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Abstract—The IDR(s) method based on an extended IDR theorem
was proposed by Sonneveld and van Gijzen. The original IDR(s)
method has excellent property compared with the conventional iter-
ative methods in terms of efficiency and small amount of memory.
IDR(s) method, however, has unexpected property that relative resid-
ual 2-norm stagnates at the level of less than 10~'2. In this paper,
an effective strategy for stagnation detection, stagnation avoidance
using adaptively information of parameter s and improvement of
convergence rate itself of IDR(s) method are proposed in order to
gain high accuracy of the approximated solution of IDR(s) method.
Through numerical experiments, effectiveness of adaptive tuning
IDR(s) method is verified and demonstrated.
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I. INTRODUCTION

E consider to solve a nonsymmetric linear system of
equations,

Az =b (1)

where A is a given nonsymmetric matrix in RN*Y, and x is
a solution vector in R, and b is a right-hand side vector
in RYN. Krylov subspace methods are effective for solving
linear systems of equations [4]. Krylov subspace is defined
as follows:

K.(A;rg) = span{rg,Aro,..., A" rg}.  (2)

Here, r¢ := b— Az is an initial residual vector. The members
of Krylov subspace methods, product-type Bi-Conjugate Gra-
dient (BiCG) methods are often used for solving nonsymmet-
ric linear systems of equations. BiCG stabilized (BiCGStab)
method [4], and Generalized Product BiCG (GPBiCG) method
[6], BiCGSafe method [2] and so on, are some versions of
product-type Bi-Conjugate Gradient (BiCG) methods.

In 2008, one of Krylov subspace method, IDR(s) method
is proposed by P. Sonneveld and M. B. van Gijzen [3].
IDR(s) method is based on the IDR theorem. IDR(s) method
is competitive with or superior to most product-type BiCG
methods, and outperforms BiCGStab method when s > 1.

However, we meet with a phenomenon that relative residual
2-norm of original IDR(s) method stagnates approximately
between 10~'2 and 10~'°. Therefore, we should consider
adaptive tuning IDR(s) method on parameter s (abbreviated
as AT_IDR(s) method) for avoidance the stagnation. We will
demonstrate effectiveness of AT_IDR(s) method for avoidance
stagnation of residual by means of some numerical experi-
ments.

This paper is organized as follows. In section 2, we in-
troduce outline of IDR(s) method. In particular, we describe

IDR theorem and algorithm of IDR(s) method. In section
3, we present algorithm of AT_IDR(s) method in detail. We
describe two strategies in order to build AT_IDR(s) method
and algorithm of AT_IDR(s) method, and consider issues on
implementation. In section 4, robustness of AT_IDR(s) method
is demonstrated by numerical experiments. That is, we make
clear that AT_IDR(s) method can solve systems with high
accuracy. Finally, in section 5, we draw concluding remarks.
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I1. IDR(s) METHOD
A. IDR theorem

IDR(s) method is based on the IDR theorem [5][3]. Let A
be any matrix in RV*¥, and v, be any vector in RY, and G,
be the complete Krylov space Ky (A,v,). Let S denote any
space in R, and defi ne the sequence spaces Gi(j = 1,2,...)
as

Gj = —-wjA)(Gj-1NS). ®)

Here w;’s are non-zero scalars. Then, the next two theorems
holds.

(i) G; €G- forall j >0,

(i) G; = {0} for some j < N.

B. Algorithm of IDR(s) method

The IDR theorem can be applied by generating residual
vectors r,, that are forced to be in space G;(j < N). Then,
under assumptions of the IDR theorem, a linear system of
equations will be solved after at most N dimension reduction
steps. Algorithm of IDR(s) method is written as follows:

1 Let @p be an initial guess, and put 79 = b — Az
2. Forn=20,...,5s—1Do

3. v = Arp
4

('Un, "'n)
Wn =

(v"vv">
5 q,, = WnTn, en = —WnpUn,
6 Tn+l = Tn +€n, Tutl = Tn +q,
7. End Do

8 Es = (es—1---e0), Qs =1(qs—1""q0)
9 Don=s,5s+1,...

10. Solve ¢, from PTEnc, = PTr,
11. vy, =7Tn — Epen
12. If mod(n,s+ 1) = s then
13. t, = Av,
14. wp = (tn, on)
(tn,tn)
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15. en =—Encn —wntn C. Algorithm of AT_IDR(s) method
13 El:’e" = ~Qnen +wnvn We present algorithm of AT_IDR(s) method as follows:
. o = —Onn 4 wnn, €n = —Ag At I|ne_s number 9 f;md between 23 and 31, we detect the
n o " stagnation of the residual norm, and tune parameter s.
19. End If
20. Tn+l =Tn + €n, Tntl = Tn + 4,
21. if ||rntall2/llroll2 < € then stop i Let o be an initial guess, and put ro = b— Az
292. En=(en-1-€n-s) Qn=_(qn_1" Qn_s) 2. Forn=0,...,s—1 Do
23. End Do 3. vn = Arn
4. wn = (®n, )
(v"’ U")
5. q, = wWnTn, €p = —WnpUn,
6. Tntl = Tn + €n, Tntl = Tn +q,
C. How to make matrix P 7. End Do
We discuss how to make matrix P. The matrix P is defi ned 8. Bs = (es-1---e0), Qs=(gs—1"""qo0)
as P = (py,py,...,p,). The every entries of p,,ps,...,D, 9. smin=s
are random numbers between 0.0 and 1.0. Then, matrix P is 10. Don=ss+1,...
orthonormalized by modifi ed Gram-Schmidt mathod as 1L Solve ¢, from PT Enen = PTrn
. . 12. Vp =1rn — Ene,
1 (i=1j) .
(pi,pj) = { 0 (Z 4 J) 13. If mod(n,s + 1) = s then
14. t, = Av,
We note that it is necessary to make matrix only once before 15 o (tn,vn)
the iteration process of IDR(s) method. ' " (tanta)
16. en = —Encn, —wnty
I11. AT_IDR(s) METHOD 17. 4, = —Qncn +wnvn
In this section, we discuss how to build AT_IDR(s) method 18. Else
which improves convergence property by tuning parameter s 19. Qn = —Q@nen +wnon, en = —Ag,
of IDR(s) method. 20. End If
21. Tnil =Tn +€n, Tnirl =Tn +q,
A. To build AT_IDR(s) method 22. If |lrnyall2/llroll2 < € then stop
For the larger parameter s, computation time of IDR(s) 23. n = lirnsalle = linllz]
method per one iteration becomes longer. Therefore we adopt 24, It o < 6 thi‘nr"“?
two signifi gant strategies as follows: _ _ 25. count = count + 1
1) The first strategy: Detect stagnation of residual. 26. If count = sentinel and s < Smax then
2) The second strategy: Reset parameter s as the original 27, count = 0,5 = s+1
value. 28. End If
We describe the fi rst strategy. First, we compute variation rate 29. Else
of residual norm o,, := w Second, we regard 30. count = 0,8 = Smin
it as occurence of stagnation, when the index “sentinel” 31. End If
of 0, < ¢ in consecutive times. We remark that one must 32. En=(en-1ens) Qn=_an_1 Qs
give parameters ¢ and sentinel before iteration process of 33. End Do

AT_IDR(s) method as sentinel = 5, § = 0.1. The second
strategy is clear in trivial, so we omit description of the second
strategy.

B. Diagram of adaptive tuning AT_IDR(s) method on param-
eter s

In this section, we discuss adaptive tecnique of AT_IDR(s)
method using a diagram. Fig. 1 shows the diagram of adap-
tive tuning AT_IDR(s) method on parameter s. At first, we
compute the variation rate of residual 2-norm o,,. Next, we
check whether o,, < § or not. If o, < 0, we increase count
by one, and regard it as occurence of stagnation of residual
when count = sentinel. On the other hand, if o, > §, we
reset count as 0, and regard it as avoidance of stagnation
of residual. When stagnation of residual occurs, we increase
parameter s by one, and reset count as 0. When stagnation of
residual is avoided, we reset parameter s as the original value.

D. Issues on implementation

In the above algorithm of AT_IDR(s) method, there are
issues on implementation. That is, they are to build matrices
P,Q, and E,. Number of columns of matrices P, (@, and
E,, is s. Therefore we have to change number of columns of
matrices P, @Q,, and E,, if parameter s increases. However it
is diffi cult to implement matrices with dynamic allocation. We
show how to build matrices P, Q,, and E,,. First, we set $,,qz
as upper limit of parameter s. Second, matrices P, @,, and E,,
are built as an N x s,,4, matrix of constant size. Third, from
s+ 110 ;4. cOlumns of matrices P, Q,, and E,, are ignored
when s < s,,q. for simplicity.
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_ Llrallz = llraallz |
[[rn-1ll2

Fig. 1. Diagram of adaptive tuning AT_IDR(s) method on parameter s.

IV. NUMERICAL EXPERIMENTS

In this section we discuss numerical experiments of compar-
ing performance of AT_IDR(s) method with IDR(s) method.
All computations are carried out in double precision floating-
point arithmetic on a PC with a POWERS5 processor (1.9GHz).
Intel Fortran Compiler90 ver 7.1 and compile option -O3 -
gtune=power5 -garch=pwr5 -ghot was used. In all cases the
iteration was started with the initial guess solution o = 0.
The maximum iterations was fi xed as 10000. We set param-
eters of AT_IDR(s) method as sentinel = 5, § = 0.1. Four
test matrices are from University of Florida Sparse Matrix
Collection[1]. Description of test matrices is shown in Table
1. In this Table, "nnz"” means number of nonzero entries, and
“ave. nnz” means number of nonzero entries per single row.

TABLE |
SPECIFICATIONS OF TEST MATRICES.

ave.
group/matrix dimension nnz | nnz
Watson/ChemMasterl 40,401 201,201 | 4.98
Watson/Baumann 112,211 748,331 6.67
FEMLAB/Sme3Da 12,504 874,887 | 69.97
FEMLAB/Sme3Db 29,067 | 2,081,063 | 71.59
FEMLAB/Sme3Dc 42,930 | 3,148,656 | 73.34
Quaglino/ViscoPlasticl 4,326 61,166 | 14.14
Quaglino/ViscoPlastic2 32,769 381,326 | 11.64

A. Numerical Results

Tables 2-8 for matrices Sme3Dc, ChemMasterl, ViscoPlas-
tic2, Baumann, Sme3Da, Sme3Db and Viscoplasticl show
iterations and CPU time in seconds of IDR(sR and AT_ IDR(s)
methods when the stopping criterion, i.e., % is less than
10712, 1013 and 104, respectively. In Tables, “max” means
that iterative methods did not converge until maximum iter-
ations. “break” means also that all computations were halted
because of huge numeical errors during iteration process. "itr.”

means also number of iterations. Some observations are gaind
from Tables 2-8.

« AT_IDR(s) method performs well compared with the
original IDR(s) method.

« IDR(s) method does not converge often when e for
convergence criterion is set as 10713, 1074 and s is
more than 4.

e On the other hand, AT_IDR(s) method converges for
almost cases.

In order to make out how robust AT_IDR(s) is for analysis
with high accuracy, we made stopping criterion more degree
by degree. When the stopping criterion is H < 10715
which is almost as same as the so-called machine epsilon of
2.2 x 10716, IDR(s) method doesn’t converged for all cases.
On the other hand, AT_IDR(s) method converged for all cases.
We can understand effectiveness of AT_IDR(s) method for
analysis with high accuracy.

Figs.2-3 display relative residual history of IDR(s) and
AT_IDR(s) methods for matrices ChemMasterl and Vis-
coPlastic2. In these Figures, we show relative residual history
of IDR(s) method in red solid line and AT_IDR(s) method in
green dashed line, and variation of parameter s of AT_IDR(s)
method in blue plot. From Figs.2-3, the following observations
can be made as below.

« Results for matrix ChemMasterl as shown in Fig.2:

— Relative residual norm of IDR(s) method stagnates
for all parameter s.

— Relative residual norm of AT_IDR(1) method con-
verges without stagnation.

— Relative residual norm of AT_ IDR(4) and AT_
IDR(8) methods stagnate after 150 iterations, and
converge after parameter s is tuned.

— If parameter s is tuned at around 150 iterations,
iterations of AT_IDR(4) and AT_IDR(8) may be
lower.

« Results for matrix ViscoPlastic2 as shown in Fig.3:

— Relative residual 2-norm of IDR(s) method diverges
at s is equal to 1, and stagnates at s is equal to 4 or
8.

— Relative residual 2-norm of AT_IDR(1) method stag-
nates after 3000 iterations, and converges at 3939
iterations.

— Relative residual 2-norm of AT_ IDR(4) and AT_
IDR(8) methods converges without stagnation.

— Parameter s of AT_IDR(s) is tuned too much, and
CPU times of AT_IDR(s) per one iteration is longer
than that of IDR(s) method.

— When we set parameter ¢ for smaller value or
sentinel for larger value, parameter s is tuned more
moderately, and AT_IDR(s) mathod converges faster.

From the above many observations, we can see that
AT_IDR(s) method is more robust than IDR(s) mathod. How-
ever, we should find out optimum parameters § and sentinel
to improve convegence property of AT_IDR(s) method.
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TABLE 11
CONVERGENCE OF IDR(s) AND AT_IDR METHODS FOR MATRIX
SME3DcC.
e=10""2 [ e=10"18 [ e=10"1
method | s itr. | time | itr. | time| itr. | time 2
IDR(s) | 1 | 4048 | 2925 | max T max . 0 Y
2 | 2096 | 153.5 | 2325 | 168.3 | max - 27‘ 'kl AT :BEEB—-—
A E L Ny ca AR
AT_IDR| 1 [6683388.2 6690 |386.9 7072 [409.7 _ 6F
2 | 3305 |194.6 | 3318 | 194.8 | 3600 | 210.5 S st
4 11200 | 7391239 | 76.3 (1277 | 784 8 10l
8 | 986| 62.4| 995| 63.2|1022 | 64.9 ;-12
< 1
['4
-16 | 15
11
TABLE Il
CONVERGENCE OF IDR(s) AND AT_IDR METHODS FOR MATRIX : : : :
CHEMMASTERL. 0 100 200 300 400 500
Iterations
e=10"12Je=10"3[e=10"1% (a)S:1
method | s itr. | time | itr. | time | itr. | time
IDR(s) | 1 | 176 0.81 179 0.82 | max - 2 o
2 | 162 | 0.78 | max - | max - o 1o
4 | 295 1.46 | max - | max - IDR(4) ——
8 [max| lmoc| |max| - 2 ot ASRE
AT_IDR| 1 [ 176 0.85| 184 | 0.90 | 188 | 0.89 4r @ N
2 | 249 1.23| 262 | 1.30| 270 | 1.33 6 ‘“‘it
4 | 151| 0.85| 330| 1.82| 341 | 1.86 8 - .
8 | 147 | 1.00 | 289 | 1.90 | 297 | 1.94

"4 6

Relative Residual
KB
="
4
&
>
i
-
z,

TABLE IV
CONVERGENCE OF IDR(s) AND AT_IDR METHODS FOR MATRIX
VISCOPLASTIC2. - - .

0 100 200 300
e=10 2] e=10 B [e=10"14 Iterations

itr. | time itr. | time itr. | time (b)s =4
max - | max T max N

method
IDR(s)

400 500

max - | max - | max -
1393 | 6.79 | 1520 | 7.46 | max -
1288 | 7.24 | 1451 | 8.23 | max -
1851 | 8.34 | 2650 | 11.90 | 3058 | 13.65
1607 | 7.60 | 1834 | 8.69 | 1887 | 8.86
1337 | 6.90 | 1490 | 7.72 | 1611 | 8.32
1289 | 7.93 | 1460 | 9.09 | 1552 | 9.68

AT_IDR

o & AN owN
o

I Y

BN ANR®

5 IDR(8) ——
| \* AT_IDR(8)
s Of AT_IDR(8) e

CIR W P T

10

Relative Residual

TABLE V
CONVERGENCE OF IDR(s) AND AT_IDR METHODS FOR MATRIX
BAUMANN. . . .

0 100 200 300
e=10"12 e=10"13 e=10"1% Iterations
itr. | time itr. | time itr. | time (©)s =8
break - | break - | break -
max max -| max -

method
IDR(s)

AT_IDR 2621 | 38.69 | 2695 | 39.64 | 2760 | 40.87
1304 | 20.87 | 1418 | 22.72 | 1437 | 22.90
569 (10.61| 581 |10.90 | 613 |11.48

500 [12.31| 520 |12.83| 541 |13.38

BN ANR®

400 500

669 | 11.80 | max - | max - Fig. 2. Relative residual history of IDR(s) and AT_IDR(s) methods, and
max -| max - | max - variation of parameter s of AT_IDR(s) method for matrix ChemMaster1.
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Fig. 3. Relative residual history of IDR(s) and AT_IDR(s) methods, and
variation of parameter s of AT_IDR(s) method for matrix ViscoPlastic2.
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TABLE VI
CONVERGENCE OF IDR(s) AND AT_IDR METHODS FOR MATRIX
SME3DA.
e=10"2 [ e=100 [e=10"12
method | s itr. | time itr. | time itr. | time
IDR(s) | 1 [1799[15.01[1976 |16.19 [ 2133 ]17.61
2 891 | 7.77 | max - | max -
4 | 657 | 6.14 | max - | max -
8 | max - | max - | max -
AT_IDR | 1 |4127[31.37 {4299 | 31.94 | 4299 | 31.94
2 (1020 | 8.37 |1045| 8.53|1087 | 8.74
4 | 648| 5.68| 664 | 5.93| 781 | 6.73
8 | 523| 5.03| 529 | 5.02| 542 | 5.18
TABLE VII
CONVERGENCE OF IDR(s) AND AT_IDR METHODS FOR MATRIX
SME3DB.
e=10"12 [ e=10"1 | e=10"14
method | s itr. time itr. time itr. time
IDR(s) 1 |2250 | 85.21 | 2887 | 109.09 | 2934 | 110.01
2 | 1293 | 50.11 | max - | max -
4 | max - | max - | max -
8 | max - | max - | max -
AT_IDR| 1 [5429]191.56 | 5468 [ 192.52 | 5499 | 193.44
2 | 1304 | 47.79|1361 | 49.88 [ 1393 | 51.76
4 | 886| 33.94| 894 3422 916 | 35.60
8 | 684| 27.86| 703 | 28.63| 721 | 29.05

V. CONCLUSION

We proposed AT_IDR(s) method for purpose of resolv-
ing stagnation of residual by tuning parameter s of IDR(s)
method adaptively. We can conclude that AT_IDR(s) method
converges when IDR(s) method doesn’t converge because of
stagnation of relative residual norm. AT_IDR(s) method is
more robust than IDR(s) method.

As future work, we have two goals. The first goal is to
find out optimum parameters ¢ and sentinel to improve
convegence rate of AT_IDR(s) method. The second goal is
to devise more effective adaptive tuning technique for IDR(s)
method.
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