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Abstract— This paper presents an architecture of current filesystem
implementations as well as our new filesystem SpadFS and operating
system Spad with rewritten VFS layer targeted at high performance
I/O applications. The paper presents microbenchmarks and real-world
benchmarks of different filesystems on the same kernel as well as
benchmarks of the same filesystem on different kernels — enabling
the reader to make conclusion how much is the performance of
various tasks affected by operating system and how much by physical
layout of data on disk. The paper describes our novel features — most
notably continuous allocation of directories and cross-file readahead
— and shows their impact on performance.
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I. INTRODUCTION

NOVEL approaches to filesystem design are needed be-
cause of growing disk sizes and transfer rates. When

doing operations involving many files, performance in cur-
rent filesystems is CPU-limited rather than disk-limited, thus
filesystems achieve much lower transfer rate than disk’s
nominal speed. In this paper we present new filesystem —
SpadFS [1] — as well as design of new kernel with improved
filesystem interface that addresses these issues.

We benchmark our filesystem and other popular file systems
— Ext2 [2], Ext3 [3], ReiserFS [4], Reiser4 [5], XFS [6],
JFS [7] on two operating system kernels — Linux 2.6 and an
experimental Spad [8].

We benchmark different filesystems on the same operating
system kernel as well as the same filesystem on different op-
erating systems. Thus we can compare the impact of physical
data layout and kernel interface design on performance of
various filesystem operations. SpadFS and Ext2 were bench-
marked twice — once on Linux kernel and once on Spad
kernel. The filesystems have the same layout of disk structures
on both operating systems, but different code was driving it.

It will be shown that performance in certain workloads
depends more on design of interface between kernel and
filesystem driver (VFS) than on actual layout of data on
disk. We emphasize the importance of research of the VFS
architecture.

The paper has the following structure: in section 2 we
describe general interface to filesystem implementations within
operating system kernels and we present architecture of our
new Spad kernel. In section 3 we present an overview of
features of Spad filesystem. In section 4 we describe features
of all benchmarked filesystem. In section 5 we describe the
configuration of benchmarks and in section 6 we present the
results and discuss them.

1This work was partially supported by the Ministry of Education of the
Czech Republic (grant MSM0021620838).
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II. SYSTEM ARCHITECTURE

A. Development of Filesystem Architecture

Old operating systems had only one filesystem. The filesys-
tem code was mixed with other parts of kernel. When the
need for more filesystems arose, the developers found that
many tasks (for example caching) were identical to all dif-
ferent filesystems. Thus they split the filesystem code into
filesystem-dependent part and filesystem-independent part [9]
(often called VFS — virtual file system). The architecture of
filesystem implementations in operating systems is shown in
Figure 1.

VFS is specific to a given operating system and it is used
by all filesystem implementations running on that system.
Over the past years, more and more functionality has been
moved from filesystem-dependent part to the VFS: Inodes are
stored in the VFS in filesystem-independent format. Unified
page cache was created in Linux 2.0 and FreeBSD 2 so that
when taking page faults, data do not have to be copied from
filesystem buffers to pages. Directory lookup caches were
added to Linux 2.2 and FreeBSD 2 to save time when resolving
long directory paths.

Filesystem-dependent part only fills inode and directory
caches and maps logical blocks in a file to physical blocks
on the disk; any further reading or writing is done by the VFS
without any interaction with filesystem driver.

Thus, the performance of the VFS becomes even more
important than the performance of the filesystem driver. We
benchmarked filesystems with the same data layout (SpadFS
[1], Ext2 [2]) on two operating systems’ VFS implementations
— Linux 2.6 and Spad, to show the impact of the VFS on
filesystem performance.

B. Shortcomings of Linux VFS Design

Linux page cache first appeared in Linux 2.0 — it worked
only for reading, writing was done via buffer cache. In
Linux 2.4 page cache was redesigned to handle writes as well.
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The most important problem of the page cache is that it
works on block basis. Each page has linked list of buffer heads,
each buffer head describes one block1. Thus, Linux kernel
is extremely inefficient with small block sizes — the largest
possible block size has to be used for decent performance.

Another inefficiency comes from the fact that most Linux
VFS caches are write-through — they handle reads without
interacting with the filesystem, but they call filesystem driver
on writes.

• Page cache calls filesystem driver for each block when
extending the file — the overhead of these calls causes
high CPU consumption.

• Directory cache is completely write-through — all di-
rectory modifications are propagated into the filesystem
driver immediately. The filesystem driver than places the
modifications into buffer cache (thus they are not written
to disk immediately), but passing the modifications be-
tween VFS, filesystem driver and buffer cache consumes
a lot of CPU.

• Inode cache on Linux is write-back — it holds modifi-
cations to the inode and passes them to the filesystem
driver asynchronously at later time. However, filesystem
driver is called for each allocation or free of an inode.

C. Design of the SPAD VFS

SPAD VFS is completely redesigned filesystem interface
where we tried to solve the above shortcomings.

Page cache doesn’t contain list of blocks anywhere, it is
completely extent-based. Each page has 4 values: start of
valid data, end of valid data, start of dirty data, end of dirty
data. The advantage is that no additional structures for blocks
are required to manage data (thus filesystems on the top
of the SPAD VFS can run with arbitrarily small block size
without negative performance impact). This design has a slight
disadvantage too — when the user needs to write block m in a
page and later he writes block n, all blocks between m and n
must be written (while Linux VFS could only write specified
blocks m and n). The impact of this disadvantage is minimal
— for disk with 50MB/s transfer speed, reading or writing
4kB page takes 82us, one seek usually takes 8ms.

SPAD VFS caches are write-back. When the user extends
a file, the file is written to cache and no calls to filesystem
are made. When the user wants to flush the file (with sync
or fsync syscall), the whole file is allocated at once on
disk. It reduces CPU load on the block allocator. Linux VFS
would call filesystem allocator on block-by-block basis in this
scenario.

SPAD VFS caches not only file writes, but also file and di-
rectory creating and deleting. When the user creates directory
tree, the tree is created in the VFS cache and it is allocated
later at once in a continuous block. Similarly when more files
or directories are deleted, they are only marked for deleting
in the cache and the real deallocation of blocks is done later.

To make delayed allocation work properly, the filesystem
must provide upper bounds of number of allocated blocks for

1The limitation that block size must not be larger than page size in Linux
filesystems comes from this design.

each operation (creating file, creating directory, extending file)
— the VFS makes sure that it will never run out of space when
delaying an allocation.

The effect of delayed allocation is reduction in CPU con-
sumption. Another result is continuous allocation of files and
directories. When extending a file, Linux VFS calls filesystem
driver on block-by-block basis, the filesystem driver doesn’t
know file size in advance and can’t optimally allocate file.
On the SPAD VFS with delayed allocation, filesystem driver
knows the size of the file when allocating it and can allocate
continuous space for the file or all files in a directory.

III. DESIGN OF SPAD FILESYSTEM

A. Directories

The SPAD filesystem uses modified Fagin’s extendible
hashing [10] for directory management. File name is hashed
into 32-bit word and the word is used to index hash table.

We made several modifications to Fagin’s method:
• In the hash word, the least significant bit is taken first

and the most significant bit is taken last (because the
least significant bit varies more in our implementation).

• We cannot allocate arbitrarily large hash table on the disk,
so from certain size of hash table, we create a tree of
tables.

• If there are more hash collisions than number of objects
per page, the Fagin’s method will fail. Such failure would
be unacceptable in a filesystem. Thus, we added link
pointers to pages — in case of extreme collisions, the
pages will form a double-linked list of arbitrary length.

To optimize file access performance, the SPAD filesystem
stores inodes directly in directory entries if these two condi-
tions are met:

• There are no hard links to the inode.
• The inode has at most two extents.

B. File Allocation Information

File allocation information is stored in direct/indirect blocks,
similar to the traditional Unix filesystem [11]. But instead of
using array of blocks, we use array of extents — to conserve
space and improve performance [12].

The allocation structure has 20 direct blocks (each contain-
ing one extent) and 10 indirect blocks of indirection levels
from 1 to 10 — each containing pointers to other allocation
structures.

C. Free Space Management

The SPAD filesystem uses extents to describe free space.
Free space is stored in double linked list containing pairs
(starting block, number of blocks). These double-linked lists
are contained in allocation pages. Global index maps areas on
disk to allocation pages. When the space in allocation page
overflows, the page is split to two pages and index is updated.
In the case of extreme fragmentation, double linked list is
converted to a bitmap.

The process is described in detail in our technical report
[13].
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IV. FILESYSTEM FEATURES

Now we describe features that other tested filesystems have.
In table 1 you can see individual features of each tested
configuration.

Fast recovery
The possibility to quickly recover after a crash with-
out scanning the whole filesystem. On most filesys-
tems this is accomplished by using journal. SpadFS
implements a different method — crash counts [14].

Indexed directories
The ability of a filesystem to quickly find a file in a
large directory without scanning the whole directory.
In most filesystems BTrees or B+Trees are used.
They may be used either directly with filename as
a key (JFS [7]) or in such a way that filename is
hashed and the hash value is used as a key to BTree
(Ext3, ReiserFS [4], Reiser4, XFS [6]). SpadFS uses
different method — a slightly modified variant of
Fagin’s extendible hashing [10] (see section 3.1).

Extents
The filesystem stores file allocation information in
triplets (logical block, physical block, size) rather
than having list of all physical blocks forming a
file. Extents significantly reduce the space needed
for metadata of large files. The effect of extents
on filesystem performance has been experimentally
evaluated by Z. Zhang and K. Ghose [12].

Optimized small files
The filesystem can efficiently store large amount
of small files. ReiserFS and Reiser4 can store file
content directly in the tree so that it consumes exactly
the required amount of space, no padding to the block
size is done. In the Spad VFS we took a different
design course to achieve efficiency for small files —
we allowed the filesystem to run with the block size
of 512 bytes — thus small files are padded up to 512-
byte blocks, unlike 4096-byte blocks most commonly
used in Linux filesystems. When SpadFS runs on the
top of Linux kernel, it is recommended to use 4096-
byte blocks because Linux kernel page cache handles
small blocks inefficiently.

Delayed allocation
Most filesystems allocate space on disk when syscall
write is called. This makes the syscall slow. An
obvious improvement is to allocate space on disk
when the cache is about to flush file blocks, not when
the data were put to cache with write syscall —
this is called delayed allocation. Delayed allocation
has two advantages: it reduces time of cached writes
significantly (as will be seen in benchmarks in next
section) and it reduces file fragmentation, because
continuous space can be allocated for file size ex-
actly. XFS has delayed allocation for file data [6].
Reiser4 has delayed manipulation of tree — tree
entries are created in the time of the syscall but the
nodes are allocated when the filesystem is flushing
cache. Unfortunately Reiser4 gets this (and other)

features by reimplementing a lot of work that is
expected to be done in the VFS, which lead to refusal
of Linux kernel developers to include it in standard
kernel [16]
In the Spad VFS we took this approach fur-
ther and moved the delayed allocation framework
from filesystem-dependent driver to the filesystem-
independent VFS. Spad VFS can delay almost all
operations — it has delayed allocation of file data,
delayed adding of file’s directory entry to a directory,
delayed delete of files and delayed allocation of
whole directories — these features are integrated in
the Spad VFS and thus any filesystem on top of it
automatically uses them. Delayed allocation of whole
directories enable another novel feature: continuous
allocation of a directory. When the filesystem is
about to allocate space on disk, it sums the size of
all new files in a directory and allocates continuous
space for all of them. This improves efficiency of
another feature — cross-file readahead.

Cross-file readahead
The ability to read ahead across boundaries of indi-
vidual files. Read ahead within files is implemented
in all current operating system. We widened this
principle, doing read ahead when sequentially read-
ing directories containing many small files. As with
delayed allocation, this feature is integral part of the
Spad VFS and thus all filesystems on top of it benefit
from it.
Aggressive readahead has been already envisioned by
researchers [17]. It is based on the fact that transfer
speed of devices increases more and more while
seek time remains roughly the same, thus the cost
of readahead decreases. Our algorithm works in a
simple way: if the file being read is smaller than
32KiB, we read 16KiB data past file end. If access
to some other file hits the prefetched area, we read
ahead following 64KiB data (experiments showed
that reading more doesn’t increase performance).
Reiser4 has different kind of cross-file read ahead —
it attempts to read the tree in advance if it detects
sequential access to it. It does not attempt to read
ahead file data though.

V. BENCHMARKING METHODOLOGY

With rising memory sizes, a lot of data is kept in cache.
Thus, performance of cached operations is often even more
important than performance of raw disk I/O speed — so both
cached and uncached operations will be benchmarked.

For server applications running many processes, I/O
throughput is not the only factor that matters. Another impor-
tant feature is the CPU consumption — i.e. how much CPU
time does the process performing filesystem I/O consume and
how much CPU time does it leave to other processes. Both
throughput and CPU consumption will be measured. Operating
system tools such as ”top” or ”time” commands or clock()
function are not precise enough to measure CPU consumption
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TABLE I

FILESYSTEM FEATURES

Fast Indexed Extents Optimized Delayed Cross-file
recovery directories small files allocation readahead

Linux/Ext2 No No No No No No
Linux/Ext3 Yes Optional No No No No
Linux/ReiserFS Yes Yes No Yes No No
Linux/Reiser4 Yes Yes Yes Yes Yes Tree only
Linux/XFS Yes Yes Yes No File content No
Linux/JFS Yes Yes Yes No No No
Linux/SpadFS Yes Yes Yes No No No
Spad/SpadFS Yes Yes Yes Partial Yes Yes
Spad/Ext2 No No No No Yes Yes

(they work by looking at process state in 10ms intervals and
computing approximate CPU consumption) so, instead, we run
two threads, the first thread performing I/O and the second
thread spinning in a loop and incrementing single variable.
From the number of iterations done by the second thread we
can compute with almost CPU tick-level granularity how much
time the first thread consumed. The second thread has priority
lowered to minimum, so that it does not take processing power
from the main thread when doing CPU-intensive workload. We
disabled hyperthreading so that the measuring is accurate.

CPU consumption is measured only for raw uncached
I/O benchmarks. For cached benchmarks, CPU consumption
is obviously 100% and disk utilization is 0%, because the
benchmark reads all the data from the cache. We do not
report CPU consumption as percentage, but rather as seconds
of time consumed. Percentage reporting is misleading —
the filesystem that can finish the task faster reports higher
percentage of CPU time consumed.

A. Hardware and Software Configuration

Benchmarks were performed on Pentium 4 processor run-
ning at 3GHz with 16kB L1 cache, 2MB L2 cache and
1GiB RAM. The computer has ASUS mainboard with ICH-7
chipset, dual DDR-2 533 memory modules, 160GB Western
Digital Caviar SATA disk.

Linux benchmarks were done on SUSE Linux 10.0 with
ReiserFS root partition with generic kernel 2.6.18.6. Spad
benchmarks were done on the current development version
with SpadFS root partition.

Tests were done on a clean 20GB partition located at the end
of the disk, reformatted to a particular filesystem before each
set of tests. The test partition was small compared to the size of
the whole disk to minimize effects of transfer speed differences
due to ZCAV [18] [19]. Transfer speed at the beginning of disk
is 48.6MB/s, transfer speed at the end is 38.5MB/s.

All filesystems were created with default settings, except
for the following two exceptions: Ext3 directory index was
enabled (Ext3 supports indexed directories [20] [21] for fast
lookup in large directories but they are not enabled by default)
and SpadFS metadata checksums were disabled (all the other
filesystems don’t have metadata checksums, thus we did not
want to give SpadFS unfair disadvantage).

B. Benchmarks Performed

We performed the following microbenchmarks showing the
performance of particular filesystem functions: reading a small
file from cache, writing a small file to cache, uncached read
of a large file, uncached write of a large file, uncached rewrite
of a large file (i.e. writing a file that is already allocated).

We performed some benchmarks consisting of real-
workload: extracting of a tar archive, copying a directory
tree, reading a directory tree, comparing two directory trees,
deleting a directory tree.

The source code for benchmarking program can be seen in
[15]. Cached benchmarks were performed repeatedly for 0.1
seconds. File read and write benchmarks were performed five
times and they showed no more than 1% variance. Operations
on the directory tree were performed five times and they
showed no more than 5% variance.

VI. RESULTS

A. Cached Read

In figure 2 we can see the time required to read from
the cache. Because reading from cache does not depend on
filesystem code at all and depends only on the VFS code,
we can see the only difference between Spad and Linux
VFS’s, not between actual filesystems. We can clearly see the
performance degradation when 2MB CPU cache fills up. From
this point on, the performance does not depend on operating
system at all.

Reiser4 is the only Linux filesystem that does not line up
with the others — the reason for this is that it replaces common
Linux VFS functions with its own implementation [16].

B. Cached Write

Figure 3 presents similar benchmark — time to write to the
cache. Most filesystems do allocation of blocks at this stage,
so the time is dependent on actual filesystem implementation
— it depends on the speed of its block allocator. On smaller
file sizes Spad VFS clearly wins, being 6 times faster than
fastest Linux filesystem, Ext2. It is because Spad does not
do any block allocation at this stage, it does delayed block
allocation when physically writing data.

As expected, performance of Spad/SpadFS and Spad/Ext2
is the same because Spad VFS does not call any filesystem-
specific code in this scenario.
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Fig. 3. Time to write a file to cache depending on file size

XFS has delayed allocation too, but it scores bad at this
benchmark — one of the main reasons is that it is internally
written for IRIX VFS and has a layer that translates Linux
VFS calls to it [22].

Again, once the size of the L2 cache is exceeded, the
benchmark does not depend on filesystem or operating system
at all.

Next, we measured uncached operations (Fig. 4) — we
created 8GiB file, rewrote the file without truncating it and
read it. Ext2, Ext3 and ReiserFS clearly lose on rewrite
operation — it is because they contain table of all allocated
blocks instead of list of extents and they need to read a lot of
data to determine locations of blocks that need to be rewritten.
Spad VFS shows slightly lower write throughput compared to
the same data layout on Linux VFS.

However, raw throughput is not the only important factor.
Another issue is CPU consumption. CPU consumption of the
same operations is showed in figure 5. We can see Ext3 clearly
losing for writing and Reiser4 for reading. Spad VFS has
the lowest consumption for reading. It can be seen that CPU
consumption during reading depends more on the VFS layer
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Fig. 5. CPU consumption of filesystems when creating/rewriting/reading
8GiB file

than on the filesystem itself — it is because in all modern
operating systems reading is done by the kernel with very little
interaction with the filesystem driver — filesystem driver only
passes block numbers to the kernel.

C. Operations with Directory Tree

Next, some real-workload benchmarks were performed.
We downloaded sources of OpenSolaris operating sys-
tem — on-src-20060814.tar.bz2 from address
http://www.opensolaris.org/. This file was selected
because it is one of the largest software archives on the
Internet. We decompressed it, creating 365MB .tar file
containing 6275 directories, and 34411 files and the following
operations were done with it: we unpacked the file with tar
xf command, we copied the unpacked directory tree with
cp -a command, we read the whole directory tree with
grep -r command, we compared both copies with diff
-r command, finally we deleted the directory tree with rm
-rf command. Cache was invalidated between all these tests.
Times of these operations are shown in figure 6.

Ext2, despite being the oldest filesystem, performs excep-
tionally well, winning directory read and directory copy bench-
marks. The reason for this is its simplicity — this benchmark
consists of many small files (so extents do not create an
advantage) and directories with few entries (so directory index
will likely hurt the performance). The simplicity of Ext2 makes
it consume small amount of CPU time and win.

SpadFS on Spad and Reiser4 come next, SpadFS very
slightly winning copy and Reiser4 very slightly winning
extract. SpadFS wins by order of magnitude on the delete test
due to the fact that it concentrates metadata in a dedicated
zone.

It can be seen that filesystems with cross-file readahead
(both filesystems on Spad VFS and Reiser4) win by order of
magnitude in the diff test. The diff test makes the disk head
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seek vigorously from one tree to the other, filesystems without
cross-file readahead would read one file from one tree (having
a few kB size) and seek to the other while filesystems with
cross-file readahead can read more files in advance.

VII. CONCLUSION

We benchmarked various Linux filesystems and our novel
SpadFS filesystem and Spad kernel.

It was shown that SpadFS performs comparable to other
filesystems and outperforms them at some occasions.

It was shown that Spad VFS is a promising design of a
new filesystem interface architecture providing fastest cached
operations, fastest creating and reading of directory with many
small files, fastest extraction and copying of archive and
smallest CPU consumption during uncached reading.

Journaling significantly slows down performance on direc-
tory tree manipulation benchmarks compared to filesystem
without fast crash recovery (Ext2) and filesystem with crash
counts [14] (SpadFS). The only journaled filesystem that per-
forms well in this benchmark is Reiser4. On CPU consumption
test, it can be seen that all journaled filesystems consume larger
amount of CPU time — this is due to the implementation
complexity of journaling code.

It can be seen that the novel feature ”cross-file readahead”
can guarantee decent performance when accessing more di-
rectory trees simultaneously.

In this paper we have shown that for certain workloads
the design of interface between kernel and filesystem driver
affects performance more than physical layout of data on disk.
The architecture of this interface layer thus becomes the new
promising course of filesystem research.
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