
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3778

Abstract—Software maintenance, which involves making

enhancements, modifications and corrections to existing software
systems, consumes more than half of developer time. Specification
comprehensibility plays an important role in software maintenance as
it permits the understanding of the system properties more easily and
quickly. The use of formal notation such as B increases a
specification’s precision and consistency. However, the notation is
regarded as being difficult to comprehend. Semi-formal notation such
as the Unified Modelling Language (UML) is perceived as more
accessible but it lacks formality. Perhaps by combining both
notations could produce a specification that is not only accurate and
consistent but also accessible to users. This paper presents an
experiment conducted on a model that integrates the use of both
UML and B notations, namely UML-B, versus a B model alone. The
objective of the experiment was to evaluate the comprehensibility of
a UML-B model compared to a traditional B model. The
measurement used in the experiment focused on the efficiency in
performing the comprehension tasks. The experiment employed a
cross-over design and was conducted on forty-one subjects, including
undergraduate and masters students. The results show that the
notation used in the UML-B model is more comprehensible than the
B model.

Keywords—Model comprehensibility, formal and semi-formal

notation, empirical assessment.

I. INTRODUCTION
OFTWARE understandability is a characteristic of
software quality, which means ease of understanding of

software systems [1]. In Boehm’s quality model for instance,
understandability is considered an important aspect of
software maintenance. Software maintenance in general
accounts for the largest cost in the software lifecycle [2],
where software understandability or comprehensibility plays a
crucial and costly role in the software maintenance process
[3].

Software specification is the fundamental software artefact
as it captures what a system should do. It is the primary point
of reference for engineers who need to deal with a system
including the maintainers. Maintainers scrutinise
specifications to understand not only the localised properties
of a system that need to be changed but also the context within
which the changes should take place. These tasks are not
straightforward particularly when the specifications tend to be

Manuscript received August 31, 2006.
R. Razali is with the Dependable Systems and Software Engineering

Group, School of Electronics and Computer Science, University of
Southampton, UK (e-mail: rr04r@ecs.soton.ac.uk).

P. W. Garratt is with the Dependable Systems and Software Engineering
Group, School of Electronics and Computer Science, University of
Southampton, UK (e-mail: pwg@ecs.soton.ac.uk).

unreliable and when the notations used are not familiar to
them or difficult to interpret. Maintenance in essence costs
engineers time, effort and money. This requires that the
maintenance process be as efficient as possible. Specification
comprehensibility is necessary for an efficient maintenance
process as it allows maintainers to understand the system
properties quickly prior to the modification task.

The notation used in a specification plays a vital role in
specification comprehensibility. The comprehension process
and the subsequent tasks related to it will be affected if the
people involved have to struggle in deciphering the notation
used rather than concentrating on the specification’s contents.
It has been known that the use of formal notation in a
specification increases its precision, which in turn enables
greater consistency and correctness to be obtained, e.g. [4],[5].
Nevertheless, it has been a concern that the notation could also
cause comprehension difficulties, e.g. [6]-[8]. The notation is
seen as being so difficult to comprehend that highly trained
engineers are required to employ them. In fact, it has been
recommended that a formal method specialist should support
the engineers in order to ensure that the notation is interpreted
and employed correctly [9]. Moreover, the notation is seen as
more usable for programmers rather than for the engineers
who need to specify the system requirements [10]. It is
believed that the widespread adoption of formal methods in
industry will only happen when the formal notation is more
accessible to a wide range of users.

The accessibility of visualisation techniques such as the use
of graphical notation in software specification has been
recognised for some time [11]-[13]. The graphical notation is
considered as easy to grasp quickly as in some sense it is
analogous to the world that it represents [14],[15]. On the
other hand, the graphical notation is not as expressive as the
textual notation since some aspects of system characteristics
could not be specified completely using only diagrams [16].
Besides, the underlying factors that contribute to the
superiority of graphical representation are not well understood
[17]. Perhaps the combination of the graphical notation and
the textual notation together in a specification could be a
strategy to establish synergy between both notations.

Formal notation normally appears as textual whereas semi-
formal notation mainly as graphical. The graphical
representation in semi-formal notation is easy to understand
and supports refinement activities. On the other hand, formal
notation supports consistent and precise representation of
system requirements. By integrating formal and semi-formal
notations, practitioners could indeed benefit from both
graphical and textual notations. One of the ideas towards this
integration is to combine the formal notation used in a formal
method, namely the B method [18], and the semi-formal
notation used in the Unified Modelling Language (UML) [19].

Measuring the Comprehensibility of a UML-B
Model and a B Model

Rozilawati Razali, and Paul W. Garratt

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3779

A method called the UML-B [20],[21] is one of the products
of this integration. The rationale behind this integration is that
the B method has strong industrial supporting tools such as
Atelier-B [22], B-Toolkit [23] and Click'n'Prove [24], and the
UML has become the de facto standard for system
development [25].

This paper presents an experiment conducted on the UML-
B method. The experiment aimed to evaluate the notation used
in the UML-B method in order to know whether it could
improve the specification or model comprehensibility. The
evaluation was based on the comparison made between the
notation used in the UML-B method and the notation used in
the B method. The main objective of the experiment was to
investigate whether the notation used in the UML-B method is
more comprehensible than the notation used in the B method.
The measurement used in the evaluation focused on the
efficiency in performing the comprehension task, that is,
accuracy over time.

II. OBJECTIVES
The main objective of this experiment was to evaluate the

comprehensibility of a UML-B model compared to a
traditional B model. The treatments of the experiment were
therefore the UML-B model and the B model. A UML-B
model comprises the subsets of semi-formal and formal
notations used in the UML and the B method respectively. On
the other hand, a B model comprises the formal notation used
in the B method.

The experiment was conducted to confirm a theory that
suggests the notation used in the UML-B method has a
particular effect on the practitioners, making it better in some
way than the notation used in the B method. In general, the
experiment attempted to answer the following broad research
questions:

Is a UML-model easier to understand than a B model for
practitioners with limited hours of training?

The null hypothesis stated for this experiment was:

H0 The UML-B model is as comprehensible as the B model

to be rejected in favour of the alternative hypothesis:

H1 The UML-B model is more comprehensible than the B
model

A one-sided alternative hypothesis was employed because
the UML-B method can only be considered as worthwhile if it
could overcome the current barriers against formal notation
such as used in the B method. In other words, the UML-B
model should be better than the B model. After all, this is the
theory that the experiment aimed to confirm or refute by
providing some empirical evidence.

III. DESIGN
The experiment employed a related within-subject design

where each of the subjects was trained and assigned a task on
both models. Since there were two treatments to be tested in
this experiment, the subjects were allocated randomly into two

groups. To reduce subjects’ variability across groups, they
were firstly blocked based on their ability and previous
knowledge on the object-oriented technology and formal
methods, prior to the group allocation.

The experiment was designed in such a way that at one
point of time, one group was assigned a task on the UML-B
model while the other was assigned the same task on an
equivalent B model. The reverse was then carried out later.
This means there were two sessions in the experiment, which
were run consecutively within one hour and forty minutes.
The design which is called cross-over trial [26] was employed
in order to eliminate any task direction bias and subsequently
any ability effect.

IV. VARIABLES
This experiment identified the notations used in the models

as its independent variable. Since the experiment aimed to
examine the effect of the notations on the efficiency in
understanding the models, the identified dependent variables
were:

Score: This variable is the mark obtained. Each question was
given a specific allocation of marks. Since the questions were
open-ended, the marking was based on specific keywords
expected from the answers. Marks were awarded for the
presence of these keywords and zero for otherwise. The
questions had been carefully constructed so that the marks
could be easily decided. One person did the marking so that
there was consistency throughout the process.

Time Taken: This variable is the time taken to answer each
question in minutes, excluding the time to read and understand
the question.

The score was chosen as the measure of comprehension
because it is believed that the subjects could only answer a
question correctly only if they understand the object being
evaluated. Although there is a possibility that the subjects
could still give a correct answer based on wild guess or hunch,
the chances of this are low. This is because the questions were
constructed in such a way that the subjects could only answer
the questions by reading and understanding the models. The
time taken was decided to be the other measure because it is
the most frequent measure of software engineers’ effort in any
software development, particularly maintenance [27]. One
method is better than the other if it allows software engineers
to do their tasks correctly in least possible time.

The quality aspect measured in this experiment was
efficiency in understanding the models. This means a model is
considered as more comprehensible than the other if it allows
the subjects to answer the questions accurately in a minimum
period of time. Therefore, the score and the time taken
measures were used to determine another important measure
namely rate of scoring. The rate of scoring was obtained by
dividing the score by the time taken.

V. SUBJECTS
There were forty-one students that participated in the

experiment. This included twenty-seven third-year
Undergraduate students and fourteen Master students of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3780

Computer Science and Software Engineering courses at the
University of Southampton, United Kingdom. They were
students from various continents including Europe, Asia and
Africa. The international students, who came from outside the
United Kingdom constituted half of the subjects and the
proportion of women to men was 1:4.

The subjects were students who registered for a course on
the B method. The subjects were taught formally on the B
method for about nine hours and on the UML-B method for
one hour. All subjects had gone through courses on the object-
oriented technology and formal methods at some points of
their studies. The subjects therefore were familiar with all the
methods used in this experiment but were not very
experienced.

The subjects were aware that the experiment was intended
for research purposes. Nevertheless, the subjects were
motivated to participate because the level of understanding
tested in the experiment was considered to be necessary for
them to do their coursework and prepare for the examination.

VI. MATERIALS AND PROCEDURE
Since the experiment had two treatments to be examined in

each of the two sessions, four models that represented two
separate case studies were developed. In the first session, one
group was given a UML-B model and the other was given the
equivalent B model on the first case and vice-versa on the
second case in the subsequent session, as shown in the Table I
below. Two separate case studies were needed in order to
eliminate any learning effect caused by the problem domain.
However, the models for the second session were made
closely equivalent in terms of size and complexity to the first
session so that the effect to be tested remained the same, that
is, the treatment effect.

TABLE I
GROUP AND TASK ALLOCATION

 Group A Group B
1st session
Case 1

Tasks on UML-B model Equivalent tasks on B
model

2nd session
Case 2

Tasks on B model Equivalent tasks on
UML-B model

Several indicators were employed in order to gauge the

comprehension level of the subjects on the models. This
included the interpretation of the symbols used in the models,
the tracing of input and output, the mapping between models
and problem domains, and finally, the modification of the
models by adding new features.

There were five questions for each model. One question
was constructed for each of the indicators above except for the
mapping between models and problem domains. This
particular indicator had two questions because it is critical for
ensuring accuracy and completeness; a quality that is expected
from any specification [28],[29]. The questionnaires on both
models were similar except for the question on the symbols
used in the models. This cannot be avoided as each model has
its own unique symbols that are important for subjects to
interpret in order to comprehend the models.

The importance of performing a pilot study before the
execution of an experiment cannot be over emphasised.
Performing a pilot study can mean the difference between a

success and a failure of an empirical assessment [30],[31]. For
this experiment, a pilot study with five participants had been
conducted to validate and verify the accuracy of the materials
prepared for the experiment. These included the clarity of the
instruction, the validity and complexity of the questions and
the practicality of the tasks required relative to the allocated
time.

During the experiment, subjects were given a specific
model and its questionnaire in each session. The instruction
sheet was given at the beginning of the first session. The
materials for the first session were collected after thirty-five
minutes had passed and the materials for the second session
were distributed right after. During this time, the subjects had
a short wash out or break before starting the second case
study. The materials for the second session were accompanied
with an additional set of questions, where the subjects were
asked about the models comprehensibility subjectively. An
additional five minutes were allocated for this purpose. After
the forty minutes had passed, the materials were collected
whether or not the subjects had completed answering all the
questions.

The subjects were not allowed to talk to each other and
leave the room at any time until the experiment ended. The
subjects were separated from each other as if in an
examination session. During the tasks however, the subjects
were allowed to refer to textbooks or notes. The subjects were
also instructed to inform the researcher if they had any trouble
in understanding the questions.

VII. RESULTS AND ANALYSIS
The rate of scoring was the measure of interest in this

experiment as it determines the model comprehensibility in
terms of accuracy over time. The scale used for the rate of
scoring was marks per minute (marks/min). This means a
model with a higher rate of scoring is better than otherwise
since it indicates a higher accuracy with least time taken to
understand the model.

There were two types of comprehension measurement and
analysis; overall comprehension task and comprehension for
modification task. The measurement for overall
comprehension task was obtained by consolidating the total
score and the total time taken for all five questions.
Meanwhile, the measurement for the modification task was
obtained by considering the score and the time taken for the
question on model modification only.

The Table II below illustrates the measures of centre and
spread for the overall comprehension task distribution.
Column Min shows the minimum values, column 1st Q shows
the first quartile values, column Mean shows the average
values, column Median shows the middle values, column 3rd
Q shows the third quartile values, column Max shows the
maximum values, column Std Dev shows the degree of
variation, and column N gives the number of collected data.
Rows C1:U and C1:B present the rate of scoring of UML-B
model and B model respectively for the first case. Rows C2:U
and C2:B present the rate of scoring of the respective models
for the second case. The last two rows present the grouped rate
of scoring based on the models used, regardless of the case.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3781

TABLE II
RATE OF SCORING DISTRIBUTION FOR OVERALL COMPREHENSION TASK

The Table III below illustrates the measures of centre and

spread for the modification task distribution. The description
for the columns and rows are similar to Table II above. For the
modification task, the data considered for the analysis were
slightly less. This is due to data cleaning, which was
conducted in order to ensure the validity of the analysis. In
particular, the analysis excluded the subjects who did not
attempt the modification task at all, which numbers are stated
in the brackets under the N column. On the other hand, the
subjects who had attempted the modification task for some
time but failed to get any score were included in the analysis,
which numbers are stated in the brackets under the Min
column. The data essentially resulted in zero values for the
rate of scoring. The implication of this data is that the subjects
had struggled to understand the model or perhaps had
misunderstood the model. Either possibility indicates that
there was a problem on the model comprehensibility. This is
the reason why they were included in the analysis.

TABLE III
RATE OF SCORING DISTRIBUTION FOR MODIFICATION TASK

From the descriptive statistics shown above, it can be seen

that the rate of scoring on the UML-B models is higher than
the B models. The differences of mean and median values
between both models are particularly apparent for the
modification task. These differences may be a reflection of
true differences in the population from which the samples
were taken. On the other hand, it is possible that the
differences may be due to errors inherent in random sampling
or sampling errors. In order to assume that the differences
obtained from the samples to be true differences in the
population and not due to sampling errors, the standard
statistical inference needs to be applied.

This experiment employed a robust statistical method called
bootstrap methods and permutation tests for the statistical
inference [32]. The strength of these methods is that they do
not rely on characteristics of the distribution and do not

require large samples but are capable of generating results that
are more accurate than those from the traditional methods
[33]. The bootstrap methods were used in this experiment to
calculate the standard errors and the confidence intervals [34],
whereas the permutation tests were used to test the
significance level of the observed effects. The analysis was
done using the S-PLUS® 7.0 for Windows-Enterprise
Developer [35] software.

The experiment employed a cross-over design and thus had
to consider the period effect [26]. Period effect concerns the
chances of detecting effects due to the period or session when
the treatment is applied rather than the treatment itself. The
analysis for the period effect was performed by obtaining the
period differences between the two periods for both sequence
groups. Later, two-sample test was performed on the period
differences using the bootstrap methods. Whereas differences
between period differences in the same sequence group can be
regarded as being random, differences between any two period
differences in different sequence groups would also reflect
treatment differences. Therefore, comparing the means of the
period differences for the two sequence groups would allow
the treatment effect to be examined [36]. On the other hand,
the mean period difference for each sequence group is an
estimate of the difference between two treatments and also
between two periods. This means that eliminating the period
differences from the two sequence groups will give an
estimate of twice the difference between two treatments [26].
Thus, the differences in means and the standard errors
obtained from the test had to be adjusted by dividing by two.
The subsequent statistical analysis was based on these
adjusted values. The true treatment effect that considers the
period effect at 95% confidence interval for the respective
comprehension tasks are shown below. Indeed, they are the
estimated differences between the expected rate of scoring
under the UML-B model and that under the B model at 95%
confidence interval.

Overall Comprehension Task:
0.01 <= t <= 0.16 (to the nearest 2 decimal places)

Comprehension for Modification Task:
0.03 <= t <= 0.50 (to the nearest 2 decimal places)

To test the significance of the results, the p-values (P) were

assessed against the significance criterion (α=0.05). The p-
value for the overall comprehension task is 0.012 (one-sided)
in favour of the UML-B model. This means that the difference
in the treatment effect between the UML-B model and the B
model is statistically significant (P<0.05). This concludes that
the UML-B is more comprehensible than the B model in terms
of the efficiency in overall understanding.

The same testing was applied on the modification task’s
data. The p-value for the modification task is 0.011 (one-
sided) in favour of the UML-B model. Similarly, the
difference in the treatment effect between the UML-B model
and the B model for the modification task is statistically
significant (P<0.05). Therefore, this concludes that the UML-
B is more comprehensible than the B model in terms of the
efficiency in understanding a model for modification task
purposes.

 Min 1st Q Mean Median
n

3rd Q Max Std
Dev

N

C1:U 0.13 0.59 0.74 0.70 1.00 1.33 0.33 21
C1:B 0.17 0.41 0.60 0.63 0.78 1.12 0.26 20
C2:U 0.28 0.68 0.76 0.75 0.86 1.14 0.19 20
C2:B 0.43 0.53 0.73 0.71 0.91 1.18 0.23 21
U 0.13 0.63 0.75 0.74 0.90 1.33 0.27 41
B 0.17 0.48 0.66 0.67 0.87 1.18 0.25 41

 Min 1st Q Mean Median 3rd Q Max Std
Dev

N

C1:
U

0.00
(2)

1.00 1.20 1.21 1.69 2.00 0.62 18
(3)

C1:
B

0.00
(2)

0.41 0.80 0.58 1.13 2.00 0.64 16
(4)

C2:
U

0.33
(0)

0.46 0.72 0.63 0.77 1.60 0.37 19
(1)

C2:
B

0.00
(1)

0.32 0.59 0.50 0.89 1.20 0.36 21
(0)

U 0.00 0.55 0.98 0.95 1.37 2.00 0.56 37
B 0.00 0.39 0.69 0.54 0.91 2.00 0.51 37

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3782

Another finding has also been found, which seems to
suggest that even with very limited training on the UML-B
method, one could still understand the model well. During the
experiment, the subjects were asked to state whether or not
they had attended the one-hour lecture on the UML-B method.
There were eight subjects who did not attend the lecture and
thus depended on the available references or own knowledge
to answer the questions. The rate of scoring for these eight
subjects is shown in the Table IV below. From the data, it can
be seen that seven out of eight subjects performed better on
the UML-B model. Therefore, despite the fact that these
subjects had no training on the UML-B method, the
quantitative measures suggest that they still performed better
on the UML-B model. Because of the size of this sample is
too small, the statistical significance testing could not be done
however, as it would be unreliable.

TABLE IV

RATE OF SCORING FOR SUBJECTS WHO WERE ABSENT DURING LECTURE
Subject UML-B

model
B model

A08 0.63 0.61
A12 0.63 0.53
A13 0.64 0.73
A16 0.50 0.44
A18 0.66 0.48
B01 0.87 0.42
B11 0.57 0.48
B20 0.77 0.71

The UML-B model was commented by the subjects as

being easy to visualise and understand the scenario more
quickly, easy to understand the relationships between
operations, easy to develop especially on computers, easy for
novices and more logical to developers. Nevertheless, the
model was said to be useful only with good tool support. The
UML-B model was also commented as being quite ‘messy’
since the information was scattered around the class and
statechart diagrams. On the other hand, the B model was
commented as being more formal, less ambiguous and easy to
read since the information was kept together as a flow of
information. However, the B model was claimed as being
harder to develop, lacking visualisation, lengthy and too much
text.

VIII. CONCLUSION AND FUTURE WORK
This paper describes an empirical assessment or experiment

conducted on the UML-B method and the B method. In
particular, the experiment involved an assessment on the
notations used in the respective UML-B and B models. The
objective was to investigate whether the notation used in the
UML-B model is more comprehensible than the notation used
in the B model. The model comprehensibility was measured
based on the subjects’ efficiency in understanding the
notations used in the models and performing the required
tasks.

The empirical data have revealed that the notation used in
the UML-B model expedites the subjects’ comprehension task
with accuracy, even with limited hours of training. Compared
to the notation used in the B model, the notation in the UML-
B model allows the subjects to grasp the required information
more quickly and use it to perform the subsequent tasks

correctly. This finding is particularly appealing as it shows
that introducing some graphical features of semi-formal
notation into the formal notation significantly improves the
formal notation’s accessibility. Besides allowing the formal
notation to be more understandable, the features seem to make
the daunting mathematical notation interesting and
approachable. The UML-B method is thus seen as a possible
solution that has been proven empirically to be able to
overcome practitioners’ mathematical barriers towards formal
notation.

It has been pointed out that the hallmark of good
experimentation is the accumulation of data and insights over
time [37]-[40]. Therefore, one possible way of improvement is
through replication, where the experiment will be repeated on
different samples of the population with different problem
domains or perhaps the same problem domains but larger in
size. The experiment could also be repeated using different
research design and different aspects of comprehension
measurement. This will help in determining how much
confidence can be placed in the results of the experiment and
also strengthening its external validity. It also enables the
characteristics of the method and the effects that it has on its
environment to be better understood. The knowledge could
then be shared with the practitioners so that they could think
of the best possible way to effectively employ the method. The
researchers meanwhile could formulate new ideas on how to
improve the method further so that it could penetrate the
industry’s acceptance.

ACKNOWLEDGMENT
R. Razali thanks Dr. C. F. Snook and Dr. M. R. Poppleton

for their invaluable advice and support during the planning
and execution of the experiment. Dr. C. F. Snook has provided
technical advice on the UML-B method and the empirical
assessment, and Dr. M. R. Poppleton has provided advice and
mechanism for the experiment execution. The author also
thanks the postgraduate students of DSSE for their
participation in the pilot study and the students of COMP3011
(Sem II/ 2005-06) for their participation in the experiment.

REFERENCES
[1] B. W. Boehm, J. R. Brown, and J. R. Kaspar, “Characteristics of

Software Quality”, TRW Series of Software Technology, 1978.
[2] I. Sommerville, Software Engineering. 6th Edition, Addision-Wesley,

2001, ISBN: 020139815.
[3] T. M. Pigoski, Practical Software Maintenance: Best Practices for

Managing your Software Investment. Wiley Computer Publishing, 1996,
ISBN: 0471170011.

[4] D. Craigen, S. Gerhart, and T. Ralston, Applications of Formal Methods,
In M. Hinchey, J. Bowen, Eds., Prentice-Hall, Englewoodcliffs, NJ,
1995, ISBN:0133669491

[5] M. G. Hinchey, “Confessions of a Formal Methodist”, In P. Lindsay,
Ed., Conferences in Research and Practice in Information Technology,
Vol.15, Australian Computer Society, 2002, pp. 17-20.

[6] K. Finney, and A. Fedorec, “An Empirical Study of Specification
Readability Teaching and Learning Formal Methods”, In: N. Dean, M.
Hinchey, Eds., Teaching and Learning Formal Methods, Academic
Press, New York, 1996, ISBN: 0123490405.

[7] K. Finney, “Mathematical Notation in Formal Specification: Too
difficult for the Masses?”, IEEE Transactions on Software Engineering,
Vol.22, No.2, pp. 158-159, 1996.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3783

[8] D. Carew, C. Exton, and J. Buckley, “An Empirical Investigation of the
Comprehensibility of Requirements Specifications”, International
Symposium on Empirical Software Engineering, 2005, pp. 256-265.

[9] J. P. Bowen, and M. G. Hinchey, “Ten Commandments of Formal
Methods... Ten Years Later”, IEEE Computer, Vol.39, No.1, 2006, pp.
40-48.

[10] A. van Lamsweerde, “Formal Specification: A Roadmap”, In The Future
of Software Engineering Track (ICSE’00), ACM Press, Los Angeles
CA, 2000, pp. 147-159.

[11] I. Vessey, and R. Weber, “Structured Tools and Conditional Logic: An
Empirical Investigation”, Communications of the ACM, Vol.29, No.1,
1986, pp. 48-57.

[12] D. A. Scanlan, “Structured Flowcharts Outperform Pseudocode: An
Experiment Comparison”, IEEE Software, Vol.6, No.5, 1989, pp. 28-36.

[13] N. Cunniff, and R. P. Taylor, “Graphical vs Textual Representation: An
Empirical Study of Novices’ Program Comprehension”, In Empirical
Studies of Programmers: 2nd Workshop, 1987, pp. 114-131.

[14] M. Bauer, and P. Johnson-Laird, “How Diagrams Can Improve
Reasoning”, Psychological Science, Vol.4, 1993, pp. 372-378.

[15] K. Stenning, and J. Oberlander, “A Cognitive Theory of Graphical and
Linguistic Reasoning: Logic and Implementation”, Cognitive Science,
Vol.19, 1995, pp. 97-140.

[16] M. Petre, “Why looking isn't always seeing: Readership skills and
graphical programming”, Communications of the ACM, Vol.38, 1995,
pp.33-44.

[17] M. Scaife, and Y. Rogers, “External Cognition: How do Graphical
Representations Work?”, International Journal of Human-Computer
Studies, Vol.45, 1996, pp. 185-213.

[18] J. R. Abrial, The B-Method - Assigning Programs to Meanings,
Cambridge University Press, 1996, ISBN: 0521496195.

[19] Object Management Group (2006). Introduction to OMG’s Unified
Modeling Language (UML). [Online]. Available:
http://www.omg.org/gettingstarted/what_is_uml.htm

[20] C. Snook, I. Oliver, and M. Butler, “The UML-B Profile for Formal
Systems Modelling in UML”, In J. Mermet, , Ed., UML-B Specification
for Proven Embedded Systems Design, Springer, 2004, ch. 5, ISBN:
1402028660.

[21] C. Snook, and M. Butler, “UML-B: Formal Modelling and Design
Aided by UML”, ACM Transactions on Software Engineering and
Methodology, Vol.15, No.1, 2006, pp.92-122.

[22] ClearSy, AtelierB User Manual V3.6, ClearSy System Engineering,
2003, Aix-en-Provence, France.

[23] B-Core (UK) Limited, Oxon, UK (1999). B-Toolkit, On-line manual,
[Online]. Available:
http://www.b-core.com/ONLINEDOC/Contents.html

[24] J. R. Abrial, and D. Cansell (2003) Click ‘n’ Prove – Interactive Proofs
within Set Theory B. [Online]. Available: http://www.b4free.com/ and
http://www.loria.fr/cansell/cnp.html

[25] T. Pender, UML Bible, Wiley, 2003, ISBN: 0764526049.
[26] S. Senn, Cross-over Trials in Clinical Research (Statistics in Practice),

John Wiley & Sons, 2002, ISBN: 0471496537.
[27] J. Foster, “Program Lifetime: A Vital Statistic for Maintenance”, In

Proceedings of the IEEE Conference on Software Maintenance, 1991,
pp. 98-103.

[28] A. Davis, S. Overmyer, K. Jordan, J. Caruso, F. Dandashi, A. Dinh, G.
Kincaid, G. Ledeboer, P. Reynolds, A. Sitaram, A. Ta, and M.
Theofanos, “Identifying and Measuring Quality in a Software
Requirements Specification”, In Proceedings of the 1st. International
Software Metrics Symposium, IEEE, 1993, pp. 141-152.

[29] M. Piattini, M. Genero, G. Poels, and J. Nelson, “Towards a Framework
for Conceptual Modelling Quality”, In M. Genero, M. Piattini, and C.
Calero, Eds., Metrics for Software Conceptual Models, London :
Imperial College Press, 2005, ISBN: 1860944973.

[30] S. L. Pfleeger, “Experimental Design and Analysis in Software
Engineering: Part 1-5”, ACM SIGSOFT Software Engineering
Notes, Vol.20, No.1-5, 1995.

[31] B. A. Kitchenham, and S. L. Pfleeger, “Principles of Survey Research:
Part 1-6”, ACM SIGSOFT Software Engineering Notes, Vol.27, No.1-6,
2002.

[32] B. Efron, and R. Tibshirani, An Introduction to the Bootstrap, Chapman
and Hall, New York, London, 1993.

[33] D. S. Moore, and G. P. McCabe, Introduction to the Practice of
Statistics, 5th Edition, W. H. Freeman, New York, 2006, ISBN:
071676282.

[34] B. Efron, and R. Tibshirani, “The Bootstrap Method for standard errors,
confidence intervals and other measures of statistical accuracy”,
Statistical Science, Vol.1, No. 1, 1986, pp 1-35.

[35] Insightful Corporation (2006). Available:
http://www.insightful.com/products/splus/default.asp

[36] B. Jones, and M. G. Kenward, Design and Analysis of Cross-over Trials,
2nd Edition, Chapman and Hall, London, 2003, ISBN: 0412606402.

[37] V. R. Basili, R. W. Selby, and D. H. Huthchens, “Experimentation in
Software Engineering”, IEEE Transactions on Software Engineering,
Vol.12, No.7, 1986, pp. 733-743.

[38] V. R. Basili, F. Shull, and F. Lanubile, “Building Knowledge through
Families of Experiments”, IEEE Transactions on Software Engineering,
Vol.25, No.4, 1999, pp. 456-473.

[39] R. Jeffery, and L. Scott, “Has Twenty-five Years of Empirical Software
Engineering Made a Difference?”, In Proceedings of the 9th Asia-Pacific
Software Engineering Conference, 2002, pp. 539-546.

[40] W. F. Tichy, “Should Computer Scientists Experiment More?”, IEEE
Computer, Vol.31, No.5, 1998, pp. 32-40.

