
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

433

Abstract—The demand for higher performance graphics

continues to grow because of the incessant desire towards realism.
And, rapid advances in fabrication technology have enabled us to
build several processor cores on a single die. Hence, it is important to
develop single chip parallel architectures for such data-intensive
applications. In this paper, we propose an efficient PIM architectures
tailored for computer graphics which requires a large number of
memory accesses. We then address the two important tasks necessary
for maximally exploiting the parallelism provided by the architecture,
namely, partitioning and placement of graphic data, which affect
respectively load balances and communication costs. Under the
constraints of uniform partitioning, we develop approaches for optimal
partitioning and placement, which significantly reduce search space.
We also present heuristics for identifying near-optimal placement,
since the search space for placement is impractically large despite our
optimization. We then demonstrate the effectiveness of our partitioning
and placement approaches via analysis of example scenes; simulation
results show considerable search space reductions, and our heuristics
for placement performs close to optimal – the average ratio of
communication overheads between our heuristics and the optimal was
1.05. Our uniform partitioning showed average load-balance ratio of
1.47 for geometry processing and 1.44 for rasterization, which is
reasonable.

Keywords—Data Partitioning and Placement, Graphics, PIM,
Search Space Reduction.

I. INTRODUCTION

VEN though advances in VLSI technology have provided
higher computational capabilities and larger memories [1],

most classical architectures fail to sufficiently exploit these
advancements for efficient parallel computations due to
processor-memory bottlenecks [35]. Hence, PIM architectures,
which integrate processors and memory on the same chip, have
been proposed for many applications. Such integration enables
efficient parallel computation and communication along with
low power consumption. Other similar types of architectures
have been proposed to exploit VLSI scaling [4][5][6][7][8].

Today’s sophisticated 3D animation films have work-loads
that are too large to process in real time. Therefore, they are
rendered in a non-real-time (off-line) manner [32] – i.e., each
scene is created separately, and such digital scenes are
converted to analog films, which are played in theatres.
However, with advances in VLSI technologies, graphics
processors will be able to support real-time animations in the

Authors are with Department of Electrical Engineering, University of

Southern California, Los Angeles, CA90089.

future if the bottlenecks can be eliminated. Based on this
perspective, we explore a PIM architecture tailored for parallel
graphics processing.

To achieve maximum performance, the workload must be
evenly divided among processors, and data placement and task
assignment must minimize the communication overhead
between processors. We propose partitioning and placement
methodologies that require low hardware complexities, but
provide good performance.

The rest of paper is organized as follows. Section II briefly
describes the proposed architecture. Section III explains some
of the important computer graphics concepts for better
understanding of the partitioning and placement. Section IV
describes how we obtain the information required to identify
efficient partitioning and placement. Section V explains our
efficient partitioning and placement schemes. Section VI
presents the performance results on the load balancing and
communication overheads. Section VII summarizes our results
and proposes future work.

II. PROPOSED ARCHITECTURE
We envision that the overall system is organized to include

GPP (general purpose processor), a CIMM (computation-in-
memory-modules), co-processor(s), memory, and I/O devices
as shown in Fig. 1(a). CIMM consists of ECME (embedded
computing memory element) modules, DDDR (decoder/data-
distributor + router), and controller as shown in Fig. 1(b). Fig.
1(b)(i) shows a classical decoder tree that connects memory
modules to external port, whereas Fig. 1(b)(ii) shows how we
modify the organization of a classical memory to obtain the
CIMM.

DDDR – decoder, data-distributor, and router – in the ECME
memory decoder tree enables efficient communications to/from
the external port as well as between memory blocks. When the
memory is used in the normal mode, each DDDR operates as a
classical decoder, i.e., when activated, each decoder selects and
activates its left or right child, depending on whether the
corresponding address symbol is a ‘0’ or a ‘1’. However, a
DDDR can also work in one of many new data-distribution
modes. For example, during a write operation, if a DDDR is
activated with an address symbol ‘*’, it selects and activates
both its children, resulting in a two-way broadcast of the data to
be written. This mode facilitates data replication, which is used
to duplicate graphic primitives that cross boundaries in
partitioned scenes without incurring performance overheads.
DDDR can be also activated with an address symbol ‘lr’ to
select and activate its left child in the read mode and its right

A PIM (Processor-In-Memory) for Computer
Graphics: Data Partitioning and Placement

Schemes
Jae Chul Cha, and Sandeep K. Gupta

E

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

434

child in the write mode. In this mode, the data forwarded to the
DDDR by its left child is forwarded to its right child for
writing. Such operations can be processed in parallel at
multiple DDDR nodes in the decoder tree, which expedites
inter-memory transfer of graphics primitives.

Fig. 1(c) shows structure of the ECME – each ECME
consists of a processor that can act either as a GP (geometry
processor) or a RAS (rasterization processor), a DRAM
(memory block) and a controller. The details of internal and
external data flows in ECME are explained in Fig. 2. By
designing ECME’s with suitably parameterized controls, much
of the control logic can be migrated from individual ECME’s to
controllers at higher levels of the decoder tree due to
commonality in their control logic. The controller shown at the
input part in Fig. 1(b) embodies such control logic.

(a) Overall Configurations

(b) Internal Organization of CIMM

 (c) Inside of ECME (d) CIMM Execution Flow

Fig. 1 Data intensive computing Architecture

Fig. 2 Internal/external data flows in ECME

Fig. 1(d) depicts the flow of execution for kernels – the host
processor sends all the vertex data of a scene to memory
modules within the CIMM. The host processor then commands
the CIMM to start the kernel operations. Each ECME begins to
execute the given operations once it receives signal from
CIMM controller. Each ECME notifies the CIMM when it
completes its job. CIMM then notifies the host processor that
all the jobs are finished and that the contents of frame buffers
are ready to be rendered in the display device.

In our architecture, instead of incorporating separate GP and
RAS processors, we use a unified processor, which can be used
for either GP or RAS [36][37]. In many recent graphic
processing units with non-unified architectures, i.e.,
architectures that use distinct processors for GP and RAS, the
ratio of the number of vertex shaders in GP stage and that of
pixel shaders in RAS stage are 1:3 approximately [38]. This is
because, in many cases, computational needs for RAS stage are
higher than those for GP in about this proportion. Therefore, if
vertex shaders are overloaded for some scenes, performance
will drop regardless of the number of available pixel shaders. In
contrast, a unified architecture can alleviate such bottlenecks
by allocating all the shader resources for vertex shading as well
as pixel shading as necessary.

Graphic processing requires intensive processor-memory
communication for data transfers, texturing, and buffering.
Thus, a PIM architecture with low memory access time can
boost system’s performance.

III. BACKGROUND ON COMPUTER GRAPHICS
Most objects are represented using polygons, typically

triangles. In order to add realism to the objects, each polygon is
filled up with colors and textures as well as effects like shadows
and light. From a mathematical point of view, processing
involves floating point and integer arithmetic operations as well
as matrix operations, such as translation, rotation, scaling,
shearing, tapering, twisting, and bending [23]. When scenes
have extremely high complexities, a single processor cannot
meet the computational needs, especially in the presence of
real- time deadlines [26]. In parallel architectures, the
performance is influenced significantly by how scenes are
partitioned and assigned to processors.

Originally, an object is defined with respect to object-
coordinate, which is attached at each body of object.
Subsequently, the representation is transformed into world-
coordinate, where every object is defined relative to a common
origin. Finally, it is transformed to the viewer-coordinate as
defined by the user’s perspective [24]. Such transformations
are carried out by applying various matrix operations to each
vertex during GP stage.

Once GP stage completes its operations on vertices, the RAS
stage takes those transformed vertices and shades polygons by
filling in the interiors of polygons with the colors and textures
and converts such primitives into pixel values that are stored in
the frame buffer for display. The coordinates for GP processing
are called object space, whereas those for RAS processing are
called image-space [23].

Initial inputs to GP processors contain vertex information for
each polygon, such as the position of the vertex, the color of the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

435

vertex, the normal vector of each polygon, and the texture
mapping information [23]. The normal vector is used for the
lighting calculation by considering two vectors, namely, the
light direction and the normal vector of surface. The vertices
from the same polygon are assigned the same ID to keep track
of the vertices that belong to a polygon [24].

The size of a polygon doesn’t affect the computational
complexity of GP, since the complexity of GP is only related to
the number of vertices. However, the complexity of RAS
depends on the size of a polygon, since the complexity of
shading (and other operations if carried out) is a function of the
polygon’s size [33]. As smaller primitives (polygons) provide
higher quality images, the computational needs for graphics
will continue to increase for the foreseeable future.

Polygons undergo numerous spatial transformations, so that
they need to be rearranged somewhere within the pipeline in a
parallel architecture. According to the location of data
rearrange- ment, three types of schemes exist – sort first (before
geometry processing), sort middle (between geometry and
rasterization processing), sort last (after rasterization) [11].
Among three sorting strategies, sort-middle has thus far
resulted in many practical implementations [18][19][20][21]
[22]. Therefore, we use sort-middle in our architecture.

As for a relative time-complexity of GP and RAS
processing, when 3D scenes are delineated by coarse polygons,
RAS process will dominate the overall time, since RAS
processors will spend the substantial amount of time for
shading large polygons whereas the number of vertices in the
scenes becomes relatively small. In such a case, we can say that
the system is rasterization dominant. In contrast, if system is
required to draw very fine and detailed objects with very small
polygons for producing extremely high quality scenes, the
workload for shading a single polygon is very small. In this
case, the time complexity of GP processing can be comparable
to that of RAS processing.

IV. PRE-PARTITIONING AND PLACEMENT PHASE –
CONSTRUCTION OF REFERENCE

Parallel processing is capable of providing significant
performance gains in data intensive applications. However, the
efficiency of parallel processing is most frequently dependent
on partitioning and placement of the data. In section V, we will
discuss efficient partitioning and placement methodologies. In
this section, we describe how we gather information that will be
used for partitioning and placement.

As temporally adjacent frames tend to be similar to each
other, we use the information from the previous frame as a
reference for partitioning and placement of the current frame
[34]. Such an approach will be effective except when an abrupt
change of scene occurs.

We construct a 3D polygon distribution map when the 3D
space is partitioned into small cubes (Fig. 3). This distribution
map contains (a) the number of polygons in each fraction of the
space (cube) for geometry and rasterization processors, and (b)
the mapping which captures the number of polygons that are
transferred from cube i during geometry processing to cube j
during rasterization. To construct this map, 3D scenes in the
object-space and the image-space are partitioned into small

cubes, based on the desired resolution and hardware
availability. The mapping information between cubes from the
object-space and those from the image-space are stored in a
look-up table (LUT) as depicted in Fig. 3. The table contains the
number of polygons and the sum of areas of polygons. The
numbers of polygons are used for partitioning frames for GP
processing whereas the area sums of polygons are used for
partitioning for RAS processing. Once we decide the
partitionings for GP and RAS, we identify placements with
minimal communication costs.

Fig. 3 Look-up table (LUT) construction that contains 3D mapping
relations between object space and image space. – Vertex counts are

used for determining the workload division on GPs whereas area sums
are used for determining the workload division on RASs

In a three dimensional space, the area of a triangle can be

obtained by using pythagorean sum of the respective projection
on the three principal planes. This computation takes 17
additions /subtractions, 10 multiplications, and 1 square root
operation. Assuming that the total number of polygons in a
scene is np, the time complexity for computing the area sum
stored in the cubes is simply O(np). This amount of workload is
insignificant compared to the complexities of GP and RAS
procedures. The memory complexity of LUT is O((nc)2)
assuming that the number of cubes is nc. The hardware
complexity is (nc)2

 counters for vertex counts, (nc)2
 adders for

area sum, 6·nc comparators for deciding the location of
polygons in cubes, and one pipelined computational unit used
for the area calculation.

V. PARTITIONING AND PLACEMENT PHASE
We determine the partitioning of the object-space and that of

image-space independently each other to achieve workload
balancing and then determine the placement that minimizes the
communication cost between GP and RAS. Such a decision
making process – determine the partitioning first and then
determine the placement – may not produce globally optimal
results. However, this allows us to find good solutions
efficiently and quickly at relatively low complexity by reducing
the search space.

A. Partitioning Methodology
The partitioning procedure can be static or adaptive [31].

The static method is to divide the scene in a deterministic way,
whereas adaptive method decides its partitioning dynamically
[13][27][28][29][30]. In this study, we present a hybrid

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

436

partitioning methodology – only x-, y-, z-directional cuts are
allowed (static), while the directions of cuts are determined
dynamically according to the scene’s characteristics (adaptive)
– subject to the following partitioning rules.

1. Each cut produces spatially equal-sized bi-partitions
(equi-partitioning).

2. Each bi-partitioning cut is applied to all the existing
partitions.

The size of search space for all the possible partitioning
methods increases exponentially with the number of processing
elements. Thus, we present an approach to reduce search space.
This approach consists of two parts, namely, a scene
independent scheme and a scene dependent bounding.

A bi-partitioning tree can be drawn for generating recursive
cuts (Fig. 4(a)) for our hybrid method. Assuming that n is the
number of processing units, the depth of tree is log2(n), since
each recursive bi-partitioning is carried out to all the equi-
partitions generated so far. The number of possible cuts in a
complete partitioning tree can be computed as . However,
we observe that the sequence of cuts doesn’t matter, since
bi-partitioning in each dimension is independent and bi-
partitioning at each step is applied to all the existing partitions.
For example, the sequence of cuts x-x-y produces exactly the
same result as x-y-x or y-x-x. A systematic way to produce such
distinct bi-partitioning cuts is: Branch x has 3 children
branches, namely x, y, z. Branch y is allowed to have two
branches, y, z. Lastly, branch z can produce only one child
branch, z. We can hence limit ourselves to non-replicated
partition tree shown in Fig. 4(a).

 (a) (b)
Fig. 4 partitioning tree – (a) Scene-independent non-replicated tree

generation (b) Scene dependent searching paths (Example)

The total number of distinct leaves at the bottom of the
non-replicated tree is ½(log2(n)+1)· (log2(n)+2). This can be
derived by using the formula, nx+ny+nz= log2(n), where n is the
total number of ECME’s and nx, ny, and nz are the numbers of
cuts in x-, y-, and z-directions, respectively. Assuming that we
conduct k bi-partitionings, the recursive cuts produce 2k
partitions. By equating 2k and n, we obtain k= log2(n) that
corresponds to the term on the right-hand side of the above
equation. The number of distinct sets of {nx, ny, nz} is then
computed as ½(log2(n)+1)·(log2(n)+2). The number of leaves
for the non-replicated tree increases logarithmically with the
number of processing elements while that for the replicated tree
grows exponentially. Therefore, our approach has resulted in a
significant improvement. This approach does not depend on the
characteristics of the scene, so we refer to it as scene-independent.

We can further reduce the number of paths searched in a tree
by considering the worst case and the best case scenarios. Let
us illustrate using a simple example (Fig. 4(b)). Suppose that a
scene has 1000 vertices, and we have 8 ECME’s. Assume that
an x-directional cut at the top of tree divides the polygons into
(100, 900), a y-directional cut (500,500), and a z-directional cut
(150, 850). Since x and z cuts are heavily unbalanced, we
explore y-directional cut first with a higher priority over other
cuts. In the next step, suppose that z-directional cut after the
first y-directional cut (i.e., y-z cut) produces (250, 250, 230,
270), while a y-directional cut after the y-directional cut (i.e.,
y-y cut) results in (200, 300, 100, 400). Since the maximum
value in (250, 250, 230, 270) is 270 whereas that in (200,300,
100, 400) is 400, we choose z-directional cut as a next
exploration. Here, we used the maximum value, and not the
minimum value, since the computational time depends on the
processor with the highest load. Then, in the last step, another
z-directional cut is applied (i.e., y-z-z cuts), since z node can
produce only z-directional branch as a child. Assume that (130,
120, 150, 100, 110,120, 130,140) was obtained finally. We can
now determine that we don’t need to traverse the unexplored
x-directional cut and z-directional cut at the top of the tree. The
reasoning is as follows. The best scenario after the first
x-directional cut at the top of the tree is that the rest of the
subsequent slicing operations result in an equal load
partitioning, i.e., (100, 900) (100/2, 100/2, 900/2, 900/2)
(100/4, 100/4, 100/4, 100/4, 900/4, 900/4, 900/4, 900/4) = (25,
25, 25, 25, 225, 225, 225, 255), producing a maximum value of
225, which is still larger than the maximum of (130, 120, 150,
100, 110,120, 130, 140) that was obtained by a y-z-z traversal.

In general, we use the following inequality to reduce search
space;

1/2remaining number of cuts The max load value in the non-leaf node
currently being explored > The max load value at an
alternative non-leaf node

The term on the left side represents the best case for the
non-leaf node currently being explored. The best case scenario
of the node is obtained by assuming that further partitioning
could divide the number of vertices equally. The term on the
right side represents the worst case of an alternative non-leaf
node to be explored. If the above inequality holds, then, we
don’t need to traverse the non-leaf node that we are currently
exploring, since the best case scenario for that node will give
worse result than the worst case scenario of an alternative node.
If the above inequality doesn’t hold, we continue to search the
path. A similar comparison can be also made between the
current node and the best leaf-node identified so far. This
reduction technique is scene-dependent, since it may or may
not help reduce the search space depending on the scene’s
characteristics. By combining the scene-independent and the
scene-dependent techniques we proposed, the optimal
partitioning method can be found in a logarithmic time.

B. Placement Methodology
Suppose that we have identified the optimal partitioning in

object space (GP) as well as image space (RAS) using the
above reduction schemes. We then determine the placement of

)(log23 n

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

437

∑∑ ∈∈
−=

21
,, Sy iySx ix DDi)Cost(k,

the partitioned jobs (and associated polygons) in the memory
modules for GP and RAS that minimizes the communication
cost between them. Placements are critical for optimizing the
communication cost, since the balancing as well as concurrency
of inter module communications depends on the locations of
source and destination nodes.

As mentioned earlier, we use sort-middle technique in our
architecture. Given n ECME’s at CIMM, the number of
possible placements at the geometry processors is n factorial.
Likewise, those at rasterization processor are n factorial.
Therefore, in total, there are (n!)2

 possible placements. While
this is an extremely large number, we can reduce the search
space by discarding the equivalent placement pairs.

We present a concept called branch alternation that is
defined as a swapping with respect to a branching point. For
example, as shown in Fig. 5, data swapping between node 1 and
node 2 causes no change in communication cost so long as both
geometry and rasterization processors swap their data in their
memory blocks (along with corresponding jobs). The same
phenomenon occurs for the swapping of data in node 3 and
node 4. For the same reason, swapping between the set {node 1,
node 2} and the set {node 3, node 4} causes no change if the
data at both geometry and rasterization processors are swapped
concurrently. However, data swapping between node 1 and
node 3 changes the communication cost, regardless of whether
both GP and RAS are swapped or not.

3

Fig. 5 Types of branch alternation for 4 ECME’s

In the above example, 3 types of branch alternations are
possible, which produce equivalent pairs. Therefore,
2 2 2=8 pairs of placements will have exactly the same
communication cost. We then reduce the search space from (4!)

2 to (4!) 2/8. In general, since the number of splitting branches in
our PIM architecture with n leaf nodes is n-1, the total distinct
placement pairs of geometry processor and rasterization
processor will be (n!)2/2n-1.

We can now decompose n!2/2n-1 into two ways, namely,
n! n!/2n-1 or n!/2n-1 n!. By the former we mean that the
placements for geometry processor are just naïve permutations
of n nodes whereas those of rasterization processor are distinct
permutations with equivalent placements eliminated. The latter
one means that the placements of rasterization processor are
just naïve permutations of n nodes whereas those of geometry
processor are distinct permutations with equivalent terms
eliminated. As an example for the former case, the set
{1,2,3,4,5,6,7,8} and the set {2,1,3,4,5,6,7,8} are different
from each other in geometry processor (naïve permutation)
whereas the two are considered identical in rasterization
processor, since we can match the two placements through a
branch alternation. We have developed an approach to search
for placements that takes full advantage of branch alternations

and enumerates exactly (n!)2/2n-1 candidates. The details of the
algorithm and the proof of its correctness can be found in our
technical report [17].

Our algorithm for producing non-equivalent permutations
significantly reduces the searching space, i.e., from (n!)2 to
(n!)2/2n-1. However, the reduced search space is still considerable.
Therefore, we propose an approximate algorithm (heuristics)
for generating the more promising pairs early in this search
process. We will describe the approximate method and
compare the solution identified by this approximate method
with the optimal solution through exemplary simulation results.

C. Heuristics for Placement
Enumerating all possible placements is extremely time

consuming. For example, suppose that we have 32 ECME’s in
CIMM. Then, the total number of possible non-equivalent
placement pairs is 3.224 1061. Therefore, we developed an
approximate method called top-down heuristic for finding
satisfactory placement pairs at low complexity, as an
alternative to exhaustive search. Basically, we conduct swaps,
starting from the highest level, all the way down to the lowest
level according to the cost function (more ahead). The highest
level swap is between blocks with the longest distance from
each other. As an example, see Fig. 6. The distance between A1
and A7 is one of the longest ones in the decoder tree. The
distance between A4 and A7 is also identical. The
communication distance between A3 and A4 is one of the
shortest. As excessive data communication at the highest level
severely limits the parallelism of inter-block transfers and
increases its delay, we try to minimize such communications by
using our heuristics.

Fig. 6 Illustration of the different communication distances

When we apply this approximate method, the placement
assignment of geometry processor is fixed, and the placement
of rasterization processor is updated according to the cost
function. Suppose that we want to calculate the cost function of
level k with respect to the node i. First, we need to identify
which nodes are at the distance of the level k from the
perspective of the node i and which nodes are at the distance
less than the level k from the point of the node i. Second, we
compute the number of polygons to be transferred from the
node i to the nodes that are at the distance of the level k.
Likewise, compute the number of polygons to be moved from
node i to the nodes that are at the distance less than the level k.
Third, we compute the difference between the two quantities,
which is defined as the cost function as follows;

where, Di,j is defined as the number of polygons that are at node
i (for GP) and then are transferred to node j (for RAS). Also, S1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

438

= { node IDs at the distance of the level k in the view of node i }
and S2 = { node IDs at the distance that is less than the level k in
the view of node i }

The purpose of our cost function is to identify an element
that has fewer communications with its current neighbors in
decoder tree but has more communications with distant nodes.
The first term on the right side at the above cost function sums
up the communications with distant nodes, whereas the second
term sums up the communications with current neighbors.
Therefore, the more positive the cost function, the more inferior
is the current assignment.

Our heuristics use this cost function to progressively update
the placements of the blocks one by one, starting from the
highest level down to the lowest level. For clarification, we see
the case of 8 ECME’s. We compute the cost values of the
highest level for each element in the set {1, 2, 3, 4} and the set
{5, 6, 7, 8}, respectively; as an instance, the cost value of node
1 with the highest level (level 3) is D51+D61+D71+D81-D11-D21-
D31-D41 (see Fig. 7). Likewise, that of node 7 is D17+D27+D37+
D47-D57-D67-D77-D87. Compute the cost values of all other
nodes in the same manner. Then, choose the two largest ones,
one from {1, 2, 3, 4} and one from {5, 6, 7, 8}. If the sum of the
two is positive, swap the two elements, since the current
assignment is unstable. Next, pick the second largest one from
{1, 2, 3, 4} and the second largest one from {5, 6, 7, 8}. If the
sum of the two is positive, swap them. Continue until the sum
becomes negative. Then, go down to the next lower level, which
is level 2, where we compute the cost values of each element in
{1,2} and {3,4}. We determine which node elements will be
exchanged between the set {1,2} and the set {3,4}. Same
procedure is applied for {5,6} and {7,8}. Once we arrive at the
lowest level, we are finished. This top-down approach was
evaluated empirically through example scenes and shown to
produce good results (Section VI)

Fig. 7 A table that shows data-transfers between GP and RAS

partitions. Used for finding near-optimal placement through top-down
approximation – Fixed placement for geometry processor (a) and
progressively updated placement for rasterization processor (b)

VI. EXPERIMENTAL RESULTS
We evaluated our entire methodology using the three

example objects shown in Appendix A using a detailed c++
simulation of our PIM architecture. A PIM architecture with
eight ECME’s is studied. Since the scene is static, the
preciseness of 3D distribution statistics along with their
mapping relations between GP and RAS are not at issue (Fig. 3).

Table I shows the results of search space reduction ratio
when the proposed scene independent and dependent
techniques are applied. The scene independent technique
reduces the search space in a manner that can be computed

analytically, whereas the scene dependent bounding condition
performs differently depending on the scene’s characteristics.
In the example cases, the overall search time was reduced by
71.2% for GP and 62.5% for RAS on average compared to the
naïve searching scheme when the two reduction schemes were
applied.

TABLE I

SEARCH SPACE REDUCTION RATIO FOR PARTITIONING

Based on the search results, we conclude that the
recommended partitionings for GP are z-z-z (object 1), z-z-z
(object 2), and x-x-z (object 3). For RAS, x-x-x, x-x-y, and
y-z-z are the recommended partitionings for the object 1, object
2, and object 3, respectively.

After determining the partitioning of both GP and RAS,
mapping tables are constructed, representing the polygon
mapping relations between z-z-z partitioning for GP and x-x-x
partitioning for RAS (object 1, Table II(a)), z-z-z partitioning
for GP and x-x-y partitioning for RAS (object 2, Table II(b)),
and x-x-z partitioning for GP and y-z-z partitioning for RAS
(object 3, Table II(c)). Based on the mapping information, we
apply our top-down heuristics to find near-optimal placements
for each partitioned scene. We also apply exhaustive search to
identify globally optimal placements (Table III). The detailed
procedures for obtaining the top-down placement are explained
in our technical report [17].

The communication costs incurred by data rearrangements
between GP and RAS for placements obtained by top-down
heuristics are normalized by communication overheads for
globally optimal placements obtained via exhaustive searches.
Table III data shows such relative communication costs. This
shows that our heuristics provide communication overheads
that are within 7% of the optimal.

Partitioning methods that we have developed are limited to
uniform partitioning, i.e., they do not consider arbitrary
partitions. To ensure that this does not result in significant
sub-optimality, we checked the performance of such constrained
partitioning methods by using the load balance [31], which is
defined as the ratio of the maximum processor’s load over the
average load. In [31], the author considers a load-balance
reasonable if the maximum/average load ratio is 1.5 or less. The
load-balances for the partitioning obtained by our approach of
the three objects are in the reasonable range, as shown in Table
IV, and comparable to the results of complicated adaptive
load-balancing schemes presented in [31], which are much
more costly and not suitable for real-time systems.

For your reference, we added plots on load-balances for each
possible type of partitioning in Appendix. This illustrates the
importance of determining appropriate partitioning types.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

439

GP

TABLE II

MAPPING RELATION FOR THE CHOSEN GP AND RAS PARTITIONING FOR EACH OBJECT

 1 2 3 4 5 6 7 8
1 8 60 1 0 0 0 0 0
2 40 43 28 5 55 10 0 0
3 11 14 37 12 103 73 0 0
4 20 6 25 20 1490 152 5 9
5 20 7 35 20 38 141 6 6
6 12 28 64 19 85 39 0 0
7 61 22 20 21 55 0 0 0
8 64 0 0 4 1 0 0 0

 1 2 3 4 5 6 7 8
1 17 144 31 0 0 0 0 0
2 53 319 122 81 240 1 0 0
3 17 38 190 262 143 0 126 0
4 51 19 148 315 12 128 232 0
5 127 32 192 358 34 152 203 23
6 78 21 120 517 61 101 256 0
7 14 12 6 468 20 0 313 1
8 8 37 0 235 18 0 276 0

 1 2 3 4 5 6 7 8
1 336 80 0 0 0 0 0 0
2 203 0 6 1 125 83 0 0
3 0 0 147 0 72 0 105 0
4 176 0 8 0 138 77 0 0
5 0 0 122 0 61 0 168 0
6 13 0 0 0 405 0 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0

TABLE III

PLACEMENTS RESULTS OF TOP-DOWN HEURISTIC AND EXHAUSTIVE SEARCH

 Top-down heuristic Optimal placement

ECME node ID 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

† GP (fixed) 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

†† Relative
communication

cost

Object 1 2 8 6 5 4 3 7 1 8 2 6 7 4 5 1 3 1.06

Object 2 2 5 3 8 6 1 4 7 7 2 3 6 4 5 8 1 1.07

P
la

ce
m

en
ts

RAS

Object 3 1 2 3 6 7 5 4 8 1 2 3 7 6 4 5 8 1.01

† The placements in GP are fixed, while those in RAS are varied.
†† Relative communication cost is defined as the ratio between the communication cost for globally optimal placement and that for top-down

heuristics.

TABLE IV
PERFORMANCE DATA FOR THE CHOSEN PARTITIONING METHODS

VII. SUMMARY AND FUTURE WORKS
In this paper, we proposed an efficient PIM architecture

intended for computer graphics and explored methods for
efficient partitioning and placement under the uniform
partitioning constraints. Sophisticated 3D graphics requires
intensive memory accesses and many current architectures
suffer processor-memory bottlenecks. Therefore, PIM
architecture that reduces memory access latency can alleviate
such bottlenecks and thus can be an ideal candidate for high
quality computer graphics. We used a hybrid-partitioning
method and proposed search space reduction algorithms – one
scene-dependent and one scene-independent. Scene independent
reduction scheme reduces computational complexity in an
analytically quantifiable manner, while scene dependent
bounding condition reduces search space depending on the
characteristics of the scene. From the simulation results for
example objects, the average of the reduction ratio was 71.2%
for GP and 62.5% for RAS when the two schemes were applied.
As for placement, we reduced the search space by using our

branch alternation approach, which reduces search space by
exponential number. However, since the search space for
placement is intrinsically large, we also developed a top-down
heuristic to identify near-optimal placements efficiently.
According to the simulation results, our top-down heuristic
performed close-to-optimal – the ratio of communication-cost
between our heuristic and the optimal placement was less than
1.07. We also performed simulations on the load-balance
among processors under uniform partitioning, and it showed
reasonable performances within or close to 1.5.
 We are currently developing realistic analytical models for
general types of graphics architectures and PIM architecture for
two distinct cases, namely, unified processors and non-unified
processors. By doing so, we will be able to identify which parts
in the given architecture are bottlenecks, and resolve the
problems appropriately. Also, for the given hardware constraints,
we will be able to predict and compare the performances of
various architectures using higher level models.

RAS RAS RAS

 (a) Object 1 (b) Object 2 (c) Object 3

GP GP

∗The row and column numbers (1~8) are IDs of blocks that are generated by partitioning, not the actual placement in the CIMM.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

440

APPENDIX

REFERENCES
[1] International Technology Roadmap for Semiconductors , www.itrs.net/
[2] Keith Diefendorff, et al., How Multimedia Workloads Will Change

Processor Design, IEEE Computer, p.43-45, 1997.
[3] D. Burger, et al., Memory Bandwidth Limitations of Future

Microprocessors, In Proceedings of the 23rd Inter-national Symposium
on Computer Architecture, p.78–89, 1996.

[4] Patterson D, et al., A Case for Intelligent DRAM: IRAM, IEEE Micro,
1997.

[5] Mark Oskin, et al., Active Pages: A Computation Model for Intelligent
Memory, In Proceedings of the 23rd. Inter-national Symposium on.
Computer Architecture, p.192-203, 1998.

[6] Yi Kang, et al., FlexRAM: Toward an Advanced Intelligent Memory
System, In proceedings of 1999 IEEE International Conference on
Computer Design, p.192, 1999.

[7] Jung-Yup Kang, et al., An Efficient PIM (Processor-In-Memory)
Architecture for Motion Estimation. In proceedings of the 14th IEEE
International Conference on Application-Specific Systems, Architectures,
and Processors, p.282-292, 2003.

[8] Jung-Yup Kang, et al., Accelerating the Kernels of BLAST with an
Efficient PIM (Processor-In-Memory) Architecture, In proceedings of the
3rd International IEEE Computer Society Computational Systems
Bioinformatics Conference, p.552-553, 2004.

[9] John Montrym, et al., The GeForce 6800, IEEE Micro, p.41-51, 2005.
[10] Emmett Kilgariff, et al., The GeForce 6 Series GPU Architecture,

download.nvidia.com/ developer/GPU_Gems_2/GPU_Gems2_ch30.pdf
[11] Molner, et. al., A sorting classification of parallel rendering, Computer

Graphics and Application, IEEE, p.23-32, 1994.

[12] S. Whitman, Dynamic load balancing for parallel polygon rendering,
IEEE Computer Graphics and Applications, p.41-48, 1994.

[13] S. Whitman, Parallel Graphics Rendering Algorithms, In Proceedings of
3rd Eurographics Workshop on Rendering, Consolidation Express,
Bristol, UK, p.123-134, 1992.

[14] Tahsin M. Kurc, et al., Object-Space Parallel Polygon Rendering on
Hypercubes, Compu-ters & Graphics , p.487-503, 1998.

[15] B. Wei, et al., Performance Issues of a Distributed Frame Buffer on a
Multicomputer. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics Hardware, p.87
-96, 1998.

[16] Vineet Kumar. A Host Interface Architecture for HIPPI. In Proceedings
of Scalable High Performance Computing Conference, p.142–149, 1994.

[17] Jae C. Cha, et al., Technical Report CENG-2007-6.
[18] Akeley, Kurt. RealityEngine Graphics. In Proceedings of

SIGGRAPH ’93, New York, p.109-116, 1993.
[19] Thomas W. Crockett, et al., Rendering Algorithm for MIMD

Architectures, In Proceedings of the 1993 Parallel Rendering Symposium,
p.35-42,1993.

[20] Deering, et al., A System for Cost Effective 3D Shaded Graphics. In
Proceedings of SIGGRAPH ’93, p.101-108, 1993.

[21] Ellsworth, et al.,. A New Algorithm for Interactive Graphics on
Multicomputers. IEEE Computer Graphics & Applications, p.33-40,
1994.

[22] Fuchs, Henry, et al., Pixel-Planes 5: A Heterogeneous Multiprocessor
Graphics System Using Processor-Enhanced Memories. In Proceedings
of SIGGRAPH ’89, p.79-88, 1993.

[23] J. D. Foley, et al., Computer Graphics, Principles and Practice. Addison-
Wesley, 2nd edition, 1996.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

441

[24] Francis S Hill Jr., et al., Computer Graphics Using OpenGL, Prentice Hall,
3rd edition, 2006.

[25] Tomas Akenine-Moller, et al., Real-Time Rendering, 2nd edition, A.K.
Peters Ltd, 2002.

[26] Thomas W. Crockett, An Introduction to Parallel Rendering, Parallel
Computing, p.819-843, 1997.

[27] D.R. Roble, A Load Balanced Parallel Scanline Z-Buffer Algorithm for
the iPSC Hypercube, In Proceedings of the 1st International Conference
PIXIM 88, p.177-192, 1998.

[28] D.S. Whelan, Animac: A Multiprocessor Architecture for Real time
Computer Animation, Ph.D. dissertation, California Institute of
Technology, Pasadena, CA, 1985.

[29] Carl Mueller, Hierarchical Graphics Databases in Sort-First, In
Proceedings of the IEEE Symposium on Parallel Rendering, p.49-57,
1997.

[30] David Ellsworth, A Multicomputer Polygon Rendering Algorithm for
Interactive Applications, In Proceedings of the 1993 Parallel Rendering
Symposium, p.43-48, 1993.

[31] Carl Mueller, The sort-first rendering architecture for high-performance
graphics, In Proceedings of the 1995 symposium on Interactive 3D
graphics, p.75-ff., Monterey, 1995.

[32] The Cg Tutorial: The Definitive Guide to Programmable Real-Time
Graphics, NVDIA, http://developer.nvidia.com/CgTutorial.

[33] Dirk Bartz, Rendering and Visualization in Parallel Environments, In
SIGGRAPH 2000 Course.

[34] Frederico Abraham et al., A Load-Balancing Strategy for Sort-First
Distributed Rendering, In Proceedings of SIGGRAPH ’04, p.292-299,
2004.

[35] Wulf, Wm.A and McKee, S.A. Hitting the Memory Wall: Implications of
the Obvious. ACM Computer Architecture News. Vol.23, No.1, 1995.

[36] http://www.nvidia.com/page/8800_tech_specs.html
[37] http://www.xbox.com/en-AU/support/xbox360/manuals/xbox360specs.h

tm
[38] http://techreport.com/articles.x/10039/1

