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Improved IDR(s) method for gaining very accurate
solutions
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Abstract—The IDR(s) method based on an extended IDR theorem
was proposed by Sonneveld and van Gijzen. The original IDR(s)
method has excellent property compared with the conventional iter-
ative methods in terms of efficiency and small amount of memory.
IDR(s) method, however, has unexpected property that relative resid-
ual 2-norm stagnates at the level of less than 10−12 . In this paper,
an effective strategy for stagnation detection, stagnation avoidance
using adaptively information of parameter s and improvement of
convergence rate itself of IDR(s) method are proposed in order to
gain high accuracy of the approximated solution of IDR(s) method.
Through numerical experiments, effectiveness of adaptive tuning
IDR(s) method is verified and demonstrated.
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I. INTRODUCTION

WE consider to solve a nonsymmetric linear system of
equations,

Ax = b (1)

where A is a given nonsymmetric matrix in RN×N , and x is
a solution vector in RN , and b is a right-hand side vector
in RN . Krylov subspace methods are effective for solving
linear systems of equations [4]. Krylov subspace is defi ned
as follows:

Kn(A; r0) := span{r0, Ar0, . . . , A
n−1r0}. (2)

Here, r0 := b−Ax0 is an initial residual vector. The members
of Krylov subspace methods, product-type Bi-Conjugate Gra-
dient (BiCG) methods are often used for solving nonsymmet-
ric linear systems of equations. BiCG stabilized (BiCGStab)
method [4], and Generalized Product BiCG (GPBiCG) method
[6], BiCGSafe method [2] and so on, are some versions of
product-type Bi-Conjugate Gradient (BiCG) methods.

In 2008, one of Krylov subspace method, IDR(s) method
is proposed by P. Sonneveld and M. B. van Gijzen [3].
IDR(s) method is based on the IDR theorem. IDR(s) method
is competitive with or superior to most product-type BiCG
methods, and outperforms BiCGStab method when s > 1.

However, we meet with a phenomenon that relative residual
2-norm of original IDR(s) method stagnates approximately
between 10−12 and 10−15. Therefore, we should consider
adaptive tuning IDR(s) method on parameter s (abbreviated
as AT IDR(s) method) for avoidance the stagnation. We will
demonstrate effectiveness of AT IDR(s) method for avoidance
stagnation of residual by means of some numerical experi-
ments.

This paper is organized as follows. In section 2, we in-
troduce outline of IDR(s) method. In particular, we describe

IDR theorem and algorithm of IDR(s) method. In section
3, we present algorithm of AT IDR(s) method in detail. We
describe two strategies in order to build AT IDR(s) method
and algorithm of AT IDR(s) method, and consider issues on
implementation. In section 4, robustness of AT IDR(s) method
is demonstrated by numerical experiments. That is, we make
clear that AT IDR(s) method can solve systems with high
accuracy. Finally, in section 5, we draw concluding remarks.
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II. IDR(s) METHOD

A. IDR theorem

IDR(s) method is based on the IDR theorem [5][3]. Let A
be any matrix in RN×N , and v0 be any vector in RN , and G0

be the complete Krylov space KN(A, v0). Let S denote any
space in RN , and defi ne the sequence spaces Gj(j = 1, 2, . . .)
as

Gj := (I − ωjA)(Gj−1 ∩ S). (3)

Here ωj’s are non-zero scalars. Then, the next two theorems
holds.

(i) Gj ⊆ Gj−1 for all j > 0,
(ii) Gj = {0} for some j ≤ N .

B. Algorithm of IDR(s) method

The IDR theorem can be applied by generating residual
vectors rn that are forced to be in space Gj(j ≤ N). Then,
under assumptions of the IDR theorem, a linear system of
equations will be solved after at most N dimension reduction
steps. Algorithm of IDR(s) method is written as follows:

1. Let x0 be an initial guess, and put r0 = b− Ax0

2. For n = 0, . . . , s − 1 Do

3. vn = Arn

4. ωn =
(vn, rn)

(vn, vn)

5. qn = ωnrn, en = −ωnvn,

6. rn+1 = rn + en, xn+1 = xn + qn

7. End Do

8. Es = (es−1 · · ·e0), Qs = (qs−1 · · · q0)

9. Do n = s, s + 1, . . .

10. Solve cn from P T Encn = P T rn

11. vn = rn − Encn

12. If mod(n, s + 1) = s then

13. tn = Avn

14. ωn =
(tn, vn)

(tn, tn)
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15. en = −Encn − ωntn

16. qn = −Qncn + ωnvn

17. Else

18. qn = −Qncn + ωnvn, en = −Aqn

19. End If

20. rn+1 = rn + en, xn+1 = xn + qn

21. if ||rn+1||2/||r0||2 ≤ ε then stop

22. En = (en−1 · · ·en−s), Qn = (qn−1 · · ·qn−s)

23. End Do

C. How to make matrix P

We discuss how to make matrix P . The matrix P is defi ned
as P = (p1, p2, . . . ,ps). The every entries of p1, p2, . . . ,ps

are random numbers between 0.0 and 1.0. Then, matrix P is
orthonormalized by modifi ed Gram-Schmidt mathod as

(pi, pj) =
{

1 (i = j)
0 (i �= j).

We note that it is necessary to make matrix only once before
the iteration process of IDR(s) method.

III. AT IDR(s) METHOD

In this section, we discuss how to build AT IDR(s) method
which improves convergence property by tuning parameter s
of IDR(s) method.

A. To build AT IDR(s) method

For the larger parameter s, computation time of IDR(s)
method per one iteration becomes longer. Therefore we adopt
two signifi cant strategies as follows:

1) The first strategy: Detect stagnation of residual.
2) The second strategy: Reset parameter s as the original

value.
We describe the fi rst strategy. First, we compute variation rate
of residual norm σn := |||rn||2−||rn−1||2|

||rn−1||2 . Second, we regard
it as occurence of stagnation, when the index ”sentinel”
of σn < δ in consecutive times. We remark that one must
give parameters δ and sentinel before iteration process of
AT IDR(s) method as sentinel = 5, δ = 0.1. The second
strategy is clear in trivial, so we omit description of the second
strategy.

B. Diagram of adaptive tuning AT IDR(s) method on param-
eter s

In this section, we discuss adaptive tecnique of AT IDR(s)
method using a diagram. Fig. 1 shows the diagram of adap-
tive tuning AT IDR(s) method on parameter s. At fi rst, we
compute the variation rate of residual 2-norm σn. Next, we
check whether σn < δ or not. If σn < δ, we increase count
by one, and regard it as occurence of stagnation of residual
when count = sentinel. On the other hand, if σn ≥ δ, we
reset count as 0, and regard it as avoidance of stagnation
of residual. When stagnation of residual occurs, we increase
parameter s by one, and reset count as 0. When stagnation of
residual is avoided, we reset parameter s as the original value.

C. Algorithm of AT IDR(s) method

We present algorithm of AT IDR(s) method as follows:
At lines number 9 and between 23 and 31, we detect the
stagnation of the residual norm, and tune parameter s.

1. Let x0 be an initial guess, and put r0 = b− Ax0

2. For n = 0, . . . , s − 1 Do

3. vn = Arn

4. ωn =
(vn, rn)

(vn, vn)

5. qn = ωnrn, en = −ωnvn,

6. rn+1 = rn + en, xn+1 = xn + qn

7. End Do

8. Es = (es−1 · · ·e0), Qs = (qs−1 · · ·q0)

9. smin = s

10. Do n = s, s + 1, . . .

11. Solve cn from P T Encn = P T rn

12. vn = rn − Encn

13. If mod(n, s + 1) = s then

14. tn = Avn

15. ωn =
(tn, vn)

(tn, tn)

16. en = −Encn − ωntn

17. qn = −Qncn + ωnvn

18. Else

19. qn = −Qncn + ωnvn, en = −Aqn

20. End If

21. rn+1 = rn + en, xn+1 = xn + qn

22. If ||rn+1||2/||r0||2 ≤ ε then stop

23. σn =
|||rn+1||2 − ||rn||2|

||rn||2
24. If σn < δ then

25. count = count + 1

26. If count = sentinel and s < smax then

27. count = 0, s = s + 1

28. End If

29. Else

30. count = 0, s = smin

31. End If

32. En = (en−1 · · ·en−s), Qn = (qn−1 · · ·qn−s)

33. End Do

D. Issues on implementation

In the above algorithm of AT IDR(s) method, there are
issues on implementation. That is, they are to build matrices
P, Qn and En. Number of columns of matrices P, Qn and
En is s. Therefore we have to change number of columns of
matrices P, Qn and En, if parameter s increases. However it
is diffi cult to implement matrices with dynamic allocation. We
show how to build matrices P, Qn and En. First, we set smax

as upper limit of parameter s. Second, matrices P, Qn and En

are built as an N × smax matrix of constant size. Third, from
s+1 to smax columns of matrices P, Qn and En are ignored
when s < smax for simplicity.
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Fig. 1. Diagram of adaptive tuning AT IDR(s) method on parameter s.

IV. NUMERICAL EXPERIMENTS

In this section we discuss numerical experiments of compar-
ing performance of AT IDR(s) method with IDR(s) method.
All computations are carried out in double precision floating-
point arithmetic on a PC with a POWER5 processor (1.9GHz).
Intel Fortran Compiler90 ver 7.1 and compile option -O3 -
qtune=power5 -qarch=pwr5 -qhot was used. In all cases the
iteration was started with the initial guess solution x0 = 0.
The maximum iterations was fi xed as 10000. We set param-
eters of AT IDR(s) method as sentinel = 5, δ = 0.1. Four
test matrices are from University of Florida Sparse Matrix
Collection[1]. Description of test matrices is shown in Table
I. In this Table, ”nnz” means number of nonzero entries, and
”ave. nnz” means number of nonzero entries per single row.

TABLE I
SPECIFICATIONS OF TEST MATRICES.

ave.
group/matrix dimension nnz nnz
Watson/ChemMaster1 40,401 201,201 4.98
Watson/Baumann 112,211 748,331 6.67
FEMLAB/Sme3Da 12,504 874,887 69.97
FEMLAB/Sme3Db 29,067 2,081,063 71.59
FEMLAB/Sme3Dc 42,930 3,148,656 73.34
Quaglino/ViscoPlastic1 4,326 61,166 14.14
Quaglino/ViscoPlastic2 32,769 381,326 11.64

A. Numerical Results

Tables 2–8 for matrices Sme3Dc, ChemMaster1, ViscoPlas-
tic2, Baumann, Sme3Da, Sme3Db and Viscoplastic1 show
iterations and CPU time in seconds of IDR(s) and AT IDR(s)
methods when the stopping criterion, i.e., ||rn||2

||r0||2 is less than
10−12, 10−13 and 10−14, respectively. In Tables, “max” means
that iterative methods did not converge until maximum iter-
ations. “break” means also that all computations were halted
because of huge numeical errors during iteration process. ”itr.”

means also number of iterations. Some observations are gaind
from Tables 2–8.

• AT IDR(s) method performs well compared with the
original IDR(s) method.

• IDR(s) method does not converge often when ε for
convergence criterion is set as 10−13, 10−14 and s is
more than 4.

• On the other hand, AT IDR(s) method converges for
almost cases.

In order to make out how robust AT IDR(s) is for analysis
with high accuracy, we made stopping criterion more degree
by degree. When the stopping criterion is ||rn||2

||r0||2 ≤ 10−15

which is almost as same as the so-called machine epsilon of
2.2 × 10−16, IDR(s) method doesn’t converged for all cases.
On the other hand, AT IDR(s) method converged for all cases.
We can understand effectiveness of AT IDR(s) method for
analysis with high accuracy.

Figs.2–3 display relative residual history of IDR(s) and
AT IDR(s) methods for matrices ChemMaster1 and Vis-
coPlastic2. In these Figures, we show relative residual history
of IDR(s) method in red solid line and AT IDR(s) method in
green dashed line, and variation of parameter s of AT IDR(s)
method in blue plot. From Figs.2–3, the following observations
can be made as below.

• Results for matrix ChemMaster1 as shown in Fig.2:

– Relative residual norm of IDR(s) method stagnates
for all parameter s.

– Relative residual norm of AT IDR(1) method con-
verges without stagnation.

– Relative residual norm of AT IDR(4) and AT
IDR(8) methods stagnate after 150 iterations, and
converge after parameter s is tuned.

– If parameter s is tuned at around 150 iterations,
iterations of AT IDR(4) and AT IDR(8) may be
lower.

• Results for matrix ViscoPlastic2 as shown in Fig.3:

– Relative residual 2-norm of IDR(s) method diverges
at s is equal to 1, and stagnates at s is equal to 4 or
8.

– Relative residual 2-norm of AT IDR(1) method stag-
nates after 3000 iterations, and converges at 3939
iterations.

– Relative residual 2-norm of AT IDR(4) and AT
IDR(8) methods converges without stagnation.

– Parameter s of AT IDR(s) is tuned too much, and
CPU times of AT IDR(s) per one iteration is longer
than that of IDR(s) method.

– When we set parameter δ for smaller value or
sentinel for larger value, parameter s is tuned more
moderately, and AT IDR(s) mathod converges faster.

From the above many observations, we can see that
AT IDR(s) method is more robust than IDR(s) mathod. How-
ever, we should fi nd out optimum parameters δ and sentinel
to improve convegence property of AT IDR(s) method.
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TABLE II
CONVERGENCE OF IDR(s) AND AT IDR METHODS FOR MATRIX

SME3DC.

ε = 10−12 ε = 10−13 ε = 10−14

method s itr. time itr. time itr. time
IDR(s) 1 4048 292.5 max - max -

2 2096 153.5 2325 168.3 max -
4 1216 91.5 max - max -
8 1011 78.4 max - max -

AT IDR 1 6683 388.2 6690 386.9 7072 409.7
2 3305 194.6 3318 194.8 3600 210.5
4 1200 73.9 1239 76.3 1277 78.4
8 986 62.4 995 63.2 1022 64.9

TABLE III
CONVERGENCE OF IDR(s) AND AT IDR METHODS FOR MATRIX

CHEMMASTER1.

ε = 10−12 ε = 10−13 ε = 10−14

method s itr. time itr. time itr. time
IDR(s) 1 176 0.81 179 0.82 max -

2 162 0.78 max - max -
4 295 1.46 max - max -
8 max - max - max -

AT IDR 1 176 0.85 184 0.90 188 0.89
2 249 1.23 262 1.30 270 1.33
4 151 0.85 330 1.82 341 1.86
8 147 1.00 289 1.90 297 1.94

TABLE IV
CONVERGENCE OF IDR(s) AND AT IDR METHODS FOR MATRIX

VISCOPLASTIC2.

ε = 10−12 ε = 10−13 ε = 10−14

method s itr. time itr. time itr. time
IDR(s) 1 max - max - max -

2 max - max - max -
4 1393 6.79 1520 7.46 max -
8 1288 7.24 1451 8.23 max -

AT IDR 1 1851 8.34 2650 11.90 3058 13.65
2 1607 7.60 1834 8.69 1887 8.86
4 1337 6.90 1490 7.72 1611 8.32
8 1289 7.93 1460 9.09 1552 9.68

TABLE V
CONVERGENCE OF IDR(s) AND AT IDR METHODS FOR MATRIX

BAUMANN.

ε = 10−12 ε = 10−13 ε = 10−14

method s itr. time itr. time itr. time
IDR(s) 1 break - break - break -

2 max - max - max -
4 669 11.80 max - max -
8 max - max - max -

AT IDR 1 2621 38.69 2695 39.64 2760 40.87
2 1304 20.87 1418 22.72 1437 22.90
4 569 10.61 581 10.90 613 11.48
8 500 12.31 520 12.83 541 13.38
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Fig. 2. Relative residual history of IDR(s) and AT IDR(s) methods, and
variation of parameter s of AT IDR(s) method for matrix ChemMaster1.
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Fig. 3. Relative residual history of IDR(s) and AT IDR(s) methods, and
variation of parameter s of AT IDR(s) method for matrix ViscoPlastic2.

TABLE VI
CONVERGENCE OF IDR(s) AND AT IDR METHODS FOR MATRIX

SME3DA.

ε = 10−12 ε = 10−13 ε = 10−14

method s itr. time itr. time itr. time
IDR(s) 1 1799 15.01 1976 16.19 2133 17.61

2 891 7.77 max - max -
4 657 6.14 max - max -
8 max - max - max -

AT IDR 1 4127 31.37 4299 31.94 4299 31.94
2 1020 8.37 1045 8.53 1087 8.74
4 648 5.68 664 5.93 781 6.73
8 523 5.03 529 5.02 542 5.18

TABLE VII
CONVERGENCE OF IDR(s) AND AT IDR METHODS FOR MATRIX

SME3DB.

ε = 10−12 ε = 10−13 ε = 10−14

method s itr. time itr. time itr. time
IDR(s) 1 2250 85.21 2887 109.09 2934 110.01

2 1293 50.11 max - max -
4 max - max - max -
8 max - max - max -

AT IDR 1 5429 191.56 5468 192.52 5499 193.44
2 1304 47.79 1361 49.88 1393 51.76
4 886 33.94 894 34.22 916 35.60
8 684 27.86 703 28.63 721 29.05

V. CONCLUSION

We proposed AT IDR(s) method for purpose of resolv-
ing stagnation of residual by tuning parameter s of IDR(s)
method adaptively. We can conclude that AT IDR(s) method
converges when IDR(s) method doesn’t converge because of
stagnation of relative residual norm. AT IDR(s) method is
more robust than IDR(s) method.

As future work, we have two goals. The fi rst goal is to
fi nd out optimum parameters δ and sentinel to improve
convegence rate of AT IDR(s) method. The second goal is
to devise more effective adaptive tuning technique for IDR(s)
method.
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