 + ΔB

(i)
12 (t))g(x(2)(t − τ (i)(t)))

+ (B
(i)
13 + ΔB

(i)
13 (t))g(x(3)(t − τ (i)(t))),

dx(2)(t)

dt
= −x(2)(t) + (A

(i)
21 + ΔA

(i)
21 (t))g(x(1)(t))

+ (A
(i)
22 + ΔA

(i)
22 (t))g(x(2)(t))

+ (A
(i)
23 + ΔA

(i)
23 (t))g(x(3)(t)) + (B

(i)
21

+ ΔB
(i)
21 (t))g(x(1)(t − τ (i)(t)))

+ (B
(i)
22 + ΔB

(i)
22 (t))g(x(2)(t − τ (i)(t)))

+ (B
(i)
23 + ΔB

(i)
23 (t))g(x(3)(t − τ (i)(t))),

dx(3)(t)

dt
= −x(3)(t) + (A

(i)
31 + ΔA

(i)
31 (t))g(x(1)(t))

+ (A
(i)
32 + ΔA

(i)
32 (t))g(x(2)(t))

+ (A
(i)
33 + ΔA

(i)
33 (t))g(x(3)(t))

+ (B
(i)
31 + ΔB

(i)
31 (t))g(x(1)(t − τ (i)(t)))

+ (B
(i)
32 + ΔB

(i)
32 (t))g(x(2)(t − τ (i)(t)))

+ (B
(i)
33 + ΔB

(i)
33 (t))g(x(3)(t − τ (i)(t))),

(8)
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where

A(i) =

⎡
⎢⎣ A

(i)
11 A

(i)
12 A

(i)
13

A
(i)
21 A

(i)
22 A

(i)
23

A
(i)
31 A

(i)
32 A

(i)
33

⎤
⎥⎦ ,

B(i) =

⎡
⎢⎣ B

(i)
11 B

(i)
12 B

(i)
13

B
(i)
21 B

(i)
22 B

(i)
23

B
(i)
31 B

(i)
32 B

(i)
33

⎤
⎥⎦ ,

ΔA(i)(t) =

⎡
⎢⎣ ΔA

(i)
11 (t) ΔA

(i)
12 (t) ΔA

(i)
13 (t)

ΔA
(i)
21 (t) ΔA

(i)
22 (t) ΔA

(i)
23 (t)

ΔA
(i)
31 (t) ΔA

(i)
32 (t) ΔA

(i)
33 (t)

⎤
⎥⎦ ,

ΔB(i)(t) =

⎡
⎢⎣ ΔB

(i)
11 (t) ΔB

(i)
12 (t) ΔB

(i)
13 (t)

ΔB
(i)
21 (t) ΔB

(i)
22 (t) ΔB

(i)
23 (t)

ΔB
(i)
31 (t) ΔB

(i)
32 (t) ΔB

(i)
33 (t)

⎤
⎥⎦ ,

(gT (x(1)(·)), gT (x(2)(·)), gT (x(3)(·))T = g(x(·)+u(i)
∗ )−g(u(i)

∗ ).

Let k = min{min
j∈H

(i)
1

(u(i)
∗j − 1),min

j∈H
(i)
3

(−1 − u
(i)
∗j )},

then k > 0. Assume that the initial function φ satisfied
sup−τ∗≤t≤0 |φj(t)| < k, (j = 1, 2, . . . , n).

By continuity, there exists a constant T > 0, such that for
any t ∈ [−τ∗, T ), |xj(t)| < k. Therefore, for ∀t ∈ [0, T ), we
have

g(xj(t) + u
(i)
∗j ) − g(u(i)

∗j ) = 0,∀j ∈ H
(i)
1 ∪ H

(i)
3 ,

g(xj(t − τ (i)(t)) + u
(i)
∗j ) − g(u(i)

∗j ) = 0,∀j ∈ H
(i)
1 ∪ H

(i)
3 .

Thus g(x(1)(t)) ≡ g(x(3)(t)) ≡ 0, g(x(1)(t − τ (i)(t))) ≡
g(x(3)(t − τ (i)(t))) ≡ 0.

It follows that, for any t ∈ [0, T ],⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(1)(t)
dt

= −x(1)(t) + (A(i)
12 + ΔA

(i)
12 (t))g(x(2)(t))

+ (B(i)
12 + ΔB

(i)
12 (t))g(x(2)(t − τ (i)(t))),

dx(2)(t)
dt

= −x(2)(t) + (A(i)
22 + ΔA

(i)
22 (t))g(x(2)(t))

+ (B(i)
22 + ΔB

(i)
22 (t))g(x(2)(t − τ (i)(t))),

dx(3)(t)
dt

= −x(3)(t) + (A(i)
32 + ΔA

(i)
32 (t))g(x(2)(t))

+ (B(i)
32 + ΔB

(i)
32 (t))g(x(2)(t − τ (i)(t))).

(9)

By the condition of Theorem 3.1, there exist an ε > 0 such
that:

2 − 2 sup
t

[‖A(i)
22 + ΔA

(i)
22 (t)‖] − (1 + eετ∗

) sup
t

[‖B(i)
22

+ΔB
(i)
22 (t)‖] − ε ≥ 0.

We construct the Lyapunov functional for the second equa-
tion of system (9) as:

V (t, x(2)(t)) = eεt‖x(2)(t)‖2.

Along the trajectories of the second equation of system (9),
the derivative of V (t, x(2)(t)) is

V̇ (t, x(2)(t))

= εeεt‖x(2)(t)‖2 + 2eεtxT
(2)(t)ẋ(2)(t)

= εV (t, x(2)(t)) + 2eεtxT
(2)(t)[−x(2)(t)

+(A
(i)
22 + ΔA

(i)
22 (t))g(x(2)(t))

+(B
(i)
22 + ΔB

(i)
22 (t))g(x(2)(t − τ (i)(t)))]

≤ εV (t, x(2)(t)) − 2eεtxT
(2)(t)x(2)(t)

+2eεt‖A(i)
22 + ΔA

(i)
22 (t)‖ · ‖xT

(2)(t)‖ · ‖g(x(2)(t))‖
+2eεt‖B(i)

22 + ΔB
(i)
22 (t)‖ · ‖xT

(2)(t)‖ · ‖g(x(2)(t − τ (i)(t)))‖
≤ εV (t, x(2)(t)) − 2eεtxT

(2)(t)x(2)(t)

+2eεt‖A(i)
22 + ΔA

(i)
22 (t)‖ · ‖xT

(2)(t)‖ · ‖x(2)(t)‖
+2eεt‖B(i)

22 + ΔB
(i)
22 (t)‖ · ‖xT

(2)(t)‖ · ‖x(2)(t − τ (i)(t))‖
= εV (t, x(2)(t)) − 2V (t, x(2)(t))

+2‖A(i)
22 + ΔA

(i)
22 (t)‖V (t, x(2)(t))

+2eεt‖B(i)
22 + ΔB

(i)
22 (t)‖ · ‖xT

(2)(t)‖ · ‖x(2)(t − τ (i)(t))‖
≤ εV (t, x(2)(t)) − 2V (t, x(2)(t)) + 2‖A(i)

22

+ΔA
(i)
22 (t)‖V (t, x(2)(t))

+eεt‖B(i)
22 + ΔB

(i)
22 (t)‖ · (‖xT

(2)(t)‖2 + ‖x(2)(t − τ (i)(t))‖2)

= −[2 − ε − 2‖A(i)
22 + ΔA

(i)
22 (t)‖ −

‖B(i)
22 + ΔB

(i)
22 (t)‖]V (t, x(2)(t))

+eεt‖B(i)
22 + ΔB

(i)
22 (t)‖ · ‖x(2)(t − τ (i)(t))‖2

≤ −{2 − ε − 2 sup
t

[‖A(i)
22 + ΔA

(i)
22 (t)‖]

− sup
t

[‖B(i)
22 + ΔB

(i)
22 (t)‖]}V (t, x(2)(t))

+eετ∗
sup

t
[‖B(i)

22 + ΔB
(i)
22 (t)‖] · V (t, x(2)(t)), (10)

where V (t, x(2)(t)) = supt−τ∗≤s≤t V (s, x(2)(s)).
Let a = 2 − ε − 2 supt[‖A(i)

22 + ΔA
(i)
22 (t)‖] − supt[‖B(i)

22 +
ΔB

(i)
22 (t)‖], b = eετ∗

supt ‖B(i)
22 +ΔB

(i)
22 (t)‖, from lemma2.1

we obtain

V (t, x(2)(t)) ≤ V (0)e−δ(i)t ≤ ‖φ‖2e−(δ(i)−ε)t,

where δ(i) is the unique positive root of equation δ(i) = a −
be−δ(i)t, and it can be sufficient small. Then, we have

‖x(2)(t)‖ ≤ ‖φ‖e−δ(i)t, (11)

for all t ∈ [0, T ), and δ(i) ∈ (0, 1). For the first and the third
equations of system (9), by using the method of variation of
parameters, we get

x(j)(t) = x(j)(0)e−t +
∫ t

0

e−(t−s){[A(i)
j2

+ΔA
(i)
j2 (s)]g(x(2)(s)) + [B(i)

j2 + ΔB
(i)
j2 (s)]

×g(x(2)(s − τ (i)(s)))}ds, (j = 1, 3). (12)
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In views of (11), we obtain

‖x(j)(t)‖
≤ ‖x(j)(0)‖e−t

+
∫ t

0

e−(t−s){‖A(i)
j2 + ΔA

(i)
j2 (s)‖ · ‖g(x(2)(s))‖

+‖B(i)
j2 + ΔB

(i)
j2 (s)‖ · ‖g(x(2)(s − τ (i)(s)))‖}ds

≤ ‖x(j)(0)‖e−t

+
∫ t

0

e−(t−s){‖A(i)
j2 + ΔA

(i)
j2 (s)‖ · ‖x(2)(s)‖

+‖B(i)
j2 + ΔB

(i)
j2 (s)‖ · ‖x(2)(s − τ (i)(s))‖}ds

≤ ‖φ‖e−t +
∫ t

0

e−(t−s){‖A(i)
j2 + ΔA

(i)
j2 (s)‖ · ‖φ‖e−δ(i)s

+‖B(i)
j2 + ΔB

(i)
j2 (s)‖ · ‖φ‖e−δ(i)seδ(i)τ(i)(s)}ds

≤ ‖φ‖e−t +
∫ t

0

e−(t−s){‖A(i)
j2 + ΔA

(i)
j2 (s)‖ · ‖φ‖e−δ(i)s

+‖B(i)
j2 + ΔB

(i)
j2 (s)‖ · ‖φ‖e−δ(i)seδ(i)τ∗}ds

≤ ‖φ‖{e−t + sup
t

[‖A(i)
j2 + ΔA

(i)
j2 (t)‖

+eδ(i)τ∗‖B(i)
j2 + ΔB

(i)
j2 (t)‖}

∫ t

0

e−(t−(1−δ(i))s)ds}

≤ {1 +
1

1 − δ(i)
sup

t
[‖A(i)

j2 + ΔA
(i)
j2 (t)‖

+eδ(i)τ∗‖B(i)
j2 + ΔB

(i)
j2 (t)‖]}‖φ‖e−δ(i)t

= M
(i)
j (δ(i))‖φ‖e−δ(i)t, (13)

where M
(i)
j (δ(i)) = 1 + 1

1−δ(i) supt[‖A(i)
j2 + ΔA

(i)
j2 (t)‖ +

eδ(i)τ∗‖B(i)
j2 + ΔB

(i)
j2 (t)‖].

Let M (i) = max(1, M
(i)
1 (δ(i)), M (i)

3 (δ(i))), then we have
M

(i)
j (δ(i)) < M (i) for j = 1, 2, 3. Since 0 < δ(i) < 1, and

if we choose the initial function φ such that ‖φ‖ ≤ k
M(i) ,then

we obtain

‖x(j)(t)‖ ≤ M
(i)
j (δ(i))‖φ‖e−δ(i)t

≤ M (i)‖φ‖e−δ(i)t < k,∀t ∈ [0, T ). (14)

By repeating these procedures, we can ensure that the same
result holds for t ∈ [T, T1), . . . , [Tn−1, Tn) with Tn → ∞
when n → ∞. So under the condition of the theorem, the
existing interval of solution of system (7) is [0,+∞) and
zero solution of system (7) is exponential stable, because of
the arbitrary of i, we can conclude that every subsystems
of equation (5) are exponentially stable, which complete the
proof.

Theorem 3.2: The switched system (5) is exponential
stable, if the following conditions are satisfied:
(i) max{supt[‖A(α(t))

22 + ΔA
(α(t))
22 (t)‖ + ‖B(α(t))

22 +
ΔB

(α(t))
22 (t)‖]} < 1;

(ii) ‖F (α(t−), α(t+), x(t))‖ ≤ ‖F (α(t−), α(t+)‖·‖x(t))‖;
(iii) There exist positive scalars δ, δ, Td such that
0 < δ < δ < mini∈ℵ{δ(i)}, 0 < Td = inf{Tk : Tk =

tk − tk−1}, k = 1, 2, . . . , and

tk+1 − tk ≥ ln(‖F (α(t−k ), α(t+k ))‖)M (α(tk)))
δ

. (15)

Proof. For convenience, we let xα(tk)(t) denotes the state
equation for system (5) when t ∈ (tk, tk+1], and M (α(t))

denotes M (α(t))(δ(α(t))). From Theorem 3.1, for all t ∈ [0, t1)
and t = t1 we have

‖x(α(0))(t)‖ ≤ M (α(0)) · ‖φ‖e−δ(α(0))t,

‖x(α(0))(t1)‖ ≤ M (α(0)) · ‖φ‖e−δ(α(0))t1 .

In views of condition (ii), we can obtain

‖x(α(t1))(t+1 )‖ = ‖F (α(t−1 ), α(t+1 ), x(α(0))(t1))‖
≤ ‖F (α(t−1 ), α(t+1 ))‖ · ‖x(α(0))(t1)‖,
≤ ‖F (α(t−1 ), α(t+1 ))‖

×M (α(0)) · e−δ(α(0))t1‖φ‖. (16)

Similarly, when t ∈ (t1, t2], we can get

‖x(α(t1))(t)‖ ≤ M (α(t1)) · e−δ(α(t1))(t−t1)‖x(α(t1))(t+1 )‖
≤ ‖F (α(t−1 ), α(t+1 ))‖M (α(0))

× e−δ(α(0))t1M (α(t1)) · e−δ(α(t1))(t−t1)‖φ‖. (17)

By direct calculation, when t1 < tk < t ≤ tk+1, we have

‖x(α(tk))(t)‖ ≤
k∏

s=1

‖F (α(t−s ), α(t+s ))‖ · M (α(0))

·M (α(t1)) . . . M (α(tk))e−δ(α(0))t1

×e−δ(α(t1))(t2−t1)−...−δ(α(tk))(t−tk) · ‖φ‖

≤
k∏

s=1

‖F (α(t−s ), α(t+s ))‖ · M (α(0)) · M (α(t1))

×M (α(tk)) × e−δt · e−(δ−δ)t‖φ‖

≤
k∏

s=1

‖F (α(t−s ), α(t+s ))‖

×M (α(ts))e−δ(ts−ts−1) × Me−(δ−δ)t‖φ‖,(18)

where M = max M (α(tk)), k = 0, 1, . . . ,. From the condition
(iii) and the arbitrary of k, we obtain

‖x(t)‖ ≤ Me−(δ−δ)t‖φ‖, (19)

which complete the proof.
Remark 1: For any switching signal α(t) and any T2 >

T1 ≥ 0, let Nα(t)(T1, T2) denotes the number of switching
signal α(t) over the interval[T1, T2], and for given Ta >
0, N0 ≥ 0, if Nα(t)(T1, T2) ≤ N0 + T2−T1

Ta
, the positive

constant Ta is referred to as average dwell time. Utilizing the
average dwell time, we can obtain the following Theorem.

Theorem 3.3: The switched system (5) is exponential
stable, if the following conditions are satisfied.
(i) max{supt[‖A(α(t))

22 + ΔA
(α(t))
22 (t)‖ + ‖B(α(t))

22 +
ΔB

(α(t))
22 (t)‖]} < 1;

(ii) There exist arbitrary scalars λ, μ satisfying
0 < λ < δ, 0 < μ < ∞ such that α(t) ∈ [τ∗

a , N0],
where N0 = μ

a ,τ∗
a = a

δ−λ
, a = infλ>0{λ :

max(‖F (α(t−k ), α(t+k )‖M) ≤ eλ}, τ∗
a denotes the average
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dwell time.

Proof. Similar to the proof of Theorem 3.2, we can get

‖x(α(tk))(t)‖ ≤
k∏

s=1

‖F (α(t−s ), α(t+s ))‖M (α(tk)) × Me−δt‖φ‖

≤ (max(‖F (α(t−k ), α(t+k ))‖M)k × Me−δt‖φ‖.

In views of the define of average dwell time and condition
(ii), when α(t) ∈ [τ∗

a , N0], we have k ≤ N0 + t−t0
τ∗

a
(t0 = 0),

so we can obtain

‖x(α(tk))(t)‖ ≤ e
a[N0+ t

τ∗
a

]
Me−δt‖φ‖ = eaN0+at/τ∗

a−(δ−δ)t‖φ‖
≤ Meμe−λt‖φ‖, (20)

which complete the proof.
Let Δx(t) = x(t+) − x(t−) = F (α(t−), α(t+)) ×

x(t−), t = tk, k = 1, 2, . . . , α(t) ∈ ℵ, then we can easily
derive the following corollaries.

Corollary 3.1: The switched system (5) is exponential
stable, if the following condition are satisfied:
(i) max{supt[‖A(α(t))

22 + ΔA
(α(t))
22 (t)‖ + ‖B(α(t))

22 +
ΔB

(α(t))
22 (t)‖]} < 1;

(ii) there exist positive scalars δ, δ, Td such that
0 < δ < δ < mini∈ℵ{δ(i)}, 0 < Td = inf{Tk : Tk =
tk − tk−1}, k = 1, 2, . . . , and

tk+1 − tk ≥ ln(1 + ‖F (α(t−k ), α(t+k ))‖)M (α(tk)))
δ

.

Proof. If Δx(t) = x(t+)−x(t−) = F (α(t−), α(t+))·x(t−),
then we can get

‖x(t+)‖ = ‖(I + F (α(t−), α(t+)))x(t−)‖
≤ (‖I‖ + ‖F (α(t−), α(t+))‖) · ‖x(t−)‖
= (1 + ‖F (α(t−), α(t+))‖) · ‖x(t−)‖.

Similar to the proof of Theorem 3.2 we obtain

‖x(α(tk))(t)‖ ≤
k∏

s=1

(1 + ‖F (α(t−s ), α(t+s ))‖)

× M (α(0)) · M (α(t1)) . . . M (α(tk))e−δ(α(t0))t1

× e−δ(α(t1))(t2−t1)−...−δ(α(tk))(t−tk) · ‖φ‖

≤
k∏

s=1

(1 + ‖F (α(t−s ), α(t+s ))‖)M (α(0))

× M (α(t1)) . . . M (α(tk))e−δt · e−(δ−δ)t‖φ‖

≤
k∏

s=1

(1 + ‖F (α(t−s ), α(t+s ))‖)

× M (α(ts))e−δ(ts−ts−1) × Me−(δ−δ)t‖φ‖, (21)

where M = max M (α(tk)). From the condition (ii), we obtain

‖x(t)‖ ≤ Me−(δ−δ)t‖φ‖, (22)

which complete the proof.
Corollary 3.2: The switched system (5) is exponential

stable, if the following conditions are satisfied.
(i) max{supt[‖A(α(t))

22 + ΔA
(α(t))
22 (t)‖ + ‖B(α(t))

22 +
ΔB

(α(t))
22 (t)‖]} < 1;

(ii) There exist arbitrary scalars λ, μ satisfying
0 < λ < δ, 0 < μ < ∞ such that α(t) ∈ [τ∗

a , N0],
where N0 = μ

a ,τ∗
a = a

δ−λ
, a = infλ>0{λ :

max(1 + ‖F (α(t−k ), α(t+k )‖M) ≤ eλ}, τ∗
a denotes the

average dwell time.
Remark 2: These impulsive effects are in commonly used

in switched system. Obviously, this impulsive form can be
seen as special cases of that in system (5), and ours are more
general.

Let Δx(t) = F (α(t−), α(t+), x(t−)) = −γx(t−), 0 < γ <
2, then we can easily derive the following corollaries.

Corollary 3.3: The switched system (5) is exponential
stable, if the following condition are satisfied:
(i) max{supt[‖A(α(t))

22 + ΔA
(α(t))
22 (t)‖ + ‖B(α(t))

22 +
ΔB

(α(t))
22 (t)‖]} < 1;

(ii) there exist positive scalars δ, δ, Td such that
0 < δ < δ < mini∈ℵ{δ(i)}, 0 < Td = inf{Tk : Tk =
tk − tk−1}, k = 1, 2, . . . , and

tk+1 − tk ≥ lnM
(α(tk))
k )
δ

.

Proof. If x(t) = x(t+) − x(t−) = F (α(t−), α(t+),
x(t−)) = −γx(t−), then we can get

‖x(t+)‖ = ‖(I − γI)x(t−)‖ = |1 − γ| · ‖x(t−)‖ ≤ ‖x(t−)‖
Similar to the proof of Theorem 3.2 we obtain

‖x(α(tk))(t)‖ ≤
k∏

s=1

M (α(0))M (α(ts))e−δ(α(t0))t1

×e−δ(α(t1))(t2−t1)−...−δ(α(tk))(t−tk) · ‖φ‖

≤
k∏

s=1

M (α(0))M (α(ts))e−δt · e−(δ−δ)t‖φ‖

≤
k∏

s=1

M (α(ts))e−δ(ts−ts−1)Me−(δ−δ)t‖φ‖,(23)

where M = max M (α(tk)). From the condition (ii), we obtain

‖x(t)‖ ≤ Me−(δ−δ)t‖φ‖, (24)

which complete the proof.
Corollary 3.4: The switched system (5) is exponential

stable, if the following conditions are satisfied.
(i) max{supt[‖A(α(t))

22 + ΔA
(α(t))
22 (t)‖ + ‖B(α(t))

22 +
ΔB

(α(t))
22 (t)‖]} < 1;

(ii) There exist arbitrary scalars λ, μ satisfying
0 < λ < δ, 0 < μ < ∞ such that α(t) ∈ [τ∗

a , N0], where
N0 = μ

a ,τ∗
a = a

δ−λ
, a = infλ>0{λ : max(M (αtk

)) ≤ eλ}.

Remark 3: These impulsive effects are in commonly used
in neural networks. Obviously, this impulsive form can be also
seen as special cases of those in system (5), and ours are more
general.

Remark 4: If every subsystems are the same, then the
switched system (5) become an ordinary impulsive cellular
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neural networks⎧⎪⎪⎨
⎪⎪⎩

dx(t)
dt

= −x(t) + (A + ΔA(t))g(x(t))

+ (B + ΔB(t))g(x(t − τ(t)), t ≥ 0, t = tk,

x(t+) = F (α(t−), α(t+), x(t−)), t = tk,

(25)

then we can obtain the following corollaries.
Corollary 3.5: The system (25) is exponential stable, if the

following condition are satisfied:
(i) supt{‖A22 + ΔA22(t)‖ + ‖B22 + ΔB22(t)‖} < 1;
(ii) there exist positive scalars δ, δ, Td such that 0 < δ < δ,
0 < Td = inf{Tk : Tk = tk − tk−1}, k = 1, 2, . . . , and

tk+1 − tk ≥ ln(1 + ‖F (α(t−k ), α(t+k ))‖)M)
δ

.

Corollary 3.6: The system (25) is exponential stable, if
the following conditions are satisfied.
(i) supt[‖A(α(t))

22 + ΔA
(α(t))
22 (t)‖ + ‖B(α(t))

22 +
ΔB

(α(t))
22 (t)‖] < 1;

(ii) There exist arbitrary scalars λ, μ satisfying
0 < λ < δ, 0 < μ < ∞ such that α(t) ∈ [τ∗

a , N0],
where N0 = μ

a ,τ∗
a = a

δ−λ
, a = infλ>0{λ :

max(1 + ‖F (α(t−k ), α(t+k )‖M) ≤ eλ}.

IV. NUMERICAL EXAMPLES

In this section, we will present a simple example to demon-
strate the results developed above. Let N=2, and consider the
following cellular neural networks:[

u̇1(t)
u̇2(t)

]
=

[ −u1(t)
−u2(t)

]

+

[
1
8
(1 + sin(t)) 1

7
(1 + cos(t))

1
2
(1 + sin(t)) 1

5
(1 + cos(t))

]
·
[

f(u1(t))
f(u2(t))

]

+

[ − 1
8
(1 + sin(t)) − 1

7
(1 + cos(t))

− 1
2
(1 + sin(t)) − 1

5
(1 + cos(t))

]

×
[

f(u1(t − sin(t)))
f(u2(t − cos(t)))

]
+

[
3
−1

]
, (26)

[
u̇1(t)
u̇2(t)

]
=

[ −u1(t)
−u2(t)

]

+

[
1
9
(1 + cos(t)) 1

6
(1 + sin(t))

1
5
(1 + cos(t)) 1

5
(1 + sin(t))

]
·
[

f(u1(t))
f(u2(t))

]

+

[ − 1
9
(1 + cos(t)) − 1

6
(1 + sin(t))

− 1
5
(1 + cos(t)) − 1

5
(1 + sin(t))

]

×
[

f(u1(t − cos(t)))
f(u2(t − sin(t)))

]
+

[
3
−1

]
. (27)

Direct computation shows that u∗ = (3,−1) is an equilibrium
of system (26) and (27). Let x(t) = u(t)−u∗, and |xi(t)| ≤ 1,
then system (26) and (27) can be rewritten as the follows
respectively

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −x1(t) +
1
7
(1 + cos(t))g(x2(t))

− 1
7
(1 + cos(t))g(x2(t − cos(t))),

ẋ2(t) = −x2(t) +
1
5
(1 + cos(t))g(x2(t))

− 1
5
(1 + cos(t))g(x2(t − cos(t))),

(28)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −x1(t) +
1
6
(1 + sin(t))g(x2(t))

− 1
6
(1 + cos(t))g(x2(t − sin(t))),

ẋ2(t) = −x2(t) +
1
5
(1 + sin(t))g(x2(t))

− 1
5
(1 + cos(t))g(x2(t − sin(t))).

(29)

Now, consider the following switched system with impul-
sive effects

⎧⎪⎪⎨
⎪⎪⎩

dx(t)

dt
= −x(t) + (A(α(t)) + ΔA(α(t))(t))g(x(t)) + (B(α(t))

+ ΔB(α(t))(t))g(x(t − τ (α(t))(t))), t ≥ 0, t �= tk,

x(t+) = F (α(t−), α(t+)) · x(t−), t = tk, k ∈ ℵ, α(t) ∈ {1, 2},
(30)

where

A(1) =
[

1
8

1
7

1
2

1
5

]
,ΔA(1) =

[
1
8 sin(t) 1

7 cos(t)
1
2 sin(t) 1

5 cos(t)

]
,

F (2, 1) =
[

1
4 0
0 1

4

]
, F (1, 2) =

[
1√
2

0
0 1√

2

]
,

B(1) =
[ − 1

8 − 1
7− 1

2 − 1
5

]
,ΔB(1) =

[ − 1
8 sin(t) −1

7 cos(t)
−1

2 sin(t) −1
5 cos(t)

]
,

A(2) =
[

1
9

1
6

1
5

1
5

]
,ΔA(2) =

[
1
9 cos(t) 1

6 sin(t)
1
5 cos(t) 1

5 sin(t)

]
,

B(2) =
[ − 1

9 − 1
6− 1

5 − 1
5

]
,ΔB(2) =

[ − 1
9 cos(t) −1

6 sin(t)
−1

5 cos(t) −1
5 sin(t)

]
.

Set δ(i) = 0.5, (1 = 1, 2), δ = 0.4, then we can
obtain that M = max{M (1), M (2)} = supt{1 + 1

2 |1 +
cos(t)|(1 +

√
e)} = 2 +

√
e, ‖F‖ � max{‖F12‖, ‖F21‖} =

1, Since max{supt[‖A(α(t))
22 + ΔA

(α(t))
22 (t)‖ + ‖B(α(t))

22 +
ΔB

(α(t))
22 (t)‖]} = 4

5 < 1, according to Theorem 3.2, if
tk − tk−1 > ln(5 + 5

2

√
e), then the switched system (30)

is exponential stable.

V. CONCLUSION

This paper investigates the problem of exponential stabiliza-
tion for a class of nonlinear switched systems with cellular
neural networks as subsystems. At the same time, parametric
uncertainty and a more generally impulsive effects are consid-
ered, some stable criterions are derived, which are associated
with dwell time and some blocks of the feedback matrices. Our
criterion generalizes some known results. Illustrated numerical
example shows that the criteria obtained in this paper are valid.
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