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Abstract—This paper argues that increased uncertainty, in certain 

situations, may actually encourage investment.  Since earlier studies 
mostly base their arguments on the assumption of geometric Brownian 
motion, the study extends the assumption to alternative stochastic 
processes, such as mixed diffusion-jump, mean-reverting process, and 
jump amplitude process.  A general approach of Monte Carlo 
simulation is developed to derive optimal investment trigger for the 
situation that the closed-form solution could not be readily obtained 
under the assumption of alternative process.  The main finding is that 
the overall effect of uncertainty on investment is interpreted by the 
probability of investing, and the relationship appears to be an invested 
U-shaped curve between uncertainty and investment.  The implication 
is that uncertainty does not always discourage investment even under 
several sources of uncertainty.  Furthermore, high-risk projects are not 
always dominated by low-risk projects because the high-risk projects 
may have a positive realization effect on encouraging investment.   
 

Keywords—real options, geometric Brownian motion, mixed 
diffusion-jump process, mean- reverting process, jump amplitude 
process 

I. INTRODUCTION 
HE relationship between uncertainty and investment has 
fascinated financial economists for a long time.  Early 

literature on real options theory argues that increased 
uncertainty causes a decrease in the current level of investment 
by raising the value of option of waiting.  For example, 
Cukierman [3] presents a Bayesian framework to address the 
idea that an investment opportunity can be more valuable by 
waiting longer for more information arrivals.  Pindyck [12, 13] 
and Dixit [4, 5] also find that a higher level of uncertainty not 
only increases option value, but also brings about a higher 
optimal investment trigger to such an extent that uncertainty 
may in effect discourage investment. 

Some studies based on real options theory suggest that the 
relationship between uncertainty and investment is 
non-monotonic. [6]  Abel and Eberly [1] further contend that the 
uncertainty-investment relationship is positive for a lower of 
uncertainty while the relationship is negative for a high level of 
uncertainty, suggesting an inverted U-shaped relationship. 

Extending standard real options theory, Sarkar [15] and 
Rhys, Song, and Jindrichovska [14] explore the relationship 
between uncertainty and investment by asking the question how 
much the likelihood is that a project value, V, would reach 
optimal investment trigger, V*, given that the project value 
evolves as a geometric Brownian motion (GBM).  Both studies 

apply a similar probability function, and find that the 
uncertainty-investment relationship is not always negative.  
They show that increased uncertainty under a GBM, in certain 
situations, may encourage investment due to a higher 
probability of investing or an earlier time of first passage. 

Recent studies on investment theory suggest that the 
relationship between uncertainty and investment mostly is 
nonlinear.  Lensink and Murinde [7] empirically examine the 
data of UK firms and propose the inverted-U hypothesis for the 
effect of uncertainty on investment.  In addition, Wong [18] 
analyzes optimal investment timing in a real options model and 
argues that optimal investment trigger exhibits a U-shaped 
pattern against project volatility. 

This paper aims to investigate the uncertainty-investment 
relationship by relaxing the assumption of state variable to 
various stochastic processes by applying the technique of Monte 
Carlo simulation.  The stochastic of interest are GBM, mixed 
diffusion-jump (MX), mean-reverting process (MR), and jump 
amplitude process (JA).  Earlier studies, such as Sarkar [15] and 
Rhys et al. [14], apply a probability function to measure the 
probability of reaching a critical value under a GBM, yet their 
models fail to address the relationship between uncertainty and 
investment under an alternative stochastic process.  In contrast, 
Monte Carlo simulation is relatively flexible and advantageous 
when the underlying variable follows an alternative process in a 
finite time horizon. 

The rest of the paper is organized as follows:  Section 2 
introduces the specifications of alternative stochastic processes 
both in continuous time and in discrete time, serving as a 
foundation for the subsequent sections.  Section 3 proposes the 
approach of Monte Carlo simulation for deriving optimal 
investment trigger in a more general setting.  Section 4 examines 
the relationship between uncertainty and investment by 
decomposing the overall effect into the effect of uncertainty and 
the effect of realization.  The probability of investing is then 
suggested to measure the overall effect of uncertainty on 
investment.  Section 5 gives concluding remarks. 

II. OPTIMAL INVESTMENT TRIGGER 
Since volatility component in stochastic process is regarded 

as major source of uncertainty in evaluating capital investments, 
in this section a variety of stochastic processes are introduced as 
well as the derivation of optimal investment triggers.A 
framework of Monte Carlo simulation for deriving optimal 
investment is also proposed for alternative stochastic models 
that could not be readily solved for a closed form solution. 
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A. Geometric Brownian Motion 
In traditional real options literature, the GBM assumption is 

widely assumed to address for the uncertainty of random walk.  
The main property of GBM is that the rate of return is assumed 
to be normally distributed, implying a lognormal distribution of 
the project value.  A GBM in continuous time is expressed as 
follows: 

dV Vdt Vdzα σ= +                 (1) 

where α , σ , and dz denote drift rate, instantaneous volatility, 
and an increment of a standard Wiener process, respectively. 

A GBM process in discrete time could be changed into the 
following form: 

lnV v t tσ εΔ = Δ + Δ                (2) 

where tΔ  and ε  represent a small interval of time and a 
random drawing from a standard normal distribution, 
respectively, and v=α -σ 2/2. 

Suppose a firm is presented with an investment opportunity 
that pays an irreversible investment cost, I, in return for an 
uncertain project value, V.  This is a standard problem of 
optimal investment timing in real options literature.  V is 
considered to be the major source of uncertainty and is 
normally assumed to follow a GBM as in Equation (1) due to 
the ease of deriving a tractable solution.  The value of an 
investment opportunity is determined by an optimal investment 
policy that maximizes the option value.  Let F(V) denote the 
value of the investment opportunity and the superscript * 
denote optimality.  McDonald and Siegel [8], Pindyck [13], and 
Dixit and Pindyck [6] have demonstrated that the optimal 
investment trigger is given by 

1

1 1GBM
bV I

b
∗ ⎛ ⎞

= ⎜ ⎟−⎝ ⎠
                (3) 

where GBMV ∗  and I denote the optimal GBM trigger and the 
investment cost, respectively, and  

2

1 2 2 2
1 1 2
2 2

r r rb δ δ
σ σ σ
− −⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
         (4) 

where δ  represents convenience yield of holding a project, 
which also implies the opportunity cost of deferring a project. 

B. Mixed Diffusion-Jump Process 

While the preceding GBM could describe the incremental 
changes of random walk, the process fails to capture the 
significant impact of random informational arrival.  A mixed 
diffusion-jump process thus is proposed to combine a Poisson 
jump process into a GBM, expressed as follows:  

( ) 1dV k Vdt Vdz Vdqα λ σ= − + +            (5) 

where dq1 is an increment of a Poisson jump process with a 
mean arrival rate λ  such that 

1

   with a probability of 
0 with a probability of 1-

dt
dq

dt
ϕ λ

λ
⎧

= ⎨
⎩

          (6) 

where φ ~N(k, σ φ ) denotes a proportional jump relative to V 
if a jump occurs. 

Note that the Poisson jump term dq1 is assumed to be 
independent of dz such that E(dq1dz)=0.  Equation (6) also 
reveals that the actual growth rate of such a mixed 
diffusion-jump process is not α  but instead (α -λ k) in order 
to adjust the influence of a Poisson event.  For the simulation 
purpose, the discrete-time version of the mixed diffusion-jump 
process is given as follows: 

1lnV v t t Dσ εΔ = Δ + Δ +              (7) 

where D1 denotes an increment of a Poisson jump in discrete 
time with a mean arrival rate λ  such that 

1

    with a probability of 
0 with a probability of 1-

t
D

t
ϕ λ

λ
Δ⎧

= ⎨ Δ⎩
          (8) 

It is worth noting that McDonald and Siegel (1986) and 
Dixit and Pindyck (1994) also propose a mixed diffusion-jump 
process with the sign of the jump term changed into negative to 
describe the situation in that the project becomes suddenly 
worthless when a major competitor of the same product enters 
the market.   

For an investment opportunity whose value follows a mixed 
diffusion-jump process, McDonald and Siegel [8] and Dixit 
and Pindyck [6] show that when the value of the project may be 
appropriated by competitive arrivals such that the project 
becomes suddenly worthless, the solution of optimal trigger 
under such a mixed diffusion-jump process, V*

MX, has the same 
form as Equation (3) with b1 substituted by b2 as follows: 

2

2 2 2 2
1 1 2( )
2 2

r r rb δ δ λ
σ σ σ
− − +⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
        (9) 

where λ  denotes the jump intensity of competitive arrivals.  

C. Mean-Reverting Process 

Another class of commonly used stochastic process is a 
mean-reverting process which is often proposed to describe the 
price behavior of commodity and natural resources.  The most 
prominent property of a mean-reverting process is that its 
growth rate is not a constant but instead a function of a 
difference between current value and long-run mean, 
suggesting that growth rate in effect responds to 
disequilibrium.  Dixit and Pindyck [6] examine the value of an 
investment opportunity whose value follows a mean-reverting 
process.  The specification of this commonly used 
mean-reverting process is given below: 
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( )dV V V Vdt Vdzη σ= − +              (10) 

where η  denotes a speed of mean reversion and V  is a 
long-run mean. 

As there are many ways to specify a mean-reverting 
process, Dixit and Pindyck’s specification is somewhat 
arbitrary but convenient to find a “quasi-analytical” solution for 
the value of the project.  Equation (10) can be alternatively 
expressed into the following equation in discrete time: 

( ) 21ln
2

V V V t tη σ σ ε⎡ ⎤Δ = − − Δ + Δ⎢ ⎥⎣ ⎦
         (11) 

Under the assumption of a mean-reverting process, Dixit 
and Pindyck [6] provide the solutions of an investment 
opportunity and optimal investment trigger, respectively, as 
follows:  

( )( ) ; ,F V BV G x gθ θ=               (12) 

( )MR MRV F V I∗ ∗= +                 (13) 

where  
2

2 2 2

1 1 2
2 2

V V rη ηθ
σ σ σ

⎡ ⎤
= − + − +⎢ ⎥

⎣ ⎦
, 2

2x Vη
σ

= , 2
22 Vg ηθ
σ

= + , and 

( )
2 3( 1) ( 1)( 2); , 1

( 1) 2! ( 1)( 2) 3!
x xG x g x

g g g g g g
θ θ θ θ θ θθ + + +

= + + + +
+ + +

L .  

Note that G(x, θ ,g) stands for an infinite confluent 
hypergeometric function, and thus the value of the investment 
opportunity cannot be readily solved.  Both Equation (12) and 
(13) must be solved numerically from an iterative procedure to 
obtain V* and F(V*). 

D. Jump Amplitude Process 

To capture the major impact of technological breakthrough 
and informational arrivals in an R&D project, Pennings and 
Lint [11] suggest a jump amplitude process to evaluate such an 
investment opportunity.  The jump amplitude process differs 
from other types of jump process in a sense that it allows for a 
random jump direction and a stochastic jump size in order to 
characterize the nature of R&D investments.  A jump amplitude 
process can be mathematically expressed as follows: 

2dV Vdt Vdqα= +                 (14) 

where dq2 an increment of a stochastic jump process.  The jump 
term, dq2, is characterized by a parameter of jump intensity λ  
such that 

2

    with a probability of 
0 with a probability of 1-

dt
dq

dt
ϕ λ

λ
⎧

= ⎨
⎩

           (15) 

where φ  denotes a proportional jump relative to V. 

By definition, φ =XΓ where X=1 or -1, P(X=1)=p, and Γ
｜X~Wei(γ X,2).  The jump amplitude process in discrete time 
is modeled as follows: 

2lnV v t DΔ = Δ +                 (16) 

where D2 denotes an increment of a stochastic jump component 
in discrete time with a mean arrival rate λ , and D2 is expressed 
by 

2

    with a probability of 
0 with a probability of 1-

t
D

t
ϕ λ

λ
Δ⎧

= ⎨ Δ⎩
           (17) 

Since there is no closed-form solution for an investment 
opportunity whose uncertainty evolves as a jump amplitude 
process.  Numerical techniques must be applied to solve both 
F(V*) and V*.  

III. THE FRAMEWORK OF MONTE CARLO SIMULATION 

A. The Basic Approach 

Since irreversibility complicates capital investments in that 
closed-form expressions for optimal investment triggers 
seldom exist under an alternative process, in this section an 
investment framework for deriving optimal trigger under an 
alternative process in a finite time horizon is proposed.  As it is 
known that a firm can either defer the project in the unfavorable 
market condition or launch the project in the favorable market 
condition, an investment opportunity is equivalent to a call 
option.  Suppose that the investment opportunity will disappear 
at a finite future time T, if the firm does not take any actions.  
Therefore, the value of an investment opportunity at time T, 
given the information set ψ T, is expressed as follows:  

( ) ( )max ,0T T T TF V V I φ= −              (18) 

According to Equation (18), the value of investment 
opportunity at time t can be given by 

( ) ( )max ,0T tP
t TF E e V Iρ− −⎡ ⎤= −⎣ ⎦             (19) 

where EP denotes an expectation operator in a risk-adjusted 
world, P a risk-adjusted probability measure, and ρ  a 
risk-adjusted discount rate. 

In the risk-neutral world, Ft can be derived from  

( ) ( )max ,0T t rQ
t TF E e V I− −⎡ ⎤= −⎣ ⎦             (20) 

or 

( ) ( )max ,0T t r Q
t TF e E V I− −= −⎡ ⎤⎣ ⎦             (21) 

where r denotes a risk-free rate and Q a risk-neutral probability 
measure.   
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It is worth noting that when the market is complete or the 
investor is risk-neutral, there exists a unique risk-neutral 
probability measure Q such that F  can be evaluated by 
Equation (20).  If the market is incomplete or the investor is 
risk-averse, there does not exist such a unique Q and thus F  
can be evaluated by Equation (19).  

Equation (20) or (21) states a fundamental equation for 
valuing an investment opportunity in a numerical procedure of 
Monte Carlo simulation, given any Vt.  

To determine the optimal investment rule, we need to 
search for an investment trigger V*

t such that the net present 
value of taking the project, V*

t-I, can compensate the loss of 
option of waiting, Ft(V*t).  This optimal investment policy can 
be described by a value-matching condition as follows: 

( )t t tF V V I∗ ∗= −                  (22) 

or alternatively  

( )t t tV F V I∗ ∗= +                  (23) 

To rule out the possibility of an arbitrage opportunity or the 
“kinked” situation1, the first derivative of the value-matching 
condition with respect to the state variable at the maximum 
must be equal on both sides.  This is the famous Samuelson 
smooth-pasting condition given below:   

( ) 1
t

tV
F V∗

∗ =                   (24) 

By substituting Equation (21) into (23), we have optimal 
investment trigger, V*

t, expressed as follows: 

( ) ( )max ,0
t t

T t r Q
t T V V

V e E V I I∗
− −∗

=
= − +⎡ ⎤⎣ ⎦          (25) 

Equations (24) and (25) represents two fundamental 
equations necessary to derive optimal investment trigger, V*

t.  
There are two major advantages of applying the approach to 
derive optimal investment triggers.  First, Equations (24) and 
(25) would hold regardless of the underlying assumption of 
stochastic process.  As mentioned earlier, literature has 
indicated that there is a closed-form solution for optimal 
investment triggers under a GBM. [8, 13, 6]  For the projects 
whose state variable follows an alternative process, the 
closed-form solutions for optimal triggers are generally 
unavailable.  Therefore, the proposed approach is particularly 
advantageous when project value follows an alternative 
stochastic process.   

Second, Equation (25) can be conveniently applied to the 
case that the investment opportunity will disappear in a known 
expiration of time in future.  Conventional real options 
literature mostly makes an implicit assumption that the 
investment opportunity can exist in an infinite time horizon for 
the convenience in deriving analytical solutions.  This 
assumption is not quite realistic in practice, especially when the 
factor of technology obsolesce is involved with the project or 
the deferral option has an expiration date.   

 
1 See Dixit and Pindyck [6]. 

It is important to note that growth rate (or drift rate) must be 
assumed to be less than discount rate (either risk-adjusted 
discount rate or risk-free rate), otherwise it will be never 
optimal to early exercise an investment opportunity before the 
expiration time.  By setting growth rate less than discount rate, 
it is equivalent to assume that there exists a positive 
convenience yield which accounts for an opportunity cost 
(denoted by δ ) of delaying the construction of a project.  In a 
risk-neutral world, when convenience yield plays a role in real 
options valuation, the actual growth rate of an underlying 
process must be adjusted by reducing an amount of 
convenience yield.  Therefore, as the opportunity cost of 
delaying a project becomes larger, the actual growth rate of the 
underlying process becomes smaller. 

Since the approach is based on the valuation of a 
European-style option, one may ask whether the early exercise 
premium matters in real options with the American nature.  
According to Barone-Adesi and Whaley [2], for an 
at-the-money option with a moderate opportunity cost ( 4%δ = ) 
and a short time horizon ( 0.25 or 0.5T = ), early exercise 
premium is estimated to be 0.00%. 2   For an at-the-money 
option with a longer time horizon (T=2), early exercise 
premium is estimated to be less than 1%.3  Therefore, it is 
practical to assume that the effect of early exercise premiums is 
minimal and may be negligible in the situations where the 
at-the-money project is of interest.   

B. The Implementation 
As mentioned in the preceding subsection, the technique of 

Monte Carlo simulation can be applied to derive optimal 
investment trigger under an alternative process.  Following the 
idea, we then describe the algorithm of an iterative procedure in 
the implementation of Monte Carlo simulation.  As the first step 
of the procedure, a large number of random paths, given a 
specific stochastic process, are generated to compute terminal 
payoffs.  The next step is to discount terminal payoffs 
backward at a discount rate, which equals the risk-free rate in 
the risk-neutral world or a risk-adjusted rate in the risk-adjusted 
world.  If the discount rate is not certain over the investment 
horizon, an interest rate process needs to be simulated 
simultaneously.  For a reasonable short time horizon, we can 
assume that the discount rate is constant for simplicity.  The 
value of an investment opportunity can be computed from the 
mean of discounted payoffs.  The value of optimal investment 
trigger must be derived from an iterative procedure which 
equates V* and F(V*)+I.   

To derive optimal investment trigger, V*, in the iterative 
procedure it is necessary to start with the first two initial values 
V1 and V2, where V1 and V2 are two guessed numbers which are 
lower than V*.  Next, V1 and V2 are then applied to evaluate the 
right-hand side of Equation (25).  Since it is very unlikely that 
any of the two numbers would equate the value-matching 
condition, we then compute the slope ( χ ) of the line 
connecting both numbers as follows: 

 
2 The risk-free rate is assumed to be 8%.  Refer to Table 2 in Barone-Adesi 

and Whaley [2]. 
3 Refer to Table 5 in Barone-Adesi and Whaley [2]. 
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( ) ( )2 1

2 1

F V F V
V V

χ
−

=
−

                (26) 

Suppose there is a larger number V3, i.e., V3> V2> V1 such 
that the following relationship holds: 

( ) ( )3 2 3 2V F V I V Vχ= + + −⎡ ⎤⎣ ⎦             (27) 

Equation (27) could be rearranged for V3 as shown below: 

( )2 2
3 1

F V I V
V

χ
χ

+ −⎡ ⎤⎣ ⎦=
−

              (28) 

Now V3 can be used to compute a new option value, F(V3), 
and a new slope with respect to V2.  Since it is very unlikely that 
both sides of the value-matching condition are exactly equal 
during the iteration, an acceptance criterion must be established 
in the iterative procedure.  Let ε  be the level of acceptance 
tolerance.  Thus, the new slope, according to Equation (24), 
must satisfy the following criterion to stop the iterative 
procedure:  

1χ ε− ≤                    (29) 

Note that as a smallerε is chosen, the longer the iterative 
procedure it takes, and vice versa.  

IV. THE UNCERTAINTY-INVESTMENT RELATIONSHIP 
Real options literature has suggested that the optimal 

investment rule to launch a project is at the time when the value 
of the project exceeds optimal investment trigger, at which 
point not only investment cost and the option value are covered, 
but also the value of such an investment opportunity is 
maximized.  Since option pricing theory suggests that an 
increase in uncertainty raises the option value, some 
researchers therefore argue that uncertainty may in effect 
discourage investment. 4   Recent study on the relationship 
between uncertainty and investment [15, 7] suggest the 
nonlinear relationship between uncertainty and investment.  
Lensink and Murinde [7] examine the UK evidence and find 
that the effect of uncertainty on corporate investment is indeed 
approximated by an inverted-U shaped relationship, meaning 
that at low levels of uncertainty the effect is positive, but it 
becomes negative at high levels of uncertainty.  Following 
study in the line of the uncertainty-investment relationship, we 
extend the idea to reexamine the overall effects of uncertainty 
on investment given that the state variable follows an 
alternative stochastic process.   

Sarkar [15] applies a probability function of reaching 
optimal investment trigger to compute the probability of 
investing under a GBM process.  Since the probability function 
of investing is unavailable in the situation in which the 
underlying variable follows an alternative stochastic process, 
Monte Carlo simulation is suggested for a more general 

 
4 Cukierman [3] and Metcalf and Hassett [10]. 

purpose to measure the probability of simulated random paths 
reaching optimal investment trigger.   

The procedure of Monte Carlo technique begins with 
simulating a large number of sample paths, given a particular 
stochastic process.  The stochastic processes under 
consideration are GBM, mixed diffusion-jump process, 
mean-reverting process, and jump amplitude process, which 
are simulated according to Equations (2), (7), (11), and (16), 
respectively.  It is worth noting that the actual drift rate of a 
simulated stochastic process must be reduced by a convenience 
yield, i.e., an opportunity cost of holding a project.   

The optimal investment trigger under a given stochastic 
process can be derived from the approach described in the 
preceding section.  In each simulation trial, if at any time the 
project value Vt is greater than V ∗ , this simulation trial is 
counted as a case of taking on the project.  To examine the 
overall effect of uncertainty under a specific stochastic process 
on investment, the probability of investing is then measured by 
computing the total cases of taking on the project out of the 
total simulation trials.  The total number of simulation trials 
should be large enough to ensure a robust result.  Thus, a higher 
probability of investing implies a greater chance of project 
acceptance, hence a positive impact on investment, and vice 
versa.   

( ) ( )*
 trialst n

kP Inv P V V
n

= > =             (30) 

where n is the number of total simulation trials and k is the total 
cases of taking on the project.  

On the relationship between uncertainty and investment, we 
argue that there are two opposing forces within the overall 
effect of uncertainty on investment.  The first force is termed 
the “variance effect”, which states that an increase in 
instantaneous volatility would raise the level of optimal 
investment trigger and therefore delay investment.  The 
variance effect could be identified by observing how optimal 
investment trigger changes as project volatility changes.  The 
second force is called the “realization effect”, which describes 
the situation in that the likelihood of reaching optimal 
investment trigger may increase due to a higher level of 
instantaneous volatility.  The realization effect could be 
identified by observing how the probability of investing 
changes with increased volatility.  Consequently, the 
relationship between uncertainty and investment could be 
obtained by combining these two effects. 

A. The Uncertainty-Investment Relationship under a GBM 

To illustrate the relationship between uncertainty and 
investment, numerical analysis based on a base case is 
conducted.  Consider an investment project whose investment 
cost, I, is 100 in return for a project value at time t, Vt.  V0 is 
assumed to be 100 since the option to invest matters especially 
for a near “at-the-money” project.  The other parameter values 
are given as r=8%, △ t=1/52, and T=5.  Suppose the 
underlying stochastic process follows a GBM.  With the 
framework developed in Section 3, the variance effect can be 
readily observed from the changes in optimal investment 
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triggers as project volatility changes.  The variance effect under 
a GBM is exhibited in Figure 1.   
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Fig.  1.  The Variance Effect under a GBM 

 

As displayed in Figure 1, it is obvious that optimal 
investment trigger, V*

GBM, increases with σ , and decreases 

with δ .  The intuition underlying the positive relationship of 

V*
GBM and σ  is that as investment triggers increases with 

uncertainty, management should defer the project longer until 
the market condition becomes favorable, i.e. Vt>V*.  However, 
as the opportunity cost of holding a project increases, it then 
becomes insensible to postpone the project any longer, hence 
lowering optimal investment triggers.   

To identify the realization effect, 10,000 trials are simulated 
to evaluate the probability of investing.  The simulation result is 
displayed in Figure 2.  As seen in Figure 2, the probability of 
investing is initially an increasing function of volatility, but 
after a certain point it becomes a decreasing function of 
volatility.  This means for a lower level of volatility, an increase 
in uncertainty actually raises the probability of investing and 
thus has a positive influence on investment, while an increase 
in uncertainty, on the other hand, discourages investment for a 
higher level of volatility.  This result of the inverted U 
relationship between uncertainty and investment is consistent 
with the finding in Lensink and Murinde [7].   

In addition, the probability of investing, as shown in Figure 
2, increases with the opportunity cost of holding a project, 
given volatility being unchanged.  Thus, an increased 
convenience yield may have a positive impact on investment, 
encouraging management to launch investment sooner.   

To sum up, the variance effect has a negative impact on 
investment due to the higher optimal investment triggers, while 
the realization effect can have a positive or negative impact on 
investment, depending on the combinations of parameter 
values.  Consequently, the overall effect of these two offsetting 
forces on investment is nonlinear.The numerical analysis 
indicates that uncertainty may in effect encourage investment 
for a lower level of volatility and discourage investment for a 
higher level of uncertainty.  Furthermore, a greater opportunity 
cost may lower optimal investment trigger, leading to a positive 
impact on investment. 
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Fig. 2.  The Probability of Investing as a Function of Volatility (σ) 
Given a GBM Process 

B. The Uncertainty-Investment Relationship under an MX 

Another stochastic process of interest is a mixed 
diffusion-jump process.  Since the mixed diffusion-jump 
process contains an additional source of uncertainty, Poisson 
down jumps, it is necessary to analyze the “jump effect” on 
investment in addition to the variance effect.  The jump effect 
on investment can be defined as the effect of increased jump 
arrivals on optimal investment triggers, other parameters being 
constant.  As a comparison to the project under a GBM, the 
same parameter values in the base case are also applied in the 
numerical analysis.  The jump effect is exhibited in Figure 3.   
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Fig. 3.  The Jump Effect under a Mixed Diffusion-Jump Process 
 

As shown in Figure 3, an increase in the rate of jump 
intensity lowers the optimal investment triggers, holding the 
volatility unchanged.  This finding suggests that an increase in 
jump intensity leads to a positive effect on investment.  The 
intuition is that management should undertake investment 
sooner when there is an increasing probability of jump, 
meaning a higher intensity of competitive arrivals.  Contrast to 
the jump effect, the variance effect under a mixed 
diffusion-jump process still holds, suggesting that increased 
volatility has a negative impact on investment.  This is possibly 
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because only down jumps allowed are in this specific form of 
mixed diffusion-jump process.  

To further illustrate how the combined uncertainty of both 
volatility and jump influence investment, Monte Carlo 
simulation is then conducted to evaluate the probability of 
investing.  Figure 4 provides the result of the probability of 
investing as a function of jump intensity.  According to Figure 
4, the probability of investing appears to be a hump-shaped 
curve as jump intensity increases, holding the volatility 
constant.  For a lower level of jump intensity, the probability of 
investing is initially an increasing function of jump intensity, 
but after a certain point the probability of investing becomes a 
decreasing function of jump intensity.  For example, given 

20%σ = , the probability of investing appears to increase for a 
smaller jump intensity, e.g., λ <30% and to decrease for a 

larger jump intensity, e.g., λ >30%.  Consequently, the overall 
effect of three forces on investment under a MX process 
appears to be an inverted U-shaped function.  
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Fig. 4.  The Probability of Investing as a Function of Jump Intensity (λ) 
Given an MX Process 

 
Figure 4 also reveals another interesting fact that the 

probability of investing under an MX process is significantly 
higher than that under a GBM process.  The intuition behind the 
result is that as long as there is a positive probability of 
competitive entry, it is disadvantageous to defer the project 
infinitely and thus management is forced to launch the project 
sooner in order to preempt potential competitions.   

To sum up, there are three major findings in the numerical 
analysis.  First, the jump effect may result in a lower optimal 
investment trigger, thus suggesting that the jump uncertainty 
may encourage investment.  This result is contrary to the 
variance effect, which has a negative effect on investment.  
Second, the overall effects of combining the variance effect, the 
jump effect, and the realization effect, on investment appear to 
be an inverted U-shaped function, similar to the GBM case.  
Consequently, increased jump uncertainty under a MX process 
can encourage investment in a similar way to increased 
volatility uncertainty.  Third, it is also demonstrated that the 
probability of investing appears to be larger than that the GBM 
case, with the competitive entry as a down jump taken into 
account.  Therefore, increased uncertainty in terms of 

additional down jumps could have a positive impact on 
investment, contrary to conventional wisdom. 

C. The Uncertainty-Investment Relationship under an MR 

Metcalf and Hassett [10] and Sarkar [16] investigate the 
relationship between uncertainty and investment under a 
mean-reverting process.  Metcalf and Hassett[10] argue that 
mean reversion has two opposing effects, the variance effect 
and the realized price effect, on investment, and the overall 
effect of these two forces are appropriately equal to such an 
extent that mean reversion can be justified by the common 
assumption of a GBM process.  Sarkar [16] extends their 
analytical framework by considering another effect of mean 
reversion, termed the risk-discounting effect of systematic risk, 
and thus contends that mean reversion in fact has a major 
(either positive or negative) impact on investment, depending 
on the combination of parametrical values of project duration, 
cost of investing, and interest rate.   
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Fig.  5.  The Mean-Reverting Effect under a Mean-Reverting Process 
 

Consider the same investment project in the preceding base 
case.  The optimal investment triggers under an MR process are 
derived according to Equations (12) and (13).  Figure 5 
displays the sensitivity of the optimal investment triggers, V*

MR, 
to the changes in volatility and speed of mean reversion.  As 
revealed from the diagram, V*

MR appears to be a decreasing 
function of mean-reverting speed, implying that an increase in 
the speed of mean reversion leads to a decrease in the optimal 
investment trigger.  This inverse relationship between speed of 
mean reversion and optimal investment trigger suggests that 
mean reversion results in a lower investment trigger, which 
increases the probability of project value exceeding investment 
trigger.   

Why a faster speed of mean reversion tends to lower 
optimal investment trigger? As stated in Metcalf and Hassett 
[10], increased speed of mean reversion may lead to a decreases 
in the long-run volatility of project value and in effect lower 
optimal investment trigger.  It is therefore important to 
distinguish instantaneous volatility (or conditional volatility) 
from long-run volatility (or unconditional volatility) in the 
mean-reverting case.  Consequently, even though a project 
under a MR process has the same instantaneous volatility as 
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that under a GBM, the project under a MR process tends to 
have a lesser long-run volatility due to the property of mean 
reversion. 

On the other hand, the mean-reverting effect on lowering 
the optimal trigger for a lower level of mean reversion speed is 
more sensitive than for a higher level of mean reversion speed.  
This result is mainly because optimal investment trigger for a 
higher level of mean-reverting speed is pretty close to 
investment cost, implying a smaller option value and thus 
leaving a lesser space to bring optimal trigger even closer.   
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Fig. 6.  The Probability of Investing under a Mean-Reverting Process 
as a Function of Volatility (σ) and Speed of Mean Reversion (η) 

 
As we further examine the realization effect under a MR 

process by conducting Monte Carlo simulation, the probability 
of investing as a function of volatility and mean-reverting 
speed is exhibited in Figure 6.  There are two major findings 
that can be drawn from the diagram.  First, the probability of 
investing under a mean-reverting process appears to be an 
increasing function of volatility for the base case, holding the 
speed of mean reversion constant.  Consequently, the inverted 
U-shaped relationship between uncertainty and investment is 
less significant in the MR case.  Second, similar to the other 
stochastic processes, the realization effect of volatility could 
have positive influence on investment, suggesting that 
increased (instantaneous) volatility under an MR process could 
encourage investment due to a higher probability of investing.   

It is also interesting to examine how mean reversion 
influences the realization effect on investment.  Figure 7 
displays the probability of investing as a function of 
mean-reverting speed.  As illustrated in Figure 7, the 
probability of investing appears to be a convex, decreasing 
function of mean-reverting speed for all the levels of 
instantaneous volatility, suggesting that the realization effect 
under an MR process may reduce the chance to invest as the 
speed of mean reversion increases.  The evidence drawn from 
Figure 10 is consistent with the finding in Sarkar [16]. 5  
However, this result, contrast to Sarkar [16], still holds 
regardless of the presence of “risk-discounting effect”. 

 
5 Sarkar [16] states that mean reversion tends to have a positive (negative) 

impact on investment for long-lived (short-lived) projects, holding others 
constant.  The short-lived project in his numerical analysis is 5 years, same as 
the base case our study here. 
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Fig. 7.  The Probability of Investing under a Mean-Reverting Process 

as a Function of Mean-Reverting Speed (η) 

To sum up, increased uncertainty under an MR process has 
three major effects on investment, namely, the mean-reverting 
effect, the variance effect, and the realization effect.  The 
mean-reverting effect has an inverse impact on optimal 
investment trigger, hence leading to an increasing probability 
to invest.  The variance effect incurs an increase in optimal 
investment trigger, thus implying a negative impact on 
investment.  Combining the realization effect to the former 
effects, increased uncertainty under a mean-reverting process is 
found to have a positive impact on investment.  However, 
although mean reversion may lower the long-run volatility and 
thus reduces optimal investment trigger, yet increased 
mean-reverting speed also diminishes the likelihood of 
reaching the optimal trigger such that the overall effect under 
an MR process may have a negative impact on investment.   

D. The Uncertainty-Investment Relationship under a JA 
The fourth stochastic process of interest is jump amplitude 

process, which is characterized by stochastic jumps in a setup 
that both jump direction and jump size are purely random.  
Since there is no closed-form solution for optimal investment 
trigger under a JA process, the technique of Monte Carlo 
simulation proposed in the preceding section is applied to 
derive V*

JA.  Since the main source of uncertainty is stochastic 
jumps under a jump amplitude process, numerical analysis is 
directed at examining the overall effect of two opposing forces, 
the jump effect and the realization effect.  The jump effect 
under a JA process describes how stochastic jumps impact on 
V*

JA and the realization effect measures the probability of Vt 
exceeds V*

JA.   
With the parametrical values in the base case, the jump 

effect on optimal investment trigger, by varying jump intensity 
(λ ) and mean jump size (γ ), is presented in Figure 8.  As 
shown in Figure 8, the increase in jump intensity in the setting 
of stochastic jumps resulting in raising optimal investment 
triggers, thus suggesting a negative impact on investment.  
Furthermore, an increase in jump size leads to an increase in 
V*

JA, holding jump intensity and the other parameters constant.   
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Fig.  8.  The Jump Effect under a Jump Amplitude Process 
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As both jump size and jump intensity increase, the jump 

effect on raising V*
JA becomes more obvious due to an increase 

in option value, hence leading to a convex, increasing function 
of both jump intensity and jump size.  

To further examine the realization effect, Monte Carlo 
simulation is conducted to evaluate the probability of investing.  
Figure 9 presents the sensitivity of the probability of investing 
to the changes in jump intensity for three different levels of 
jump size.  As seen from Figure 9, the probability of investing 
appears to be a invested U-shaped curve as jump intensity 
increases.  The probability of investing indicates an increasing 
function of jump intensity at a lower level of jump intensity, but 
after a certain point of jump intensity, the probability of 
investing becomes a decreasing function of jump intensity.   

Figure 9 also shows that the curve of the probability of 
investing climbs up as jump size increases.  Since jump size 
indicates another form of uncertainty, this means that increased 
uncertainty may increase the probability of investing.  As a 
result, the overall effect of combining jump size and jump 
intensity does not necessarily discourage investment under a JA 
process.   

V. CONCLUDING REMARKS 
Conventional belief in a negative relationship between 

uncertainty and investment has dominated investment theory 
for a long time.  This paper postulates an argument that 
increased uncertainty, in certain situations, may actually 
encourage investment.  Since earlier studies mostly base their 
arguments on the GBM assumption, the study extends the 
assumption to alternative stochastic processes, e.g., MX, MR, 
and JA processes, and finds that increased uncertainty in terms 
of different sources may encourage investment.  The overall 
effect of uncertainty on investment is interpreted by the 
probability of investing, and found to be an invested U-shaped 
relationship between uncertainty and investment.  This finding 
is consistent with the conclusion in Lensink and Murinde [7], in 
which the UK evidence is examined.   

The study proposes the technique of Monte Carlo 
simulation to derive optimal investment trigger and the 
probability of investing.  The overall effect of uncertainty on 
investment is analyzed by decomposing the overall effect into 
the variance effect and the realization effect.  The former 
describes the effect that increased uncertainty raises optimal 
investment trigger, thus discouraging investment; while the 
latter states that increased uncertainty may in reality increase 
the probability of investing, thus encouraging investment.  For 
other stochastic processes, additional source of uncertainty is 
also explored as it may complicate the overall effect on 
investment.  There are several additional effects under 
alternative processes.  First, it is demonstrated that the jump 
effect under a MX process may lower optimal investment 
trigger, thus leading to a positive impact on investment.  
Second, the effect of mean reversion under a MR process may 
lower optimal investment trigger, thus leading to a positive 
impact on investment.  Third, the effect of stochastic jumps 
under a JA process are complicated by jump intensity and jump 
size, both of which raise optimal investment trigger, thus 
resulting in an inverse impact on investment.  As a result, 
uncertainty which consists of several sources of risk profiles 
may complicate the overall effect on investment. 

The implication of the main finding is that uncertainty does 
not always discourage investment even in the presence of 
various risk sources.  Furthermore, it is obvious that high-risk 
projects are not always dominated by low-risk projects because 
high-risk projects may have a positive realization effect due to a 
higher probability of exceeding optimal investment trigger, 
leading to a positive impact on investment.  Management may 
improve firm value by choosing the right type of projects under 
the consideration of market conditions.  Since this study 
considers an investment project at the individual firm level, 
future study could direct to analyze how increased uncertainty 
impacts on aggregate investment. 
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