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Multi-Stakeholder Road Pricing Game: Solution
Concepts

Anthony E. Ohazulike, Georg Still, Walter Kern and Eric C. van Berkum

Abstract—A road pricing game is a game where various stakehold-
ers and/or regions with different (and usually conflicting) objectives
compete for toll setting in a given transportation network to satisfy
their individual objectives. We investigate some classical game the-
oretical solution concepts for the road pricing game. We establish
results for the road pricing game so that stakeholders and/or regions
playing such a game will beforehand know what is obtainable. This
will save time and argument, and above all, get rid of the feelings
of unfairness among the competing actors and road users. Among
the classical solution concepts we investigate is Nash equilibrium.
In particular, we show that no pure Nash equilibrium exists among
the actors, and further illustrate that even “mixed Nash equilibrium”
may not be achievable in the road pricing game. The paper also
demonstrates the type of coalitions that are not only reachable, but
also stable and profitable for the actors involved.

Keywords—Road pricing game, Equilibrium problem with equi-
librium constraint (EPEC), Nash equilibrium, Game stability.

I. INTRODUCTION

OVER the past years, vehicle ownership has increased
tremendously. It has been realized that the social cost

of owning and driving a vehicle does not only include the
purchase, fuel, and maintenance fees, but also the cost of
man hour loss to congestion and road maintenance, costs of
health issues resulting from accidents, exposure to poisonous
compounds from exhaust pipes, and high noise level from
vehicles. So, to optimize the traffic flow requires a model
that optimizes more than one objective which may be in
conflict with each other. The model should also consider the
user benefit. Optimization of more than one traffic externality
is not a novel idea. Road pricing that simultaneously treat
time losses, increased fuel consumption, and emission is
discussed in [1], [2]. Traffic congestion, air pollution and
accident externalities are considered in [3]. Single- and bi-
criteria Pareto optimization that deal with users with different
values of time and two objectives (time and money) were
studied in [4], [5], [6]. Road damage externality is incorporated
in the road pricing models of [7]. [8] discusses a road charge
design that includes multiple objectives and constraints. In
particular, objective functions or constraints considered in their
work include social welfare improvement, revenue generation,
and distributional equity impact.

All the models mentioned above are based on the idea of
multi-objective optimization where one leader decides which
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point on the Pareto-front is chosen. They all have one short-
coming; they do not address the issues arising when different
stakeholders/autonomous cities with possibly conflicting ob-
jectives toll the road. There is need for such models since
autonomy of states/cities or regions are increasing becoming
popular in the area of infrastructure or road management. In
literature, there are few works dealing on these shortcomings:
competition among stakeholders1 with privately owned net-
work with intention of maximizing their toll revenue is studied
in [9], [10] - they formulated their problem as equilibrium
problem with equilibrium constraints (EPEC). Both toll and
capacity competition among private asymmetric roads with
congestion in a network with parallel links is studied in [11]. In
their paper, [12] analysed the allocative efficiency of private
toll roads vis a vis free access and public toll road pricing
on a network with two parallel routes joining a common
origin and destination. In one of their study regimes, they
considered a mixed duopoly with a private road competing
with a public toll road. On the other hand, tax competition
on a parallel road network when different governments have
tolling authority on the different links of the network is studied
in [13]. [14] studies the existence and efficiency of oligopoly
equilibrium in a congested network with parallel roads, in
which operators compete for traffic by simultaneous toll and
capacity choices. They establish sufficient conditions for the
existence of a pure-strategy oligopoly equilibrium. In contrast
to parallel network, [15] studies road pricing in a serial
network. They used two links in series where private operators
own one link each. The paper investigates the traffic patterns
and pricing rules under various regimes of road operation in
serial networks. Further discussions on toll competition among
operators of serial links can be found in [16] and [17]. [18]
also discussed toll and capacity competition among owners
of private toll roads on general networks. In their work, they
provided a theoretical proof of the existence of the constant
v/c ratio property over general traffic networks. The effects of
alternative pricing and investment policies on service level of
cross-border transport infrastructure and economic welfare of
two neighboring countries are studied in [19]. They showed
that the investment rule becomes efficient if infrastructure
charge is levied. They established that this result holds for all
regimes with charging, regardless their differences in objective
functions, financial constraints, and organization of decision
units. Using game theory, [20] studied a bilateral monopoly
situation on a private highway, involving strategic interactions
between a private highway operator and a private transit

1we use stakeholders, leaders and actors interchangeably
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operator who uses the same highway for its services.
The studies mentioned in the foregoing literature assume

that network or road segments are privately owned or managed
by private stakeholders. [21] propose practical pricing schemes
that can take into account competition and/or collaboration
between different administrative regions of the network. Us-
ing numerical examples, they demonstrate that local regional
pricing may be beneficial or detrimental to the whole network,
depending on the structure and O–D pattern of the network.
They showed that cooperation among regions in congestion
pricing can improve overall system performance in terms of
total social welfare. Again, they only consider competition
among separate regions in a network. Furthermore, their
results are based on numerical examples. It is on this note
that we study the existence of Nash equilibrium among the
competing stakeholders on the same network infrastructure.
To this, we take into account that private stakeholders (with
likely contradicting objectives) that do not own networks
influence the implementation of road pricing (or nature of
tolls) during policy making. It is also practically feasible that
stakeholders of different interests may jointly own the same
network infrastructure. This is then a generalised model of
[21]. Again, how to incorporate users acceptability of road
pricing has not yet been fully discussed in earlier literature;
users were modelled to have no say on the imposed tolls.
Campaigns on the implementation of road pricing have failed
in many cities like Edinburgh (in 2002), Trondheim (in 2005),
New York (in 2008), Hong Kong (in 1986), cities in the
Netherlands, due to lack of support. This lack of support
is due to the fact that the debate on the implementation
involves stakeholders with conflicting interests, moreover users
are most times never considered on the same level as these
stakeholders. In our papers [22], [23], we address these issues
and formulate a general model that allows each stakeholder
(including users) partake in toll setting. In this paper we further
investigate the classical game theoretic solution concepts. In
particular, we show that a pure Nash equilibrium may not
exists among the actors, and further illustrate that even “mixed
Nash equilibrium” may not be achievable in the road pricing
game. The paper also demonstrates the type of coalitions that
are not only reachable, but also stable and profitable for the
actors involved. It is important to mention that road users
are modeled on the same level as the stakeholders with one
stakeholder representing users’ interest, and as such, making
the users active in the toll setting game.

This paper is organized as follows: Section II provides the
basic traffic models for road pricing. Section III describes the
multi-leader road pricing game. Section IV discusses classical
solution concepts for the road pricing models. In Section V,
we demonstrate our model with two-node network example.
Section VI discusses the solutions of Nash equilibrium game,
and compares that to the cooperative game solutions. Finally,
section VII concludes the paper.

II. BASIC TRAFFIC MODELS FOR ROAD PRICING.
A. Notations

Let G= (N,A) be a network, with N the set of all nodes and
A the set of (directed) arcs or links in G. We use the following

notation:
TABLE I

NOTATIONS
A set of all arcs (links) in G
a index for links in G
R set of all paths in G
r index for paths (routes) in G
W set of all OD pairs in G
w index for OD pairs in G
f path flow vector in G
fr, flow on path r in G
v vector of link flows in G
va flow on link a in G
d travel demand vector in G
dw demand for the wth OD pair in G
Γ OD-path incident matrix in G
Rw set of all paths connecting wth OD
Λ arc-path incident matrix in G
V set of feasible flow pattern in G
D(λ ) vector of demand functions in G
Dw(λw) demand function for the OD pair w
B(d) inverse demand (or benefit) function
Bw(dw) inverse demand function for the wthOD pair
λw least cost to transverse the wthOD pair
t(v) vector of link travel time functions in G
β monetary value of time per minute (VOT)
K set of all actors in the road pricing game
Ck(v) total network cost function for the kth

objective, with Ck(v) = ∑
aε A

Ca
k (va)

C vector of network cost functions in G
Z(v) total network cost in G. i.e. Z(v) = ∑

k ε K
Ck(v)

B. Single Leader Problem Formulation

1) Stakeholders’ Problem : We summarize the “tolling
problem” for elastic demand where each stakeholder k would
like to solve as if he were the unique leader. We assume
that each stakeholder controls a unique objective, and he
wishes to minimize his own costs Ck(v) taking into account
the users’ benefit subject to user flow and environmental
feasibility conditions. We have also assumed a uni-modal
model. A multimodal model is straightforward by adding a
superscript on each flow related (dependent) entity, parameter
and/or variable to indicate the user class. Using the idea from
Beckmann’s formulation [24] the user benefit (UB) is given
by

UB = ∑
wε W

dŵ

0

Bw(ς)dς

where Bw(dw) is the inverse demand or benefit function for the
OD pair wε W . Assuming that UB is split equally2 among all
stakeholders, the problem of stakeholder k can then be stated
as follows:

2In fact UB need not be split equally among the stakeholders, each
stakeholder decides if he considers UB or not in his objective. The models
do not change.
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SPk : min
v,d

Zk =Ck(v)− 1
|K| ∑

wε W

dẃ

0
Bw(ς)dς

s.t

v = Λ f ψ
Γ f = d λ

f ≥ 0 ρ
d ≥ 0 ϑ

⎫⎪⎪⎬
⎪⎪⎭(FeC−ED)

g(v) ≤ 0 ξ
}

SideConstraints(SC)

(1)

Here, |K| denotes the number of stakeholders. The first set of
constraints is the flow feasibility conditions for elastic demand
(FeC_ED); the first constraint states that the flow on a link
is equal to the sum of all path flows that passes through this
link, the second equation states that the sum of flows on all
paths originating from origin node p and ending at destination
node q for an OD pair pq equals the demand for this OD
pair, the third and fourth inequalities simply state that the path
flows (and thus the link flows) and all OD demands are non-
negative. We have also indicated the corresponding multipliers
(ψ, λ , ξ , ρ, ϑ) in the Karush-Kuhn-Tucker (KKT) conditions
(see (1)). The last constraint g(v)≤ 0 (where g(v)ε R|A|×|K|)
contains possible side constraints on the link flow vector v.
These side constraints (which we assume to be convex or linear
in v) may be standardization constraints such as:

The total emission on certain links should not exceed
the stipulated emission standard.
The total noise level on certain links should not exceed
the standard allowed dB(A) level.
The number of cars on certain roads should not exceed
certain numbers so as to preserve the pavements and
reduce accidents, etcetera.

Assumption 1: Throughout (and for easiness) we assume that
the link cost (travel time) functions are separable, that all
functions Ca

k (va) in the objective Ck(v) are strictly convex and
strictly monotonic in va (see (12)), that the inverse demand
functions are separable and strictly monotonic, and that the
side constraints g(v)≤ 0 are linear.

C. Multi-objective Model (MO)
In a standard MO model that considers all stakeholders, one

has to solve [25], [26] a program such as:

min
v,d

Z = (SPt , SPe, SPn, SPs, SPi, ...)

s.t. FeC−ED&SC
(2)

Where the indices, (t,e,n,s, i, ...) refer to different objectives
(say travel time, emission, noise, safety, ...). More precisely,
one has to find a point on the Pareto front of this program.
In what follows we will consider the Pareto point given as
the minimizer of the (special) MO program (system monetary
costs Z = ∑

k ε K
SPk):

MO : min
v,d

Z := ∑
k ε K

Ck(v)− ∑
wε W

dẃ

0
Bw(ς)dς

s.t. FeC−ED&SC
(3)

Note that by choosing different weight factors for the ob-
jectives in the MO, we can model preferences for some
externalities.

1) (Road) User Problem - UP : Without loss of generality,
we assume that the only determinant of user’s route choice
behaviour is the travel costs and benefits of a trip. Under
Assumption 1, the well-known Beckmann’s formulation of
Wardrop’s user equilibrium (UE) [24] describes the users’
behaviour mathematically by the convex program:

UP : min
v,d

∑
aε A

vâ

0

β ta(u)du− ∑
wε W

dŵ

0

Bw(ς)dς

s.t. FeC−ED

D. First and Second-best Pricing

To solve the toll pricing problem in presence of one leader,
first and second best pricing techniques are mostly used. The
first-best pricing idea is based on a comparison between the
KKT-conditions for MO and the KKT-conditions for UP. In
general the first best prices are not unique. We summarize the
result in the following corollary (see [27] for a proof - the
straight forward extension to multiple objectives can be found
in [28]).

Corollary 1.
Suppose (v̄, d̄) is a solution for the MO, then any social toll
vector θ (with toll θa on link a) satisfying the following set of
linear conditions is a toll such that (v̄, d̄) is also the elastic
user equilibrium with respect to costs β t(v)+θ :

∑
aε A

(β ta(v̄a)+θa)δar ≥ B(d̄w) ∀r ε Rw,∀wεW

∑
aε A

(β ta(v̄a)+θa) v̄a = ∑
wε W

B(d̄w)d̄w

or in short
ΛT (β t(v̄)+θ)≥ ΓT B(d̄)
(β t(v̄)+θ)T v̄ = B(d̄)T d̄

(4)

We will refer to (4) as equilibrium constraint for elastic
demand (EqC_ED). For fixed demand, the matrix form of
(4) becomes

ΛT (β t(v̄)+θ)≥ ΓT λ
(β t(v̄)+θ)T v̄ = d̄T λ

(5)

where λ is a free vector (of multipliers, see (1)) with com-
ponents λw representing the minimum route travel cost for
a given OD pair. In case we use (5), we will refer to it as
equilibrium constraint for fixed demand (EqC_FD). One of
the possible tolls is given by the “first pricing” toll (see [27]
for proof on single objective, [28] extended the proof to multi-
objective):

θsc = ∑
k ε K

|K|∇Ck(v̄)−β t(v̄)+ |K|∇g(v̄)ξ (6)

If there are extra conditions on the toll vector θ (e.g., some
links aε Y are non-tollable (θa = 0)) there might be no feasible
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first-best pricing toll. In this case one has to find a second-
best pricing vector, and instead of solving a standard program
MO together with (4), one has to solve the following bi-level
program also called a mathematical program with equilibrium
constraints (MPEC):

min
d,v,θ

Z = ∑k Ck(v)− ∑
wε W

dẃ

0
Bw(ς)dς

s.t

ΛT (β t(v)+θ)≥ ΓT B(d)
(β t(v)+θ)T v = B(d)T d

θa = 0 ∀aε Y
g(v)≤ 0

FeC_ED

(7)

III. MULTI-LEADER MODEL IN ROAD PRICING

In the foregoing models, we discussed a one leader road
pricing problem using the MO program. Such models have
their shortcomings; when one decision maker (dm), (e.g the
government) controls the traffic flow of a transportation sys-
tem through road pricing, then it is likely that some other
stakeholders affected by activities of transportation may not
be happy with the decisions made by this dm. This is be-
cause when the dm models the MO road pricing problem,
all traffic externalities are simultaneously considered with or
without preference for any externality (see MO (3)). When
preference is given, say, to congestion, then the effect of the
preferred externality subdues the effect of other externalities,
and this may translate to huge costs for some stakeholders. For
example, lower travel time (say high speeds) may translate to
more accidents (costs for insurance companies). Even without
preference to any externality, it is intuitive that stakeholders
still will prefer to partake in toll setting to safeguard their
interests. The main problem of a classical approach from
multi-objective optimization is the following: supposing that
each stakeholder can influence the toll setting, why should a
(independent) player accept a situation which he can improve
by changing the tolls?

In such a situation the classical concept of Nash equilibrium
in game theory gives an appropriate alternative model. Such
models are used in economics in situations where independent
players may influence the market with their strategies in order
to optimize their specific objective.

The question we like to address from game theoreti-
cal/economic point of view is; what happens when each
stakeholder optimizes his objective by tolling the network,
given that other stakeholders are doing the same? Formally,
we introduce the mathematical and economic theory behind.

A. Mathematical and Economic Theory

The Mathematical Program with Equilibrium Conditions
(MPEC) (7) described in the previous section is a Stack-
elberg game where a leader (dm) moves first followed by
sequential move of other players (road users). If we assume
that various stakeholders are allowed to set toll (or at least

influence the tolls) on the network, then, users are influenced
not only by just one leader as in Stackelberg game, but
by more than one decision maker. In a multi-leader-multi-
follower game/problem, the leaders take decisions (search
for toll vectors θ k, k ε K, that optimize their respective ob-
jectives) at the upper level which influence the followers
(users) at the lower level. The followers then react accordingly
(user/Wardrop equilibrium), which in turn may cause the
leaders to update their individual decisions leading to lower
level players reactions again. These updates continue until a
stable situation is reached. A stable state is reached if no
stakeholder can improve his objective by unilaterally changing
his toll. Note however, that given the stable state decision
tolls of leaders, the lower level stable situation is given by
the (unique) Wardrop’s equilibrium (see (10)). So the bi-
level game can be seen as a single (upper) level game with
additional equilibrium conditions (for the lower level).

In the above non-cooperative scenario, each actor
continuously solves a program with equilibrium conditions
which is influenced by other actors’ program with equilibrium
conditions, and this translates to an equilibrium problem
subject to equilibrium condition.[29]. Since a stable state
upper level tolls will lead to a (unique) Wardrop’s equilibrium
in the lower level (due to Assumption 1), our aim therefore
is to find a Nash toll vector for the leaders (see Fig. 1).
Remark 1: The theory described above does not necessarily
mean that stakeholders have different toll collecting
machines/booths on the links. Our model describes the Nash
toll vector that can be agreed upon during policy making or
debate.

Fig. 1. Multi-leader-multi-follower Nash Game

B. Mathematical Models for the Bi-level Nash Equilibrium
Game (EPEC)

We now mathematically introduce the toll pricing game and
the concept of Nash equilibrium (NE) [30], [31] as outlined
in subsection III A.
Assume that Assumption 1 holds. This in particular ensures
that (for given costs) the Wardrop equilibrium (WE) (v,d) is
unique. Let θ k be the link toll vector of player k ∈ K. We use
θ−k to denote all toll vectors in K\k. In the Nash game, for
given θ̄−k, the kth stakeholder tries to find a solution toll θ̄ k
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for the following problem:

Ψk(θ̄ k, θ̄−k) = min
θ k

Ψk(θ k, θ̄−k)

where for given θ k(and θ̄−k)

Ψk(θ k, θ̄−k) := min
vk,dk

w

Zk =Ck(vk)− 1
|K| ∑

wε W

dk
ẃ

0
Bw(ς)dς

s.t

ΛT

(
β t(vk)+θ k + ∑

j ε K\k
θ̄ j

)
≥ ΓT B(dk)(

β t(vk)+θ k + ∑
j ε K\k

θ̄ j

)T

vk = B(dk)T (dk)

and
vk = Λ f k

Γ f k = dk

f k ≥ 0
(θ k ≥ 0)

(8)

The concept of a Nash equilibrium is to look for a situation
where for fixed strategies θ̄−k of the opponent players, the
best that player k can do is to choose his own toll to be θ̄ k.
A NE is thus a whole set of toll vectors θ̄ = (θ̄ k,k ∈ K) such
that for each player k the following holds:

Ψk(θ̄ k, θ̄−k)≤ Ψk(θ k, θ̄−k) (9)

for all feasible tolls θ kand ∀k ∈ K

See that in the optimization problem above, each leader k can
only change his own link toll vector θ k. The strategies θ̄ j, j �= k
of the other leaders are fixed in k′s problem. The first system
of constraints are the equilibrium constraints and the second
system are the feasibility conditions.
Remark 2: Note that users represented in the upper level as
an autonomous stakeholder seek users’ interests, for example,
a lower link and/or network tolls.

IV. SOLUTION CONCEPTS

A. Existence of Nash Equilibrium

In this subsection we analyse the existence of Nash equi-
librium in our tolling game. We show below that this simple
standard Nash equilibrium concept (of (8) & (9)) is not always
applicable to the tolling problem. The main reason lies in the
special structure of the problems Ψk(θ̄ k, θ̄−k) in (8) leading
to the following fact:

Fact: Due to Assumption 1, for given vectors θ̄ k,k ∈ K
the corresponding solution (v̄, d̄) of the system (8) (i.e., the
elastic demand user equilibrium with respect to the costs[
β t(v)+∑ j ε K θ̄ j

]
) is uniquely given. Therefore it holds:

Assertion: If θ̄ is a Nash equilibrium, then all corresponding
solution vectors

(v̄k, d̄k) = (v̄, d̄), k ∈ K of Ψk (10)

are identical.
Proof: Given that θ̄ k solves system (8) for all actors

k ∈ K, then it means that at Nash equilibrium among the
actors, the link toll vector θ̄ is given by θ̄ = ∑

kεK
θ̄ k, where

θ̄a = ∑
kεK

θ̄ k
a , ∀a ∈ A. Due to Assumption 1, this toll vector θ̄

yields a unique flow pattern (v̄, d̄). Of course the users do
not differentiate the tolls (per actor k), what they experience
is the total toll vector θ̄ , and as such, the vector θ̄ (together
with the travel time costs) determines the unique user/Wardrop
equilibrium flow (v̄, d̄) for the system.

1) Unrestricted Toll Values: From the relation (10) we can
directly deduce the following results.
Corollary 2.

(a) Suppose the leaders can toll all links with no restrictions
(no constraint θ k ≥ 0 in (8)), then, for the tolling game
with elastic demand, there does not exists a Nash equi-
librium in general. Moreover, in this game the players
do not have any incentive to cooperate.

(b) When the demand is fixed, even under the extra con-
ditions θ k ≥ 0 in (8), there does not exist a Nash
equilibrium in general.

Proof: We will even show that in (the general) case where
not all players have the same solution (vk,dk) in their own
program SPk (see (1)) there will never be a Nash equilibrium
of the form of (9).
(a) Assume θ̄ is a Nash equilibrium with (v̄, d̄, θ̄ k) the solution
of player k. Recall that (by (10)) all user flows (v̄, d̄) are the
same at Nash. By assumption, at least one of the players, say
player �, has a different ideal (or optimal) link flow (ṽ, d̃) in
SPk (since players are assumed to have conflicting objectives)
and by our discussion in Section 2, player � can achieve this
flow in Ψl(θ̃ l , θ̄−l) by choosing e.g., the first best pricing toll

θ̃ � = |K|∇C�(ṽ)−β t(ṽ)− ∑
kεK\�

θ̄ k
(11)

where |K| is the number of players. Note that this toll θ̃ �

may be negative. Since at any stage of the game, any player
k can always achieve his ideal flow in SPk,it is clear that no
equilibrium can be reached and that players do not have any
reason to cooperate if they can always achieve SPk on their
own.
(b) The same clearly holds in the case of fixed demand.
However, in this case we can always achieve a first best pricing
toll in (5) satisfying θ̃ � ≥ 0: To see this, note that for fixed
demand, any leader � ∈ K has the following valid toll vectors
as part of a whole polyhedron (see proof below) that achieve
the ideal flow vector for leader �

θ̃ � =
[
α
(
∇C�(ṽ)

)−β t(ṽ)
]− ∑

kεK\�
θ̄ k; where α > 0 (12)

By making α large enough (in view of strict monotonicity)
we can assure θ̃ � ≥ 0.
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Proof of (12): Suppose ṽ is an ideal flow vector that solves
(1) (omitting the UB - fixed demand) for player �, now let θ �

be the corresponding toll vector satisfying (5), this means that
ṽ is solution of the LP

min
v

(
β t(ṽ)+θ �

)T v s.t. v ∈V

where β t(v) is a vector of link travel time functions. Obviously
ṽ also solves the following LP

min
v

α
(
β t(ṽ)+θ �

)T v s.t. v ∈V where α > 0

but,

α
(

β t(ṽ)+θ �
)T

v =
((

β t(ṽ)+θ �
)
+(α −1)

(
β t(ṽ)+θ �

))T
v

=
(

β t(ṽ)+
[
θ �+(α −1)

(
β t(ṽ)+θ �

)])T
v

this means that with θ �, any vector

θ̃ � = θ �+(α −1)
(

β t(ṽ)+θ �
)
= α

(
β t(ṽ)+θ �

)
−β t(ṽ)

is a valid toll vector as well. Recall that for fixed demand
and for one objective, the marginal social cost (MSC) toll or
the so called first best toll given by (see (6) - elastic demand
equivalent):

θ �
sc = θ � = ∇C�(ṽ)−β t(ṽ)

is one toll vector that achieves the ideal flow vector ṽ,
therefore

θ̃ � = α
(

β t(ṽ)+θ �
)
−β t(ṽ) = α (β t(ṽ)+(∇C�(ṽ)−β t(ṽ)))

−β t(ṽ)

= α (∇C�(ṽ))−β t(ṽ)

In the presence of other actors’ toll ∑
kεK\�

θ̄ k, θ̃ � now becomes

θ̃ � = α (∇C�(ṽ))−β t(ṽ)− ∑
kεK\�

θ̄ k; where α > 0 �

We emphasize that extra restrictions on the tolls θ k may play
in favor of the existence of a Nash equilibrium.

Generally, what can we say on the existence of NE? A well-
known theorem in game theory [32] states that the game has
a Nash equilibrium if the following conditions are met:

• The strategy sets for each player are compact and convex,
and each player’s utility function Ψk(θ k, θ̄−k) is contin-
uous and quasi-convex in his strategy θ k. In general, we
do not expect such properties on Ψk(θ k, θ̄−k), in fact, we
show in [23] that the utility functions may not be convex
in the strategy sets.

V. TWO-NODE NETWORK EXAMPLE

A. Pure Nash Equilibrium

We use a simple example to illustrate how changes in cost
functions (on the same network) effect the existence of Nash
equilibrium.

In this example we consider a network of two links; a and
b, and two actors; actor I and actor II. Actors are respectively
interested in minimizing two different types of "traffic" costs

CI and CII for the network. We use χ I and χ II to describe
the link cost (negative utility) functions for the "traffic" costs
CI and CII respectively.

χ I =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

χ I
a =

{
2va i f θ I

a = 0
2va +OC otherwise

f or link a

χ I
b =

{
2.5vb i f θ I

b = 0
2.5vb +OC otherwise

f or link b

χ II =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

χ II
a =

{
2va +2 i f θ II

a = 0
2va +2+OC otherwise

f or link a

χ II
b =

{
3vb i f θ II

b = 0
3vb +OC otherwise

f or link b

CI = eT χ I and CII = vT χ II

X Y

a

b

Fig. 2 Two-Node Network
where va+vb = 2 , θ i

q is the toll of player i (I or II) on link q

(a or b), e =
(

1
1

)
, v =

(
va
vb

)
, and OC is the operational

cost for a toll booth. We set OC = 0.55 per toll booth. We
take χ II

(
when θ II

a = θ II
b = 0

)
to represent the travel time

function of the links, in other words, actor II cares for travel
time cost of the system

(
CII = vT χ II

)
, and of course the

operational cost if he wants to set a toll (booth) on a link.
Actors can only choose strategies from the following set of
discrete toll: θ i

q ∈ {0,1,2,3,4,5,6}. For each move by an
actor, the resulting flow is in User Equilibrium (UE).

Result of the tolling game

v =
(

va
vb

)
, SC = (Total)SystemCost =CI +CII

The first table represents the user equilibrium (UE) on toll free
network. The UE flow w.r.t χ II on link a and b are respectively
0.8 and 1.2. In the result table, the tolls as well as OC on the
links are represented in a vector form (x, y), the first entry is
for player I, and the second entry for player II. SC is the social
or system cost which represents the total cost experienced in
the system. The arrow that points downwards indicates moves
(process of tolling the network) by actors. An actor can add
or remove tolls depending on which strategy optimizes his
objective. In the second table, that is, the first move by actor
I, he (actor I) sets his maximum possible link toll (i.e. 6) on
link b so as to shift traffic to link a (see CI).
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TABLE II
RESULT OF THE TWO-NODE NETWORK EXAMPLE

Link Tolls v OC CI CII Path cost SC
a (0,0) 0.8 (0,0) 1.6 2.9 3.6 4.5
b (0,0) 1.2 (0,0) 3 4.3 3.6 7.3

4.6 7.2 11.8

I

Link Tolls v OC CI CII 
Path cost SC

a (0,0) 2 (0,0) 4 12 6 16
b (6,0) 0 (0.55,0) 0.55 0 6 0.55

4.55 12 16.55

II

Link Tolls v OC CI CII Path cost SC
a (0,5) 1 (0,0.55) 2 4 9 6
b (6,0) 1 (0.55,0) 3.05 3.55 9 6.6

5.05 7.55 12.6

I

Link Tolls v OC CI CII Path cost SC
a (0,5) 0 (0,0.55) 0 0.55 7 0.55
b (0,0) 2 (0,0) 5 12 6 17

5 12.55 17.55

II

Nash equilibrium does not exist

Observe the cost of 0.55 under OC for player I. Under the
column Ci, comes the total link costs for players I and II, the
boldfaced numbers are the total network cost for the players,
the total system cost (SC) is also in bold; for instance, in the
first move of player II (third table), CII

a = vaχ II
a = va(2va+2)=

1(2 ∗ 1+ 2) = 4, and CII
b = vbχ II

b = vb(3vb +OC) = 1(3 ∗ 1+
0.55) = 3.55, and CII = CII

a +CII
b = 4+ 3.55 = 7.55. Notice

that operational cost OC = 0 unless a player has set a toll
(booth) on a link (in that case, OC = 0.55)

It turns out that this game has no Nash equilibrium (NE)
and the actors will always have incentive to perpetually change
their strategies irrespective of what other player does.

Remarks about this example game
1) The system optimal result for the example above is given

by:

va = 0.95,vb = 1.05,CI = 4.47,CII = 7.01,SC = 11.48.

2) In general, the Nash equilibrium solution boundary of
the game is given as follows:

for OC : 0.5 < OC < 0.6 pureNE doesnot exist,

otherwise pureNE exists

showing that the existence of NE can depend on the
cost of operating the toll booths.

3) If we ignore the OC in the model, then NE always exist
among the two actors. In this case, all actors use up
to their maximum toll with θa = (6,0), and θb = (0,6).
Without boundary restriction on the link tolls, the two
leaders will infinitely keep on increasing the link tolls
(actor I on link a and II on link b ). This is true since the
demand is fixed. In fixed demand models, it is assumed
that users will always travel no matter the cost of travel.
On the other hand, with elastic demand, infinite tolls by
the leaders will, of course, result in no travel scenario
which is of no benefit to the actors.

4) By mere interchanging the link cost functions of actor
I, that is,

χ I =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

χ I
a =

{
2.5va i f θ I

a = 0
2.5va +OC otherwise

f or link a

χ I
b =

{
2vb i f θ I

b = 0
2vb +OC otherwise

f or link b

pure Nash equilibrium exists for any value of OC.
5) The cost function of the type described in this example

(which includes the cost of operating the toll booths)
has more practical intuition than that described in 3.
This means that in practice, Nash equilibrium may not
exist for such road pricing game.

B. Mixed Nash Equilibrium

The matrix representation of the two-player cost mini-
mization game above with best response strategies (0,0) or
(0,6) on links (a,b) for player I, and (0,0) or (5,0) on links
(a,b) for player II (see Table II or the matrix in the section
"interpretation" below) is given by:

q 1−q

p

1− p

⎛
⎝ 4.55,12.00 5.05,7.55

4.60,7.20 5.00,12.55

⎞
⎠

Observe of course that the game has no pure NE. In the mixed
strategy game, player I has the strategy (p,1− p) of playing
(Top, Bottom) and player II, the strategy (q,1−q) of playing
(Le f t, Right), where p and q are probabilities. The best reply
functions for both players are given below:

βI(q) =

⎧⎪⎨
⎪⎩
{(1,0)} i f 1

2 < q ≤ 1
{(p,1− p)|0 ≤ p ≤ 1} i f q = 1

2
{(0,1)} i f 0 ≤ q < 1

2

βII(p) =

⎧⎪⎨
⎪⎩
{(1,0)} i f 0 ≤ p < 5.35

9.8
{(q,1−q)|0 ≤ p ≤ 1} i f p = 5.35

9.8
{(0,1)} i f 5.35

9.8 < p ≤ 1

Graphically:

I

II

Fig. 3 Graphical representation of the mixed NE
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The Mixed Nash equilibrium point (p,q) corresponds to
( 5.35

9.8 , 1
2 ). So, the strategies of player I and player II that will

lead to mixed Nash equilibrium are ( 5.35
9.8 , 4.45

9.8 ) and ( 1
2 ,

1
2 )

respectively. The expected cost is CI = 4.80, CII = 9.82,
SC = 14.62.

Interpretation

A (mixed) Nash equilibrium exists among the players if we
can find a (mixed) strategy tolls among the actors such that
the equilibrium cost point CI = 4.80, CII = 9.82 is reached. In
other words, actors now choose link tolls from the line [0,6]
instead of discrete set {0,1,2,3,4,5,6}.

The following tolls matrix with the associated probabilities
for players I and II (the right matrix is the cost matrix)
translates to the mixed Nash equilibrium cost CI = 4.80,
CII = 9.82, SC = 14.62 which we deduced above:

q̂ 1− q̂ 1
2

1
2

p̂

1− p̂

⎛
⎝ (0,6),(0,0) (0,6),(5,0)

(0,0),(0,0) (0,0),(5,0)

⎞
⎠ ;

5.35
9.8

4.45
9.8

⎛
⎝ 4.55,12.00 5.05,7.55

4.60,7.20 5.00,12.55

⎞
⎠

Each pair of entry represents toll actions of the players I and
II respectively. The first entry of each action is a players toll
action on link a and the second entry, his action on link b.
For example, the Top-Right entry of the toll matrix has the
entry (0,6),(5,0) and this means that player I has no toll on
link a and tolled 6 on link b, while player II tolled 5 on link
a and nothing on link b. It turns out that there is no choice
probability ( p̂, q̂) for the actors in the toll matrix game such
that the game coincides with the mixed NE of the cost matrix
game. This is because, there is no flow vector (va,vb) such that
CI = 4.80(−0.55), and CII = 9.82(−0.55) hold at the same
time. Even with finite number of players, and finite number
of turns, we cannot find a mixed toll vector such that Nash
equilibrium exists among the actors.

Recall that Nash [30] proved that his famous and most
used theorem that every game with finite number of players
in which each player can choose from finitely many pure
strategies has at least one (Nash) equilibrium. "Unfortunately",
our game has only two players and two possible actions per
player, yet we cannot find a pair of strategy ( p̂, q̂) such that
the resulting cost is in equilibrium. This lies on the fact that
the expected costs CI = 4.80, CII = 9.82 is not linear in the
strategy (p̂, q̂), and thus, the cost functions for the players
under mixed strategy ( p̂, q̂) may not be continuous or quasi-
convex. In fact, the strategy (p̂, q̂) has no direct implication
on the cost (utility) matrix since

1) the strategies for the players which are the tolls are
generally not convex on the cost functions (see [23])

2) the tolls in the toll matrix are not uniquely determined,
and this means that the strategy (p̂, q̂) is not uniquely
given, and

3) the non-unique tolls lead to a unique Wardrop’s equilib-
rium which determines the cost matrix, and

4) we acknowledge that the traffic flow is not linear.

VI. NASH EQUILIBRIUM AND COOPERATIVE GAME

A. Stationary Points of Cooperative and Non-cooperative
Game

Nash Equilibrium/Non-cooperative Game Problem

Let tolls be bounded and suppose that Nash equilibrium
exists, then it will be interesting to know how far the Nash
flow vector deviates from the "optimal flow" vector resulting
from grand coalition game or MO solution of system (14)
. In other words, we are interested in knowing how far the
competition among the actors can worsen the optimal system
cost. Let us consider the fixed demand case.

From (8) and (10) we know that each stakeholder k ∈ K
solves the following problem:

min
v,θ k

Zk =Ck(v)

s.t

ΛT

(
β t(v)+θ k + ∑

j ε K\k
θ̃ j

)
≥ ΓT λ

[
ϑ k
]

(
β t(v)+θ k + ∑

j ε K\k
θ̃ j

)T

v = d̃T λ
[
ηk
]

and
v = Λ f [ψ]

Γ f = d̃ [ς ]
f ≥ 0 [ρ]

(θ k ≥ 0)
[
σ k
]

(13)

Recall from (10) that the link flows (and thus the minimum
path cost λ ) are no longer actor dependent. Due to non-
uniqueness of path flows, it is possible to have different path
flows for different actor, but then, without loss of generality,
we take one path flow pattern f for all actors and omit the
superscript k on f . The Greek letters

(
ϑ k,ηk,ψ,ς ,ρ,σ k

)
are

KKT multipliers associated with the constraints. The sign ˜
indicates fixed parameters in the above optimization problem.
System (13) involving all players is called an equilibrium
problem subject to equilibrium condition, see also [33] for
analysis of such game.
Assumption 2.

1) We make the reasonable/practical assumption that with
positive flows, the total network cost is never zero, i.e.(
d̃
)T λ > 0

2) We assume that the linear independence constraint qual-
ification (LICQ) holds for (13) & (14).

Suppose for every leader k, Lk is the Lagrangian and
that

(
v̄, θ̄ k

)
solves (13) at (Nash) equilibrium, then with

assumption 2, there exist multipliers
(
ϑ̄ k, η̄k, ψ̄, ς̄ , ρ̄, σ̄ k

)
such that the following KKT conditions hold ∀k ε K:
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KKT 13

Lk = Ck(v)+

[
ΓT λ −ΛT

(
β t(v)+θ k + ∑

j ε K\k
θ̃ j

)]T

ϑ̄ k

+

⎡
⎣(β t(v)+θ k + ∑

j ε K\k
θ̃ j

)T

v− (d̃)T
(λ )

⎤
⎦ η̄k

+(Λ f − v)T ψ̄ +
(
d̃ −Γ f

)T ς̄ − f T ρ̄ −
(

θ k
)T

σ̄ k

∇vLk = ∇Ck(v̄)−β
(

ΛT ∇t(v̄)
)T

ϑ̄ k

+

(
β t(v̄)+θ k + ∑

j ε K\k
θ̃ j +β v̄T ∇t(v̄)

)
η̄k − ψ̄ = 0

∇ f Lk = ΛT ψ̄ −ΓT ς̄ − ρ̄ = 0

∇θ k Lk = −Λϑ̄ k + v̄η̄k − σ̄ k = 0

f T ρ = 0(
θ̄ k
)T

σ̄ k = 0

ϑ̄ k, ρ̄, σ̄ k ≥ 0,

[
ΓT λ −ΛT

(
β t(v̄)+ θ̄ k + ∑

j ε K\k
θ̃ j

)]T

ϑ̄ k = 0

Grand Coalition or Cooperative Game Problem

The grand coalition (GC) game with a toll vector θ = ∑
kεK

θ k

(assuming that GC assigns θ k to each actor k ε K) is formulated
as follows:

min
v,θ k

Z = ∑
kεK

Ck(v)

s.t

ΛT
(

β t(v)+ ∑
kεK

θ k
)

≥ ΓT λ [ϑ ](
β t(v)+ ∑

kεK
θ k
)T

v =
(
d̃
)T λ [η ]

and
v = Λ f [ψ]

Γ f = d̃ [ς ]
f ≥ 0 [ρ]

(θ k ≥ 0) [σ k] ∀k ε K

(14)

Remark 3
• The grand coalition game in system (14) minimizes the

entire system cost, and thus, resulting in "Pareto" optimal
system flow v̄.

• Since systems (13) & (14) have a non-linear constraint
respectively, the efficient way to solve the systems so that
we reach the global optimum is to:

1) Solve the convex system for an optimal flow v̄ by
omitting the first two left constraints and the last
(the toll) constraint in systems (13) & (14).

2) then, fixing the optimal flow v̄, we search for a feasi-
ble toll vector θ̄ that satisfies the omitted constraints
in (1). Observe that now all systems are linear. This

is the same as solving the linear system (5) together
with non-negativity of the tolls.

• The solution steps above apply to both first and second
best pricing schemes.

Now, suppose L is the Lagrangian and that v̌ and θ̌ k ∀k ε K
solves the grand coalition game (14), then with assumption
2, there exist multipliers

(
ϑ̌ , η̌ , ψ̌, ς̌ , ρ̌, σ̌ k

)
such that the

following KKT conditions hold:

KKT 14

L = ∑
kεK

Ck(v)+

[
ΓT λ −ΛT

(
β t(v)+ ∑

kεK
θ k

)]T

ϑ̌

+

⎡
⎣(β t(v)+ ∑

kεK
θ k

)T

v− (d̃)T
(λ )

⎤
⎦ η̌

+(Λ f − v)T ψ̌ +
(
d̃ −Γ f

)T ς̌ − f T ρ̌ −
(

θ k
)T

σ̌ k

∇vL = ∑
kεK

∇Ck(v̌)−β
(
ΛT ∇t(v̌)

)T ϑ̌

+

(
β t(v̌)+ ∑

kεK
θ k +β v̌T ∇t(v̌)

)
η̌ − ψ̌ = 0

∇ f L = ΛT ψ̌ −ΓT ς̌ − ρ̌ = 0

∇θ k L = −Λϑ̌ + v̌η̌ − σ̌ k = 0

f T ρ̌ = 0,
(

θ̌ k
)

σ̌ k = 0 ∀k ε K

ϑ̌ , ρ̌, σ̌ k ≥ 0 ∀k ε K,

[
ΓT λ −ΛT

(
β t(v̌)+ ∑

kεK
θ̌ k

)]
ϑ̌ = 0

Let tolls be bounded and suppose that Nash equilibrium exists,
then, (theoretically) the (stationary point) solution of the Nash
game converges to a stationary point of the cooperative game.
We thus state the following corollary:
Corollary 3. With assumption 2, there exist multipliers(
ϑ̄ k, η̄k, ψ̄, ς̄ , ρ̄, σ̄ k

)
such that KKT 13 holds for all k at (Nash)

equilibrium, furthermore, the corresponding (stationary) vec-
tor

(
v̄, θ̄

)
that solves the Nash game (9) or (13) is also a

stationary (possibly a local or global solution) for the grand
coalition (GC) game (14), where θ̄ ε R|K|.

Proof: Since
(
ϑ̄ k, η̄k, ψ̄, ς̄ , ρ̄, σ̄ k

)
exist, then, there ex-

ist
(
ϑ̌ , η̌ , ψ̌, ς̌ , ρ̌, σ̌ k

)
= ∑

kεK

(
ϑ̄ k, η̄k, ψ̄, ς̄ , ρ̄, σ̄ k

)
such that the

corresponding vector
(
v̄, θ̄

)
of system (13) solves KKT 14. For
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instance, see from KKT 14 that

∇vL = ∑
kεK

∇Ck(v̌)−β
(

ΛT ∇t(v̌)
)T

ϑ̌

+

(
β t(v̌)+ ∑

kεK
θ k +β v̌T ∇t(v̌)

)
η̌ − ψ̌

= ∑
kεK

∇Ck(v̌)−β
(

ΛT ∇t(v̌)
)T

∑
kεK

ϑ̄ k

+

(
β t(v̌)+ ∑

kεK
θ k +β v̌T ∇t(v̌)

)
∑
kεK

η̄k − ∑
kεK

ψ̄

= ∑
kεK

(
∇Ck(v̄)−β

(
ΛT ∇t(v̄)

)T
ϑ̄ k

+

(
β t(v̄)+ ∑

kεK
θ̄ k +β v̄T ∇t(v̄)

)
η̄k − ψ̄

)
= 0

(seeKKT 13)

Remark 4
• Observe that other KKT conditions of KKT 13 and KKT

14 are the same.
• Corollary 3 is comparable to Proposition 5.5 in [29]. We

do not assume a completely separable system though.
• The corollary can be extended to the Nash game between

any form of coalitions that the stakeholders deem prof-
itable.

B. Stability of solutions

We now discuss in detail cooperative game solutions when
the demand is fixed. Consider a cooperative game with a
characteristic function u : 2K →R, S→ u(S), S⊆K, relative to
a partition � = {S1,S2,S3, · · · ,Sr} of K such that

⋂
i Si = 0 and⋃

i Si = K. We treat each Si as a single player. Each coalition
Si ∈ competes with all other coalitions S j ∈ �, i �= j. In terms
of objectives, the game is a Nash equilibrium game between
coalitions Si ∈ with (collective) objective of each coalition Si
given by (see also system (13)):

min
v,θ

∑
kεSi

Ck(v)

s.t

f easibilityconditions

EqC−FD

Now, suppose this game has a unique Nash equilibrium
(θ(�), v(�)). We define

u(Si,�) =−∑
kεSi

Ck(v(�)) (15)

as the corresponding outcome and utility uk(v(p)) for each
k ∈ K. In addition, we define the utility u(S) of a subset S ⊆ K
as the "worst case utility" for S as

u(S) = min
�,S∈�

u(S,�)

In particular, u(K) = u(K,{K})

Definition 1. Core: we define a core as follows

core :
{

x ∈ R
|K|∣∣∣x(K) = u(K), x(S)≥ u(S), ∀S ⊆ K

}
where x(S) = ∑

kεS
xk.

Definition 2. A partition � = {S1,S2,S3, · · · ,Sr} is stable if
there exist some allocations x ∈ R

|K| with x(Si) = u(Si,�),
such that

x(S)≥ u(S), ∀S ⊆ K

Remark 5: By definition, if core �= {0} then the grand
coalition � = {K} is stable (x ∈ core yields the allocation in
definition 2).

Lemma 1. If a partition � = {S1,S2,S3, · · · ,Sr} of K is stable,
then the core �= {0}

Proof: Assume �= {S1,S2,S3, · · · ,Sr} is stable, then there
exist some allocations x ∈R

|K| with x(Si) = u(Si,�), such that

x(S)≥ u(S), ∀S ⊆ K

But then, we have

x(K) = ∑
kεK

xk = ∑
i

x(Si) = ∑
i

u(Si,�)≤ u(K)≤ x(K)

so equality holds and x ∈ core. The first inequality fol-
lows from (15) (and the fact that u(K) is the maximizer of
−∑kεK Ck(v(�))), and the second inequality follows from the
stability condition on �.

In particular,
∑

i
u(Si,�) = u(K)

Corollary 4. A necessary condition for a partition � =
{S1,S2,S3, · · · ,Sr} of K to be stable is that

∑
i

x(Si) = u(K)

Proof: Proof follows from the proof of Lemma 1.

Corollary 5. The resulting Nash equilibrium flow vector v̄ for
any partition set � is a stationary (possibly local or global)
point v̌ of the grand coalition program (14).

Proof: The proof follows from corollary 3.

Remark 6: In general, we do not expect the game to have a
core.
We illustrate this statement with a simple example. Such
example can be constructed from traffic models. Suppose
we have three players (I, II, III) and five possible partitions
{�1, �2, �3, �4, �5} of K, where K = {I, II, III}. The table
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below gives the outcome for each of the possible coalitions in
each partition set:

uk(v(p)) ∑
kεK

uk

Partitionsets\Coalition I II III
�1 ({I},{II}, {III}) 6 8 7 21
�2 ({I, III}, {II}) 10 7 10 27
�3 ({I, II}, {III}) 12 11 6 29
�4 ({II, III}, {I}) 5 12 9 26

GrandCoalition �5 ({I, II, III}) 14 5 12 31
Worst Case u({k}) = min

�
uk(v(p)) 5 5 6 16

Gainw.r.t.�5 9 0 6 15
Egalit.GainSharing(EGS) = 15

3 5 5 5 15
Final outcome = u({k})+EGS 10 10 11 31

We have assumed Egalitarian sharing rule of the total gain
w.r.t. grand coalition �5 among the players. Observe that
players I and II will be better off playing coalition {I,II} in
partition set �3 instead of GC, but then, player III will switch
to coalition {II,III} in partition set �4 promising player II a
positive utility of 13units. Such move by players III and II
will trigger player I to form the coalition {I,III} in partition
�2 by assuring player III a positive utility of 10units and so
on. This change of strategies may continue indefinitely in this
example. Observe that though the grand coalition presents the
maximum total utility for the game, it is not stable, and by
remark 5, the core is empty.

Remark 7: The results in corollary 3, 4, 5 and Lemma 1 are
still valid for elastic demand model.

VII. CONCLUSION

We study the classical game theoretical solution concepts
ranging from Nash solutions and cooperative solutions to core
of the road pricing game. We showed that in general, the road
pricing game has no Nash equilibrium (both in pure and mixed
strategies). With bound restrictions on tolls, the game may
possess Nash equilibrium. We then show that a stationary Nash
equilibrium point coincides with that of the grand coalition
game. We further proved that if side payments are allowed
within coalitions in the cooperative game, then a partition is
stable if the core is non empty, and the total utility of any stable
partition is the same as that of the grand coalition game.

Since the models used in this paper centered on classical
optimization formulations, the number of variables can grow
uncontrollably big when the network is large. This calls for
an efficient optimization heuristic which can transform the
analytical models into heuristic algorithms capable of handling
large networks. Extension of the road pricing game to include
dynamic traffic model will be the next step of research.
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