
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

956

Abstract—An effective approach for realizing the binary tree

structure, representing a combinational logic functionality with
enhanced throughput, is discussed in this paper. The optimization in
maximum operating frequency was achieved through delay
minimization, which in turn was possible by means of reducing the
depth of the binary network. The proposed synthesis methodology
has been validated by experimentation with FPGA as the target
technology. Though our proposal is technology independent, yet the
heuristic enables better optimization in throughput even after
technology mapping for such Boolean functionality; whose reduced
CNF form is associated with a lesser literal cost than its reduced
DNF form at the Boolean equation level. For cases otherwise, our
method converges to similar results as that of [12]. The practical
results obtained for a variety of case studies demonstrate an
improvement in the maximum throughput rate for Spartan IIE
(XC2S50E-7FT256) and Spartan 3 (XC3S50-4PQ144) FPGA logic
families by 10.49% and 13.68% respectively. With respect to the
LUTs and IOBUFs required for physical implementation of the
requisite non-regenerative logic functionality, the proposed method
enabled savings to the tune of 44.35% and 44.67% respectively, over
the existing efficient method available in literature [12].

Keywords—Binary logic tree, FPGA based design, Boolean
function, Throughput rate, CNF, DNF.

I. INTRODUCTION
HE issue of performance enhancement has been a subject
matter of much research [1] [2] [3] [4] [5]. Also the

relevance of FPGAs based on LUTs in the last decade has
fostered numerous efforts in finding effective methods to
minimize and decompose functions. This paper deals with a
novel technology-independent synthesis methodology to
realize compact and throughput enhanced binary tree
structures for combinational logic circuits, by way of reducing
the logic depth. A number of techniques mentioned in [7] [8]
[9] are technology-independent and aim at reducing the logic
depth of the binary tree representing a Boolean network by
restructuring. Directed acyclic directed graphs (DAG) are
generally used to effectively represent single output
combinational logic circuit functionality. A rooted DAG may
be unfolded to a tree in such a way that no multiple-fanout
nodes exist, except for the primary circuit inputs. Each
internal node is labeled with a logical operator, AND and/or

Padmanabhan Balasubramanian is with the School of Computer Science,
The University of Manchester, Manchester, MAN M13 9PL UK (phone: +44-
161-275 6294; e-mail: spbalan04@gmail.com, padmanab@cs.man.ac.uk).

Cemal Ardil is with the National Academy of Aviation, Baku,
Azerbaijan (e-mail: cemalardil@gmail.com).

OR, although other operators are also used depending upon
the functionality. In this work, we are primarily concerned
with function representations employing just these two types
of Boolean operations. A labeled edge (dot appearing on an
edge) in a DAG or a binary tree would correspond to a logical
inversion or negation operation. Let us have a reasonable and
valid assumption that all DAGs are reduced and that
isomorphism is not exhibited in the sub-DAGs.

Tree-height reduction was indeed proposed [6] in the scope
of compiler optimization, for code generation in
multiprocessor systems. Given the underlying inherent
complexity of the problem, timing optimization is sought
after, after the size of the Boolean network representing the
circuit has been reduced. Even extraction of kernels, that can
be shared, may lead to an increase in the depth of the network
as an associated effect. This makes it clear that sharing logic is
not always deemed to be a good approach, when considering
the issue of timing optimization. A technique that performs
logic decomposition during technology mapping has been
proposed in [10] [11]. However, the accuracy of this approach
is traded off for a higher computational cost. A recent activity
[12] addresses the issue of delay improvement through
functional decomposition. It actually builds on logic bi-
decomposition of Boolean functions [13] [14] and also uses
weak algebraic factorization operations. It implicitly relies
upon OR disjunction for functional bi-decomposition. Then it
combines this strategy with tree-height reduction of resulting
Boolean expressions. Though it leads to enhancement in
performance, vis-à-vis achieving logic depth reduction, the
quasi-algebraic decomposition was normally performed on the
minimized disjunctive normal form (DNF) [15], by iteratively
applying a combination of associative, distributive and
commutative (ACD) laws.

The remaining portion of this paper is organized as follows.
In section 2, we introduce a novel terminology, namely the
description set of a Boolean term and give its definition.
Section 3 elucidates the proposed method by means of an
illustrative example and compares it with the solution
obtained using the ACD based algorithm [12] at both the
technology-independent and technology-dependent phases.
Section 4 depicts the simulation results obtained for several
Boolean functions. A comparison of the methods in terms of
the maximum operating frequency achievable for the designs
is given in this section. The resource utilization summary is
also listed in this section. Finally, we make the concluding
remarks in the next section.

Compact Binary Tree Representation of Logic
Function with Enhanced Throughput

Padmanabhan Balasubramanian, Cemal Ardil

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

957

II. DESCRIPTION SET OF A BOOLEAN TERM
A new terminology is proposed, namely the description set

of a Boolean term (sum term or product term). The description
set of a sum term [product term], shall be represented by the
notation D(Si) [D(Pi)].

D(Si) specifies the set of all literals in their actual form, that
the particular sum term Si is dependent upon for its evaluation
to a logic value of ‘0’ and D(Pi) indicates the set of all literals
in their respective form, that a product term Pi depends upon
for its evaluation to a logic value of ‘1’.

For e.g. let a sum-of-disjoint products (SoDP) function be,
Z = AC’DE + B’FG’, where there are two disjoint product
terms; P1 = AC’DE and P2 = B’FG’. Hence D(P1) = {A,
C’,D,E} and D(P2) = {B’,F,G’}.

The description set for a Boolean function would then be
the union of the description sets of all its individual terms. For
the above example, it is given by, D(Z) = D(P1) ∪ D(P2).

III. ILLUSTRATION OF PROPOSED HEURISTIC
Let us take an arbitrary logic function, F to describe the

effectiveness of our proposal. Let F(Q,R,S,T,U,V,W) be
described by the following minimized expression,

F = TRU+TRV+ST’W+SU+SV+QT’W+QU+QV (1)

Using the ACD based heuristic as described in [12], two
logically equivalent and irredundant reduced expressions are
obtained as follows,

F = (TR)·(U+V)+(Q+S)·(T’W+U+V) (2)

F = (TR+Q+S)·(U+V)+(T’W)·(Q+S) (3)

Both the above Boolean equations (2) and (3) have the

same input literal cost. The reduced conjunctive normal form
(CNF) equivalent for (1) is given by,

F = (T+S+Q)·(R+S+Q)·(T’+U+V)·(W+U+V) (4)

For (4), we could write D(S1) = {T,S,Q}, D(S2) = {R,S,Q},
D(S3) = {T’,U,V} and D(S4) = {W,U,V}. We perform the
union of the description set of a sum term with all other sum
terms of (4) and we get the following: D(S1) ∪ D{S2}= {S,Q},
D(S1) ∪ D(S3) = { }, D(S1) ∪ D(S4) = { }, D(S2) ∪ D(S3) =
{ }, D(S2) ∪ D(S4) = { } and D(S3) ∪ D(S4) = {U,V}. We
now enumerate the cardinality of the above union and thereby
obtain | D(S1) ∪ D(S2) | = 2, | D(S1) ∪ D(S3) | = 0, | D(S1) ∪
D(S4) | = 0, | D(S2) ∪ D(S3) | = 0, | D(S2) ∪ D(S4) | = 0 and
| D(S3) ∪ D(S4) | = 2.

In general, for a function whose minimized two-level CNF
expression contains ‘k’ product terms, the first product term,
say, P1 could be combined with (k-1) different product terms,
the second product term, P2 could be combined with (k-2)
distinct product terms till the (k-1)th product term, which could

be combined with just one another different product term at
the end.

As a further generalization, it can be intuitively observed
that if the total number of distinct product terms in the reduced
two-level representation of a logic function is ‘n’; whether ‘n’
is ‘odd’ or ‘even’; the total number of set union operations
required to be performed would be O[n(n-1)/2].

Now we make a decision with regard to grouping those
terms, whose degree of literal matching is the highest, as
determined by the cardinality of the union of the description
set of all possible combinations of two unique Boolean terms.
Therefore for (4), we find that S1 and S2 can be combined
using the distributive law; similarly S3 and S4 are candidates to
be combined using the same axiom. After applying the D rule
for the appropriate terms of (4), which could be grouped, we
get the following reduced expression,

F = (TR+S+Q)·(T’W+U+V) (5)

Comparing (2) [also (3)] and (5), we find that there is a
savings of 20% in terms of literal count. After representing the
tree structures for (2) and (5) in accordance with the DAG
specification and with sharing of nodes permitted, we observe
that there is a reduction in the number of operators and logic
depth by 12.5% and 25%, for the latter in comparison with the
former. Without node sharing, and for the worst case
realization, the respective savings for the proposed method
would be 22.22% and 40% respectively.

The binary tree representation with node sharing for (1),
given by (2), is shown in fig. 1. The symbols and
denote Boolean AND and Boolean OR operators respectively
and these are referred to as atomic operators (AO) [16].

Fig. 1 Binary tree representation for (1) based on ACD heuristic

Theoretically speaking, the maximum operating frequency
for fig. 1, given as a reciprocal of the longest path delay or
critical path delay is given by,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

958

m a x
1 1

3 2 2A N D O R A N D O R

f
t t t t

= =
+ +

 (6)

For representation without duplication of nodes and with no
node sharing, the upper bound on the maximum frequency is,

m a x
1

2 3A N D O R

f
t t

=
+

 (7)

Fig. 1 is characterized by a maximum logic depth of 4

(specified by the number of nodes in the longest path from
any of the primary inputs to a primary output for a MISO
function) and maximum operating frequencies of 89.847 MHz
and 101.626 MHz for technology mapping with Spartan IIE
(XC2S50E-7FT256) and Spartan 3 (XC3S50-4PQ144) FPGA
logic families as targets. The binary tree structure consumed 5
basic logic elements (LUTs of FPGA) and 16 input-output
buffers for physical realization.

The binary logic tree representation corresponding to (5) is
depicted by fig. 2.

Fig. 2 Binary tree representation for (1) based on proposed method

As seen above, this tree representation requires less number
of nodes than fig. 1 and the theoretical upper bound on the
maximum throughput rate is given by the expression,

m a x
1 1

2 2A N D O R A N D O R

f
t t t t

= =
+ +

 (8)

The maximum logic depth of the tree structure is 3 and the

highest operating frequency for Spartan IIE and Spartan 3
FPGA logic families is found to be 99.009 MHz and 118.203
MHz respectively. Also the structural representation required
3 basic logic elements and 9 input-output buffers for
implementation with the above technology targets.

For this particular case study, we find that the throughput
rate is increased by 10.19% and 16.31% for the FPGA target
families in the above order. With respect to the basic logic
elements and input-output buffers needed for technology

mapping, corresponding savings of 40% and 43.75% has
resulted for the proposed procedure over that of [12].

IV. SIMULATION MECHANISM AND PRACTICAL RESULTS
Various combinational logic functions in canonical form of

various types were considered to substantiate the theoretical
claims by validating with experimental results. The
functionalities in PLA format were first minimized using a
commercial industry standard two-level logic minimizer, such
as ESPRESSO [17] and they are listed in Table 5 (made
available as an appendix).

The binary tree structures highlighting the BDAG
representation for the combinational circuits were realized
using the ACD rules based methodology described in [12].
VHDL coding was done for all the functions using structural
modeling style with gate-level primitives strictly conforming
to the binary DAG specification. The detailed design summary
and timing reports were obtained after post place and route
stage. The maximum operating frequency of the different
designs was then determined as a reciprocal of the maximum
combinational logic path delay.

The reduced conjunctive normal forms for the functions can
be obtained by two methods; either by running a direct sum-
of-products to product-of-sums subroutine or by considering
the complementary phase of the function and a
straightforward conversion to reduced product-of-sums
expression could be done. Infact, a high level language
implementation of the modified Quine-McCluskey’s method
for two-level logic minimization [18] can also be used in this
regard. Next, the description set for the different product
terms corresponding to each and every function was obtained
as per the definition given in section 2. Set union operations
were then performed on the different sets and the candidates
suitable for grouping were found according to the method
explained in section 3. Distributive axiom was applied, so that
the function now tends to comprise reduced, compact and
read-once functionality for the sub-functions, though not in
the original function. Then the tree representation was created
using the basic atomic operators and VHDL coding was done
using a similar modeling style. The design summary and
timing reports were obtained after the placement and routing
phase.

The simulations were all performed with Xilinx project
navigator suite targeting Spartan IIE and Spartan 3 FPGA
boards. The Spartan FPGA logic families are ideally suited for
gate-level designs [19].

Table 1 gives a description of the comparison between the
two schemes in terms of the logical operators required and
literal count. Table 2 shows the maximum throughput rate for
the synthesized tree representations corresponding to the
desired Boolean functionality, based on the two different
methods. Table 3 gives the amount of basic logic elements
utilized (BEL) for the different techniques and Table 4 gives
an account of the input-output buffers (IOBUF) utilized for
the two schemes.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

959

TABLE I
LOGICAL OPERATORS AND LITERAL COST COMPARISON

ACD_BDAG P_BDAG
Function ID

NAO NIL NAO NIL

Z15 3 8 3 6
Z27 5 12 3 8
Z39 6 18 4 10
Z411 6 24 4 12
Z58 6 17 4 9
Z69 5 14 4 10
Z77 5 10 4 10
Z88 5 15 4 9
Z96 4 10 3 7

Z108 5 17 4 9
Z115 4 7 3 6
Z127 5 15 3 8
Z136 3 8 3 7
Z149 5 16 4 10
Z158 5 18 4 9
Z166 5 8 4 7
Z1710 7 26 4 11
Z189 6 13 4 10
Z199 5 20 4 10
Z208 4 7 3 6
Z2110 5 15 3 8
Z2210 3 8 3 7
Z2311 5 16 4 10
Z2412 5 8 4 7
Z2516 7 26 4 11
Z2612 6 13 4 10
Z2710 5 20 4 10
Z288 3 8 3 6
Z2911 5 12 3 8
Z3010 6 18 4 10
Z3110 6 17 4 9
Z3215 5 14 4 10
Z3311 5 10 4 10
Z3411 5 15 4 9
Z3514 5 17 4 9
Total 175 500 129 308

ACD_BDAG – ACD rules based BDAG and P_BDAG – Proposed BDAG;
LFMn: LF – Logic Function, M – Function ID, n – number of inputs

TABLE II

MAXIMUM OPERATING FREQUENCY (MHZ) FOR DIFFERENT FPGA TARGETS
Spartan IIE

(XC2S50E-7FT256)
Spartan 3

(XC3S50-4PQ144)

Function ID
ACD_BDAG P_BDAG ACD_BDAG P_BDAG

Z15 98.717 120.482 118.203 136.054
Z27 94.877 98.717 104.384 118.203
Z39 81.103 90.579 93.545 105.597
Z411 78.989 88.183 87.951 109.051
Z58 94.697 91.912 104.603 117.096
Z69 90.827 90.171 98.328 116.822
Z77 92.937 99.009 116.959 118.203
Z88 86.58 96.154 98.328 103.842
Z96 92.937 120.482 116.959 123.001

Z108 82.034 100.402 98.232 109.409
Z115 120.919 124.069 142.045 145.772
Z127 89.847 99.009 101.626 118.203

Z136 91.912 120.919 111.483 142.045
Z149 90.253 90.579 100.705 105.597
Z158 72.833 91.912 82.508 116.959
Z166 86.505 120.482 104.167 123.001
Z1710 81.699 91.075 86.356 108.932
Z189 88.183 92.937 108.578 116.959
Z199 79.177 93.197 91.241 118.483
Z208 84.317 98.717 101.729 118.203
Z2110 83.822 86.505 86.281 109.051
Z2210 87.413 90.579 100.2 105.597
Z2311 72.992 87.336 87.413 111.111
Z2412 84.531 89.445 98.039 108.578
Z2516 82.988 86.73 96.618 97.371
Z2612 84.531 91.912 98.039 108.225
Z2710 87.413 92.937 100.2 103.842
Z288 86.059 98.717 98.328 118.203
Z2911 72.993 87.336 87.413 111.111
Z3010 83.822 86.505 86.281 109.051
Z3110 87.413 90.579 100.2 105.597
Z3215 80.064 86.73 96.618 92.851
Z3311 91.324 89.445 103.95 109.051
Z3411 83.963 82.85 98.039 108.932
Z3514 83.682 84.034 88.261 101.729
Total 3032.353 3350.627 3493.810 3971.732

TABLE III

BASIC LOGIC ELEMENTS (LUTS OF FPGA) FOR SPARTAN IIE AND SPARTAN 3
Spartan IIE

(XC2S50E-7FT256)
Spartan 3

(XC3S50-4PQ144)

Function ID
ACD_BDAG P_BDAG ACD_BDAG P_BDAG

Z15 3 2 3 2
Z27 6 3 6 3
Z39 7 5 7 5
Z411 10 4 10 4
Z58 6 3 6 3
Z69 5 4 5 4
Z77 3 3 3 3
Z88 5 6 5 6
Z96 3 2 3 2

Z108 7 3 7 3
Z115 2 2 2 2
Z127 5 3 5 3
Z136 3 2 3 2
Z149 6 5 6 5
Z158 7 3 7 3
Z166 3 2 3 2
Z1710 10 4 10 4
Z189 4 3 4 3
Z199 7 3 7 3
Z208 5 3 5 3
Z2110 8 4 8 4
Z2210 7 5 7 5
Z2311 7 4 7 4
Z2412 11 4 11 4
Z2516 13 6 13 6
Z2612 11 5 11 5
Z2710 7 5 7 5
Z288 5 3 5 3

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

960

Z2911 7 4 7 4
Z3010 8 4 8 4
Z3110 7 5 7 5
Z3215 13 6 13 6
Z3311 8 4 8 4
Z3411 11 4 11 4
Z3514 9 5 9 5
Total 239 133 239 133

TABLE IV

INPUT-OUTPUT BUFFERS REQUIRED FOR THE TWO SCHEMES
Spartan IIE

(XC2S50E-7FT256)
Spartan 3

(XC3S50-4PQ144)

Function ID
ACD_BDAG P_BDAG ACD_BDAG P_BDAG

Z15 9 7 9 7
Z27 15 9 15 9
Z39 19 11 19 11
Z411 25 13 25 13
Z58 18 10 18 10
Z69 15 11 15 11
Z77 11 9 11 9
Z88 16 10 16 10
Z96 11 8 11 8

Z108 18 10 18 10
Z115 8 7 8 7
Z127 16 9 16 9
Z136 9 8 9 8
Z149 17 11 17 11
Z158 19 10 19 10
Z166 9 8 9 8
Z1710 27 12 27 12
Z189 14 11 14 11
Z199 21 11 21 11
Z208 16 9 16 9
Z2110 24 11 24 11
Z2210 18 11 18 11
Z2311 22 12 22 12
Z2412 34 13 34 13
Z2516 38 17 38 17
Z2612 34 13 34 13
Z2710 18 11 18 11
Z288 16 9 16 9
Z2911 22 12 22 12
Z3010 24 11 24 11
Z3110 18 11 18 11
Z3215 37 17 37 17
Z3311 19 13 19 13
Z3411 33 13 33 13
Z3514 24 16 24 16
Total 694 384 694 384

V. CONCLUSION
This paper deals with a technology-independent synthesis

methodology for combinational logic functionality that
typically precedes the technology-mapping phase. An
effective technique to address the important issue of
throughput enhancement via, timing optimization, made

possible by way of reducing the logic depth in a binary logic
tree representation is discussed in this paper. A fair degree of
correlation is observed between the depth of the Boolean
network at the technology-independent stage represented by a
tree and the practical critical delay parameter obtained
experimentally; however, it turns out to be contrary in some
cases after the technology-mapping phase. The approach
seems to yield optimization in the throughput rate for a wide
variety of problems, which tend to have compact conjunctive
normal forms in comparison with disjunctive normal forms,
with the degree of compactness measured in terms of literal
count at the Boolean equation level.

The effectiveness of our contribution is evident from
improved results of reachability along the computationally
intensive path. Through extensive simulation studies, we infer
that the proposed methodology is promising, as it enables
higher operating frequency and less resource utilization
(FPGA resources) in parallel for significant number of case
studies. We have successfully addressed the issues of delay
improvement and area reduction, highlighted in [12], by
exploring the available design space and achieved
enhancement in performance.

Before technology mapping, with respect to the reduced
expressions governing the actual logic description, we find
that in terms of the atomic operators and input literal count,
the proposed procedure enabled savings of 26.29% and 38.4%
respectively. From the experimental results obtained, we find
that the average improvement in performance (measured in
terms of maximum operating frequency) has been 10.49% and
13.68% for Spartan IIE and Spartan 3 FPGA logic family
targets respectively. The corresponding average decrease in
LUTs for the logic families stated in the above order has been
the same and is around 44.35%. Based on the number of
input-output buffers required for physical realization of the
desired functionality, the proposed method effected mean
savings to the tune of 44.67% for both the logic families.

For functions with DNF forms more compact than its CNF
forms, the proposed heuristic returns the same results as that
of [12], while for the contrary, the approach enables decent
enhancement in throughput rate, whilst ensuring minimum
resource utilization. The approach is pragmatic and results in
tree representations for non-regenerative logic functions,
which promise improved performance, evident from several
problem cases considered in this work.

ACKNOWLEDGMENT
The authors would like to thank Mrs. Prathibha for her

assistance in this work.

REFERENCES
[1] R. Ashenhurst, “The decomposition of switching functions,” Proc. of

International Symposium. on Switching Theory, 1959, pp. 74-116.
[2] J. Baer, and D. Bovet, “Compilation of arithmetic expressions for

parallel computations,” Proc. of IFIP Congress, 1968, pp. 340-346.
[3] J. Beatty, “An axiomatic approach to code optimization for expressions,”

Journal of ACM, vol. 19(4), 1972, pp. 613-640.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

961

[4] R. Brayton, and C. McMullen, “The decomposition and factorization of
Boolean expressions,” Proc. of International Symposium on Circuits and
Systems, 1982, pp. 49-54.

[5] J. Vasudevamurthy, and J. Rajski, “A method for concurrent
decomposition and factorization of Boolean expressions,” Proc. of
International Conf. on Computed-Aided Design, 1990, pp. 510-513.

[6] D. Kuck, The Structure of Computers and Computation, Wiley, 1978.
[7] K. Singh, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli,

“Timing optimization of combinational logic,” Proc. of IEEE/ACM
International Conf. on Computer-Aided Design, 1988, pp. 282-285.

[8] K. Chen, and S. Muroga, “Timing optimization for multi-level
combinational circuits,” Proc. of ACM/IEEE Design Automation Conf.,
1990, pp. 339–344.

[9] H.Touati, H.Savoj, and R.Brayton, “Delay optimization of
combinational circuits by clustering and partial collapsing,” Proc. of
IEEE/ACM International Conf. on Computer-Aided Design, 1991, pp.
188-191.

[10] Eric Lehman, and Yosinori Watanabe, “Logic Decomposition during
Technology Mapping,” Proc. of IEEE/ACM International Conf. on
Computer-Aided Design, 1995, pp. 264-271.

[11] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic
decomposition during technology mapping,” IEEE Transactions on CAD
of Integrated Circuits and Systems, vol. 16(8), August 1997, pp. 813-
834.

[12] J. Cortadella, “Timing-Driven Logic Bi-Decomposition,” IEEE
Transactions on CAD of Integrated Circuits and Systems, vol. 22(6),
June 2003, pp. 675–685.

[13] S. Yamashita, H. Sawada, and A. Nagoya, “New methods to find
optimal nondisjoint bi-decompositions,” Proc. of ACM/IEEE Design
Automation Conf., 1998, pp. 59-68.

[14] A. Mishchenko, B. Steinbach, and M. Perkowski, “An algorithm for bi-
decomposition of logic functions,” Proc. of ACM/IEEE Design
Automation Conf., 2001, pp. 282-285.

[15] Zvi Kohavi, Switching and Finite Automata Theory, McGraw Hill, 1999.
[16] Srinivas Devadas, Abhijit Ghosh, and Kurt Kuetzer, Logic Synthesis

McGraw-Hill series on Computer Engineering, 1994.
[17] P.C. McGeer, J.V. Sanghavi, R.K. Brayton, and A.L. Sangiovanni-

Vincentelli, “ESPRESSO-SIGNATURE: a new exact minimizer for
logic functions,” IEEE Transactions on VLSI Systems, vol. 1(4),
December 1993, pp. 432-440.

[18] S.P. Tomaszewski, I.U. Celik, and G.E. Antoniou, “www based Boolean
function minimization,” International Journal of Applied Mathematics
and Computer Science, vol. 13(4), 2003, pp. 577-583.

[19] Available: http://www.xilinx.com/support/mysupport.htm#Spartan-3

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

962

APPENDIX

TABLE V
LOGIC FUNCTION SPECIFICATION

Function ID Minimized two-level logic obtained using ESPRESSO [17]
Z15 agb+agc+abf+fc

Z27 afe+afd+afg+aec+cd+cg+abe+bd+bg
Z39 dbfcg+dbfgh+dbfi+dceg+eh+ei+adcg+ah+ai
Z411 mnqst+mnqu+mnqv+mnqw+msto+uo+vo+wo+mstp+up+vp+wp+mstr+ur+vr+wr
Z58 ijn+ijo+ijp+kin+ko+kp+inl+ol+pl+min+mo+mp
Z69 pqrsuvw+pqrsx+puvwt+xt
Z77 mnpq+mnpr+mnqo+ro
Z88 qrwx+qru+qrv+qwxs+su+sv+qwxt+tu+tv
Z96 bgc+bgd+bge+abc+ad+ae
Z108 abe+abf+abg+abh+aec+fc+gc+hc+aed+fd+gd+hd
Z115 stw+s’vu+uw
Z127 tru+trv+t’ws+us+vs+t’wq+qu+qv (FOR ILLUSTRATION)
Z136 pmr+p’qn+nr+p’qo+or
Z149 abch+abci+a’fgh+dh+di+a’fge+eh+ei
Z158 pmx+pmy+qp’v+qx+qy+p’vw+wx+wy+p’vu+ux+uy
Z166 mnr+m’pqo+or
Z1710 mnv+mnw+mnx+m’uq+vq+wq+xq+m’ur+vr+wr+xr+m’us+vs+ws+xs+m’ut+vt+wt+xt
Z189 abci+a’ghd+di+a’ghe+ei+a’ghf+fi
Z199 wxn+wxo+wxp+wxq+w’my+ny+oy+py+qy+w’mz+nz+oz+pz+qz
Z208 pqrsm+pqrsn+pqrso+pqrsp+p’xyzt+mt+nt+ot+pt+p’xyzu+mu+nu+ou+pu+

p’xyzv+ mv+nv+ov+pv+p’xyzw+mw+nw+ow+pw
Z2110 defgl+defgk+d’onmh+lh+kh+d’onmi+li+ki
Z2210 ijp+ijq+ijr+ijs+i’ok+pk+qk+rk+sk+i’ol+pl+ql+rl+sl+i’om+pm+qm+rm+sm+

i’on+pn+qn+rn+sn
Z2311 cdefgn+cdefgo+c’jklmh+nh+oh+c’jklmi+ni+oi
Z2412 a’be’f+a’bg+a’bh+ce’f+cg+ch+de’f+dg+dh
Z2516 i’jkn’op+i’jkq+i’jkr+n’opl+ql+rl+n’opm+ qm+rm
Z2612 p’qrv’wx+p’qry+p’qrz+v’wxs+sy+sz+v’wxt+ty+tz+uv’wx+uy+uz
Z2710 a’bcdg’hij+a’bcdk+a’bcdl+g’hije+ke+le+g’hijf+kf+lf
Z288 r’sx’y+r’sz+r’sm+r’sn+r’so+x’yt+zt+mt+nt+ot+x’yu+zu+mu+nu+ou+x’yv+

zv+mv+nv+ov+x’yw+zw+mw+nw+ow
Z2911 c’defgjklmn+c’defgo+c’defgp+j’klmnh+ho+hp+j’klmni+io+ip
Z3010 p’qrsx’yzm+p’qrsn+p’qrso+p’qrsk+p’qrsl+x’yzmt+nt+ot+kt+lt+x’yzmu+nu+

ou+ku+lu+x’yzmv+nv+ov+kv+lv+x’yzmw+nw+ow+kw+lw
Z3110 a’bcf’gh+a’bci+a’bcj+f’ghd+id+jd+f’ghe+ie+je
Z3215 g’hk’l+g’hm+g’hn+k’li+mi+ni+k’lj+mj+nj
Z3311 o’pqu’vw+o’pqx+o’pqy+u’vwr+rx+ry+u’vws+xs+ys+u’wvt+xt+yt
Z3411 e’fj’k+e’fl+e’fm+e’fn+j’kg+lg+mg+ng+j’kh+lh+mh+nh+j’ki+li+mi+ni
Z3514 q’rsv’wx+q’rsy+q’rsz+v’wxt+yt+zt+v’wxu+uy+uz

ZXn; X – Function ID, n – Number of primary inputs

