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Abstract—In this paper, a theoretical formula is presented to 

predict the instantaneous folding force of the first fold creation in a 
square column under axial loading. Calculations are based on analysis 
of “Basic Folding Mechanism” introduced by Wierzbicki and 
Abramowicz. For this purpose, the sum of dissipated energy rate under 
bending around horizontal and inclined hinge lines and dissipated 
energy rate under extensional deformations are equated to the work rate 
of the external force on the structure. Final formula obtained in this 
research, reasonably predicts the instantaneous folding force of the first 
fold creation versus folding distance and folding angle and also predicts 
the instantaneous folding force instead of the average value. Finally, 
according to the calculated theoretical relation, instantaneous folding 
force of the first fold creation in a square column was sketched 
versus folding distance and was compared to the experimental results 
which showed a good correlation. 
 

Keywords—Instantaneous force, Folding force, Honeycomb, 
Square column.  

I. INTRODUCTION 
ONEYCOMB is categorized as a thin-walled structure, 
and due to its special advantages such as high energy 

absorption is widely used in various industries. Also sandwich 
panel with honeycomb core is also used in transportation 
industry and aerospace systems, because of its high strength 
and stiffness to the weight ratio. Among honeycomb 
properties, its folding behavior under axial loading is the most 
important, since the highest portion of the absorbed energy 
occurs during this mechanism. 

In recent decades, many researchers have investigated the 
honeycomb behavior under the various loading. Average 
folding force of a “Basic Folding Mechanism”  is calculated 
by Wierzbicki and Abramowicz [1]. Wierzbicki and Heyduk 
investigated the extensional folding modes in an angular 
element [2]. Abramowicz calculated the effective folding 
distance in thin-walled columns [3]. Then dynamics folding of 
a square column was experimentally analyzed by Abramowicz 
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and Jones [4]. Wierzbicki and Abramowicz carried out an 
experimental and theoretical investigation on the crushing 
process in polyurthane foam-filled square columns [5]. Then 
they theoretically calculated the mean folding force in square 
and hexagonal columns by introducing Corner Element with 
selectable angle [6]. Liaghat et al. compared the theoretical 
results with those of experimental [7] and checked analytical 
relations and then theoretically and numerically investigated 
honeycomb behavior under impact [8]–[13]. Effect of metal 
fillers such as Aluminum foam in a square column and the 
behavior of the column under bending were studied by 
Santosa and Wierzbicki through experimental and numerical 
methods [14, 15]. Chen et al. analytically calculated the mean 
folding force in a multi-cell square column [16]. Zhang et al. 
calculated the mean crushing force in multi-cell columns, 
based on Superfolding Element [17]. 

Through reviewing of the published works on folding 
behavior of the columns and honeycombs, reveals that mean 
folding force in uni-cell and multi-cell columns is basically 
calculated theoretically. In this paper, the instantaneous 
folding force of the first fold creation in a “Basic Folding 
Mechanism” is calculated analytically. The instantaneous 
folding force of the first fold creation in a square column is 
then calculated. 

On the other hand, in this paper, the instantaneous folding 
force of the first fold creation is calculated instead of an 
average value for folding force in a square column, as a small 
model of multi-cell honeycombs, analytically. 

II. THEORY 

A. Theoretical Calculation by Wierzbicki 
These theoretical calculations are based on Wierzbicki and 

Abramowicz’s research on Work and Energy concept. For this 
purpose, a “Basic Folding Mechanism” was introduced and 
the dissipated energy rate by this mechanism was calculated 
[1]. 
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Fig. 1 Basic Folding Mechanism, (a) before folding,  (b) after folding 

[1] 
 

B. Basic Folding Mechanism 
Wierzbicki and Abramowicz introduced Basic Folding 

Mechanism according to the Fig. 1. At the start time 0=α , 

and 90=γ . At commence of folding, α  increases and γ  
decreases, continuously. When folding is initiated, γ  and β  

vary versus α and 0ψ  according to the followings [1]: 

 

0

0 ,
ψ
γβ

α
ψ

γ
Sin

tgtg
Sin
tg

tg ==  (1) 

 
Instantaneous folding distance designated by δ , indicates 

the decreasing axial distance between upper and lower edges 
of Basic Folding Mechanism. This quantity as shown in Fig. 2 
is calculated as following: 

 
( )αδ CosH −⋅= 12  (2) 

 
where the initial height of the Basic Folding Mechanism is 

defined by 2H. Differentiating the above relation yields: 
 

ααδ ⋅⋅= SinH2  (3) 
 

 
Fig. 2 Half of the folding wavelength 

 

C. Dissipated Energy Rate 
In folding process, the dissipated energy rate is resulted 

from the continuous and discontinuous velocity fields as 
shown in following [1]: 

 
( ) ∫∫ ⋅+⋅+=

LS
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 (4) 

 

which αβN , αβM , αβκ , and αβλ  are stress resultants, 

stress couples, the rate of curvature, and the rate of extension, 
in the continuous deformation field, respectively[1]. Note that 
both the extent of continuous plastic deformations S and the 
length of hinge lines  increase during the deformation 
progresses. θ  is a finite rotation around every hinge line. In 
above formula, the first integral calculates the dissipated 
energy of extensional deformation on the small area that is 
called toroidal surface and the second integral calculates the 
dissipated energy of the inextensional deformation, or in other 
word, dissipated energy of bending around hinge lines. 

Performing first integration results in [1]: 
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Where b is the small radius of toroidal surface [1] and 

angles α , β , and 0ψ are shown in Fig. 1. The dissipated 
energy rate in the above equation refers to the dissipated 
energy rate of the extensional deformation on toroidal surface, 
that is the value of the first integral in (4). 

The second integral in (4) was separately calculated for 
fixed horizontal hinge lines and then for inclined hinge lines. 
In other word, the second integral in this equation that shows 
inextensional deformations, involves bending around fixed 
horizontal hinge lines AB, BC and bending around inclined 
hinge lines UB, BL designated by 2E , 3E , respectively. 

Dissipated energy rate of bending around fixed horizontal 
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hinge lines AB, BC, designated by 2E , is equated to [1]: 

 
αθ CMCME 002 22 ==  (6) 

 
where C is the width of every edge of the Basic Folding 

Mechanism. The dissipated energy rate of bending around 
inclined hinge lines UB, BL is equal to [1]: 
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D.  Instantaneous Folding Force Calculation in BFM 
First, the instantaneous folding force is calculated. Thus, 

the summation of the internal dissipated energy rate in a Basic 
Folding Mechanism, which is calculated as (4), is written as 
following: 

 

321int EEEE ++=  (8) 
 

where 1E , 2E  and 3E  are resulted of (5), (6) and (7) 

respectively. 
The external work rate in a compressing process of Basic 

Folding Mechanism is calculated as below: 
 

ααδ ⋅⋅⋅=⋅= SinHPPEext 2  (9) 
 

where P is the external force on the Basic Folding 
Mechanism under the axial loading. Thus, using the following 
equation: 

 

intEEext =  (10) 
 

which shows the external work rate, required for 
compressing in a Basic Folding Mechanism mode is equated 
with the internal dissipated energy rate, and the following 
relation is reached: 

 

3212 EEESinHP ++=⋅⋅⋅ αα  (11) 
 

Substituting (5), (6) and (7) in (11) and dividing both sides 
of the relation by ααSinH2 , results in: 
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According to [1] following relation is obtained: 
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where the thickness of the Basic Folding Mechanism is 
defined by h. Hence: 
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Equation (14) is rewritten as: 
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This relation is similar to Wierzbicki and abramowicz’s 

relation [1], for predicting the average value of the folding 
force, where these corresponding equations just differed by 
values of 1A , 2A  and 3A . Naturally, the folding process led 

to the least possible amount of the instantaneous folding force. 
So the following limitations should be considered: 
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Equation (16) results in two equations and two unknown 

parameters. Hence H and b are calculated to show half of the 
folding wavelength and small radius of the toroidal surface, 
respectively: 
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By substituting (17) into (15), following relation is 

obtained: 
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E. Instantaneous Folding Force in Square Column 
A column with a square cross section is a small model of 

the square cell honeycomb. This column can be produced by 
joining four Basic Folding Mechanisms, illustrated in Fig. 1. 
In this situation, the length of each edge of the square is equal 
to 2C. 

For a square column, the second side of (11) must be 
fourfolded, namely: 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:10, 2008

1131

 

 

321 4442 EEESinHP ++=⋅⋅⋅ αα  (19) 
 

The term 2E  from (6) refers to bending around the 

horizontal hinge lines, while horizontal edges are simple 
supported. In reality, these edges are clamped and so 

2E should be doubled. Thus, (19) is rewritten as following: 

 

321 4842 EEESinHP ++=⋅⋅⋅ αα  (20) 
 

Noting the square column geometry, we find that the 
external angle of the square column is 9002 =ψ  and so 

450 =ψ . By substituting values of 1E , 2E  and 3E  from 

(5), (6) and (7) into (20) and recalculating, the results predict 
the instantaneous folding force of a square column: 
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Now, by applying minimum conditions from (16) to the 

square column relations, a formula similar to (18) is obtained, 
with only difference in values of 1A , 2A  and 3A , which are 

coefficients of (21). 
Multiplying these coefficients, results in: 
 

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛⋅

⋅
⋅

= 1
22

22048 2

321
ββ

γα
α CosSin

SinSin
CotgAAA  (22) 

 
Considering the purpose, which is calculating of the 

instantaneous folding force versus value of angle α  or axial 
displacement δ  in each time, the trigonometry function of 
angles γ  and β  in (22) should be calculated as a function of 
angle α . 

In (1) and by noting that 450 =ψ  for square columns, 

following relation is obtained between γ  and α : 
 

α
γ

211 Sin
Sin

+=  (23) 

 
Also from (1) and the trigonometry union, following 

relations are resulted between β  and α : 
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and, 
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Hence, by substituting (23), (24) and (25) in (22), the final 

relation for the instantaneous folding force is obtained: 
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Fig. 3 Experimental diagram of the folding force versus the axial 

displacement [4]  
 

 
Fig. 4 Theoretical diagram of the folding force versus the folding 

distance during the first fold creation 
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III. RESULTS AND DISCUSSION 
The predicted results of the instantaneous folding force by 

(26) were investigated. The experimental diagram, Fig. 3 
shows the instantaneous folding force versus the folding 
distance in a square steel column with the length 

mmL 1.244= , the wall thickness mmh 625.1= , and half of 
the edge mmC 30.49= [4]. As this diagram shows and 
considering the physical behavior, when starting every fold, 
the folding force increased from a minimum value and then 
follows decreasing way and with each completed folding, 
reaches a relative minimum value. Then by starting the next 
fold, follows increasing and decreasing cycle, again. To 
compare, as a result of (26), the instantaneous folding force in 
this column with mmL 1.244= , mmh 625.1=  and 

mmC 30.49=  versus the folding distance is shown in Fig. 4. 
Comparing Fig. 3 and Fig. 4 shows that a presented theoretical 
relation in this paper can predict the first peak in real folding 
force of the first fold creation versus the folding distance with 
a good accuracy. To better comparing, diagrams of Fig. 3 and 
Fig. 4 are drawn in the same diagram as shown in Fig. 5. As 
shown, values of the first peak in experimental folding force-
folding distance curves are in a good agreement with results of 
(26). Also this theoretical relation predicts the folding force 
variations of the first fold versus the folding distance with a 
good correlation. This result was obtained by comparing the 
two diagram slopes in different zones. 

Sometimes, the predicted value of the theoretical (26) is 
smaller than the experimental value. This is affected of 
calculations of (26), where just three mechanisms of 
dissipated energy are assumed. These mechanisms are one 
extensional deformation mode and two bending deformation 
modes. Although the experimental and theoretical results are 
different, this small difference between two answers is logical 
and eligible.  

 

 
Fig. 5 Theoretical and experimental diagram of the folding force 

versus the folding distance 
 
 

 
Fig. 6 Experimental diagram of the folding force versus the folding 

distance [18]  
 

 
Fig. 7 Theoretical diagram of the folding force versus the folding 

distance 
 

The instantaneous folding force diagram of a square 
column with the edge length mmC 752 =  and wall thickness 

mmh 76.0=  that prepared by Reid et al. [18] is shown in Fig. 
6. Also the instantaneous folding force diagram of this column 
with above dimensions is drawn in Fig. 7. Comparing Fig. 6 
and Fig. 7 results that the calculated theoretical relation in this 
paper can predict the maximum value of crushing force in a 
square column with a good accuracy and this relation can 
predict the instantaneous folding force variations in a square 
column during the first fold creation and predict the axial 
displacement variations of this column with a very good 
accuracy. 

For better comparing, both diagrams, Fig. 6 and Fig. 7 are 
drawn together in Fig. 8. As shown, two diagrams have good 
correlation with each other, which again shows the correlation 
of the theoretical relation in this paper to the test results. 
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Fig. 8 Theoretical and experimental diagram of the folding force 

versus the folding distance 

IV. CONCLUSION 
In this paper, a theoretical relation is presented to predict 

the instantaneous folding force and its variations versus the 
axial displacement of a column. By using these relations, the 
instantaneous folding force of the first fold creation was 
obtained versus the axial displacement of the column with a 
acceptable accuracy. 

Results of the theoretical predictions of this equation were 
compared with the experimental results of other researchers 
on the square column and a good correlation was obtained. 
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