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Abstract—This paper addresses linear quadratic regulation (LQR) 

for variable speed variable pitch wind turbines. Because of the 
inherent nonlinearity of wind turbine, a set of operating conditions is 
identified and then a LQR controller is designed for each operating 
point. The feedback controller gains are then interpolated linearly to 
get control law for the entire operating region. Besides, the 
aerodynamic torque and effective wind speed are estimated online to 
get the gain-scheduling variable for implementing the controller. The 
potential of the method is verified through simulation with the help of 
MATLAB/Simulink and GH Bladed. The performance and 
mechanical load when using LQR are also compared with that when 
using PI controller. 
 

Keywords—variable speed variable pitch wind turbine, multi-MW 
size wind turbine, wind energy conversion system, LQR control.  

I. INTRODUCTION 

ECENTLY, variable speed variable pitch wind turbines 
(VS-VP WT)are continuously increasing their market 

share. This configuration is the best for multi-megawatt 
machines because it not only can maximize energy captured 
over a wide range of wind speed but also reduce mechanical 
fatigue by using aerodynamics control systems. In this 
configuration, the turbine operates with variable speed and 
fixed pitch if the wind speed is in below rated region (region 2) 
to achieve maximum aerodynamic efficiency. When the wind 
speed is in above rated region (region 3) the rotor is regulated at 
its rated speed by varying pitch angle to ensure that mechanical 
limitations are not exceeded. The controller should be designed 
intelligently to transit smoothly between two regions as well as 
to ensure other requirements during transition such as limiting 
bladed-tip noise, minimizing output power fluctuations, etc.  

The thrust force acting on the rotor and torque developed by 
the wind turbine are nonlinear functions of wind speed, rotor 
speed and pitch angle. Besides, modern large-size wind turbines 
are usually equipped with individual pitch actuators at each 
blade and force/moment sensors or accelerometers on tower, 
nacelle as well as blades. These inputs and outputs combine 
with structural modes to make the machine an inherently 
nonlinear multi-input multi-output (MIMO) system.  
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However, most control methods applied to these 

multi-control-objective MIMO systems are implemented by 
using multiple single-input-single-output (SISO) loops [1]. The 
basic structure of wind turbine system is illustrated in Fig. 1. 
This configuration has two loops which operate independently 
of each other. The top part of this figure is the pitch control loop 
which has major role for regulating the rotor speed in the above 
rated region. Under a wind with the speed below the rated wind 
speed, the blade pitch angle is pitched off at optimal value so as 
to maintain max-Cp operation. Also, in this region, varying the 
rotor speed proportionally to the wind speed is the function of 
torque control loop presented in the bottom part of the figure.  

∑

∑

Fig. 1 Control loop of a MW Wind turbine 
 
The linear quadratic control technique has been applied for 

wind turbine, such as we can find in [2], [3], [4]. Most of them 
focus on high wind speed region or have different control 
strategies for different regions. The purpose of this work is to 
design a MIMO LQR controller for a multi-megawatt wind 
turbine. The proposed controller has the same strategy for the 
entire operating region. The controller is synthesized with the 
objective of trade-off between maximizing energy captured 
from the wind and mitigating mechanical load. Because of the 
nonlinearity of the wind turbine, the controller is designed for 
specific operating points. The feedback gains are then 
interpolated or extrapolated for the whole operating region. The 
potential of LQR controller is verified by a commercial wind 
turbine simulation package GH Bladed, and compared with PI 
controller. 

The paper is presented as follows. In section II, we present 
the modeling of the wind turbine: we explain the nonlinearity of 
the wind turbine and derive linearized model. Section III is 
devoted to the development of the linear quadratic optimal 
control which aims for trade-off among control objectives. 
Finally, in section IV, the proposed controller is illustrated in a 
high-fidelity simulation environment on a representative 2MW 
wind turbine. 
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II.   WIND TURBINE MODEL 

A basic block diagram for the entire variable speed variable 
pitch wind energy conversion system can be structured as 
several interconnected subsystems, shown in Fig. 2. 

dɺ

∑

 
 

Fig. 2 A block diagram for VS-VP WT 
 
In the above figure,  Fa is thrust force. β is blade pitch angle. 

Ta and Tg are aerodynamic torque and reaction generator torque, 
respectively. Ωr and Ωg are rotor speed and generator speed. v is 
wind speed which is described by mean wind speed vm and 
turbulent wind vt, given by (1). 

m tvν ν= +                                                                    (1) 

The wind speed vr seen by rotor plane is defined by (2), where 
d is nacelle displacement. 

r dν ν= − ɺ
                                                   

                                           (2) 

A. Aerodynamic conversion 

The thrust force acting on the entire rotor, useful torque 
developed by the wind turbine and aerodynamic power captured 
from the wind are expressed by highly nonlinear equations as 
follow 

2 21
( , )

2a T rF R Cρπ λ β ν=
                                         

                           (3) 

3 2( , )1

2
P

a r

C
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λ βρπ ν
λ
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2a P rP R Cρπ λ β ν=  

                                         

                             (5) 

Where ρ is air density, R is rotor radius. CT is force 
coefficient, and CP is called power coefficient which represents 
the wind turbine power conversion efficiency. CT and CP are 
functions of blade pitch angle and tip-speed ratio, λ, defined by  

r rR vλ = Ω
                                         

                                           (6) 

The coefficients CT and CP are very important in the turbine 
control system design. Those characteristics for different values 
of tip-speed ratio and pitch angle are illustrated in Fig. 3 and 
Fig. 4. Fig. 3 indicates that there is one set of specific λ and β at 
which the turbine power coefficient is maximum, CPmax. It 
means that if the pitch angle is fixed at optimal value β0 and 
varying rotor speed proportionally to wind speed to keep 
tip-speed ratio at λ0, where CP coefficient is maximum, wind 
turbine will extract the maximum power from the wind. 
However, this operation condition occurs only in low wind 
speed region. When wind speed is high, tip-speed ratio and 

pitch angle are away from their optimal values to ensure the 
power and rotor speed being regulated around their rated values, 
in order to avoid exceeding electrical power as well as 
mechanical stresses. 
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Fig. 3 Power coefficient CP 
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 Fig. 4 Force coefficient CT 

B. Drive-train dynamics 

The aerodynamic torque from equation (4) is the input of the 
drive-train system in low speed side. The drive-train system can 
be modeled as two inertias interconnected by a spring-damper 
and a gearbox, schematically represented in Fig. 5. On the high 
speed side of drive-train system the generator is mounted giving 
opportunity to control the reaction torque from the generator 
[2]. The dynamic model of the drive-train system is modeled of 
the form (7) and (8). Where Ωr, Ωg are rotor speed and generator 
speed, respectively. Jr, Jg are rotor inertia and generator inertia, 
respectively. Br, Bg are, respectively, the damping of low speed 
shaft and high speed shaft. ks and cs are the torsional stiffness 
and torsional damping of drive-train axis. 

1 1
( ) ( )r

r a s r g s r g r r

d
J T k c B

dt N N
θ θΩ = − − − Ω − Ω − Ω                (7) 

1 1
( ) ( )g s s

g r g r g g g g

d k c
J B T

dt N N N N
θ θ

Ω
= − + Ω − Ω − Ω −          (8) 

 β0
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The gearbox ratio N is defined as N = Ωg/Ωr 

 
Fig. 5 A drive-train model 

C. Tower dynamics 

For controller design purposes, it was considered to use a 
sufficiently simplified axis-symmetric tower model [5]. In this 
work, tower top equivalent displacement of only first bending 
mode of fore-aft direction is considered, that is modeled by an 
equal common mass-spring-damper system. As a consequence, 
the tower top rotation, the torsion deformation, the yawing 
effects and higher bending modes are neglected. The first 
bending mode of fore-aft direction is expressed by (9). 

0T T T aM d C d K d F+ + − =ɺɺ ɺ                                                 (9) 

Where MT is the tower top effective mass, which is 
determined by the sum of nacelle mass including rotor and a top 
equivalent tower mass. CT, KT are, respectively, the structural 

damping and bending stiffness. ,d dɺ and dɺɺare the tower top 

fore-aft displacement, velocity and acceleration, respectively. 

D. Generator dynamics 

The most common types of generators for multi-MW wind 
turbine are a doubly fed induction generator (DFIG) and a 
permanent magnet synchronous generator (PMSG) [6]. The 
generator torque is controlled by a power converter which also 
manages the active and reactive powers of the generator. High 
speed switching power electronics is able to set electric 
generator torque almost instantaneously with respect to the 
mechanical dynamics. For the purposes of control system 
design, the generator dynamics is sufficiently modeled by a first 
order transfer function presented in (10) 

( ) 1

( ) 1
CMD

g

g g

T s

T s sτ
=

+
                                                                  (10) 

In the above equation, Tg(s) and TgCMD(s) are the generator 
torque and generator torque command, respectively. τg is the 
time constant of the generator dynamics. 

E. Pitch actuator 

While wind turbine system operates in above rated wind 
speed, high rotor speed that may cause mechanical damage can 
no longer be managed by increasing generated power because 
this would lead to overload the generator and converter [4]. As 
seen in Fig. 3, CP can be reduced by varying the pitch angle β to 
maintain the output power at rated power and to regulate the 
rotor speed at its rated value, instead of changing rotor speed 
proportionally to the wind speed as in low wind speed region.  

∫∑ ∫

Fig. 6 A second order pitch actuator model 
 
The pitch actuator is a nonlinear servo that generally rotates 

all the blades or part of them in unison. In closed loop the pitch 
actuator can be modeled as a linear low-order dynamic system 
with saturation in the amplitude and derivative of the output 
signal. Fig. 6 shows a block diagram of a second-order actuator 
model. The dynamic behavior of the pitch actuator operating in 
its linear region is described by following transfer function 

2

2 2

( )

( ) 2CM D

s

s s
β

β β β

ωβ
β ξ ω ω

=
+ +

                                               (11) 

Where β and βCMD are the actual and desired pitch angle, 
respectively. ωβ and ξβ are, respectively, natural frequency and 
damping ratio of pitch actuator dynamics. For a multi-MW wind 
turbine, the pitch angle ranges from −3o to 90o and varies at a 
maximum rate of ±10o/s. 

III.  CONTROLLER DESIGN 

A. Model for controller design 

Equations from (7) to (11), describing the dynamics of wind 
turbine, can be written in compact form as 

( , , , , ) 0

( )

f x x u t

y g x

ν =
 =

ɺ
                                                                    (12) 

By defining the state, input and output vectors 

;
CMD

T
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x d d T
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β
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ɺ ɺ
                                                 (13) 

Equation (12) is highly nonlinear model, due to the 
expression of extracted thrust force Fa and aerodynamic torque 
Ta as in (3) and (4). In order to design controller, the global 
model can be linearized around operating points by linearizing 
the aerodynamic torque and thrust force. The deviations of 
aerodynamic torque and thrust force from steady state values are 
expressed in (14). 
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Where the operator δ corresponds to the deviation of values 
from linearization point OP(x0, u0, v0), and coefficients in above 
equations are defined by 

; ;

; ;
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Thus, wind parameterized linear model of wind turbine 
around an operating point can then be set on state space 
representation as in (16). 
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0 0 0( ) ( ) ( ) rx A v x B v u B v

y C x
νδ δ δ δν

δ δ
= + +
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ɺ
                               (16) 

Where 0 0 0; ;x x x u u u y y yδ δ δ= − = − = −
.       . State space matrices A(v0), B(v0) and Bv(v0)  depend on 

operating points. 

0 0 0( ) ; ( ) ; ( )

[0 0 0 0 1 0]

rOP OP OP

f f fA v B v B vx u

C

ν ν
∂ ∂ ∂= = =∂ ∂ ∂

=

   (17) 

The controller which is designed base on linear system 
expressed in equation (18) often proves unsatisfactory in 
controlling the turbine to the desired rotor rotational speed. This 
may be due to some linearization inaccuracies or some model 
deficiencies with respect to the machine behavior in real 
operating conditions. Keeping the rotor speed to a preset value 
is usually of paramount importance, so it may be useful to add a 
complimentary term to the formulation in order to represent a 
long term deviation of the actual rotational speed with respect to 
the set point. The linearized wind turbine expressed in (16) is 
augmented with rotor speed integrator. This gives the state 
vector of the linear system with the form as in (18). 

f

o

Tt

r g rt
x d d T dtδ δ δ δβ δβ δ δ δ = Ω Ω

  ∫ɺ ɺ            (18) 

Thus, the state space model of augmented system is described as 
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Where Θ1 = [0  0  0  0  0  0]T; Θ2 = [0  0] 

B. Target trajectory 
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Fig. 7 Schedule for regulation set point 

 
As mention above, when wind speed is in below rated region, 

the blade pitch angle is constantly maintained at optimal value 
β0. While the rotor speed is changed proportional to wind speed 
so as to maintain tip speed ratio at constant value λ0. For above 

rated region, the pitch angle is varied in order to regulate the 
rotor speed and generator torque/power at rated values. Fig. 7 
illustrates the goal trajectories for rotor speed (the first 
window), blade pitch angle (the second window), generator 
torque (the third window) and electrical power (the fourth 
window). 

C. LQR design 

With the operating points determined, a set of controllers can 
be synthesized by applying LQR for augmented model 
presented in (19), with a quadratic cost function for the 
regulation problem at an operating point is defined as 

( )0 0

0

( ) ( )T TJ x Q v x u R v u dtδ δ δ δ
∞

= +∫                                      (20) 

Where Q(v0) and R(v0) are nonnegative and symmetric 
matrices of weights. The control law optimizing the above 
criterion J is a state feedback law with an optimal gain matrix 
K(v0) determined by solving an LQR problem. In the 
implementation, the intermediate controllers are then 
interpolated linearly from the discrete number of controllers 
which have been designed for specific operating points. Fig. 8 
illustrates the structure of wind turbine system. The LQR gains 
are scheduled by effective wind speed, estimated by wind speed 
estimator. This estimation will be presented in the following 
subsection. 

∑ ∫

ˆrv

∑

 
Fig. 8 LQR control system 

IV.  WIND SPEED ESTIMATION 

As explained above, the target trajectories are scheduled by 
wind speed. However, there is a very rough measurement of the 
wind speed available. It is therefore necessary to have a good 
wind speed estimator to get the controllers implementable. Fig. 
9 shows the schematic diagram of the wind speed estimator, 
which consists of two consecutive processing modules. The first 
module is the aerodynamic torque estimation, following by 3-D 
lookup table to calculate the effective wind speed. 

The governing equations of the drive-train model (7) and (8) 
can be combined into one equation of 

 r
t a g L

d
J T NT T

dt

Ω = − −                                                                        (21) 

Where Jt = Jr + N2Jg, and TL represents all the mechanical 
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losses. 
Then, augmenting (21) with the unknown aerodynamic 

torque Ta, the above equation can be expressed in the state space 
form of (22) [6], [7]. 
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where wg and wv represent the input process and output sensor 
noise. A Kalman filter is applied to estimate the aerodynamic 
torque, which has the structure of (23). In which, variables with 
hat are to be estimated and L is the Kalman filter gain . 
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The second stage of wind speed estimation is to calculate wind 
speed through a 3-D lookup table, which has three inputs of 
estimated aerodynamic torque, measured rotor speed and measured 
pitch angle. This 3-D lookup table is build by using equation (4), 
which is reformulated in the form of. 

( )
3 2
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P

a r

C
T R v

λ β
ρπ
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  

                                                         (24) 

where ˆ ˆ( / )rR vλ = Ω is estimated tip-speed ratio.  
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Fig.  9 Wind speed estimator 

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

A
er

o.
 T

or
qu

e 
(M

N
m

)

 

 
Ta

Est.Ta

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

W
in

d 
sp

ee
d 

(m
/s

)

Time (s)

 

 

wind

Est.wind

 
Fig. 10 Estimated aerodynamic torque (above) and estimated wind 

speed (below) 
 
Fig. 10 illustrates the estimated aerodynamic torque and 

estimated wind speed with the mean value of 8m/s and 23% TI. 
The real signals are presented in dash-dot and the estimated 
values in solid lines. It is noticed that the solid line in bottom 

window of Fig. 10 is spatially average wind speed, which is a 
little difference from the wind speed measured at the hub 
(dash-dot line). The high frequency components in the turbulent 
wind are filtered out so as to get estimated wind as a good 
scheduling variable. 

V. NUMERICAL SIMULATION  

The proposed controller is validated through simulations with 
stochastic wind input in both two regions. The performance and 
mechanical load of proposed method are compared with that of 
PI controller. The control law is developed in 
MATLAB/Simulink and compiled into a Dynamic Link Library 
(DLL). The external controller in DLL format will be used with 
GH Bladed package to perform full system simulation of wind 
turbine. 

The simulation for below rated region is performed using a 
wind with mean speed of 8m/s, which is perturbed by turbulent 
wind with turbulence intensity of 23%. The trace of hub height 
wind speed is shown in the top window of Fig. 11. Fig. 11 also 
shows the rotor speed behavior, generator torque, generator 
power and tower fore-aft moment versus time. The solid plots of 
Fig. 11 represent the responses of the wind turbine when using 
PI controller (designed in [6]), while the dash-dot lines are the 
wind turbine responses when using LQR controller. The 
difference of performance responses between two controllers 
are summarized in Table I. It is difficult to differentiable 
between the structural responses such as blade or tower bending 
moment in time domain. The damage equivalent loads (DEL), 
Meq, can be a quantitative measure. Meq is given by (25) 

( )m

k k
m k

eq
tot

M n
M

n
=
∑

                                                                         (25) 

where nk is the number of cycles in mechanical load range Mk 
and ntot is the total number of cycles in a mechanical load signal. 
m is the material specific number, for example m = 3.5 for a 
steel tower structure and m = 10 for a fiber glass blade [8]. The 
larger the DEL value is, the more prone to end up in fatigue 
failure. The statistical data of DEL data of structural load 
responses at mean wind speed of 8m/s for both LQR and PI 
controller are summarized and compared in Table II. The 
performance data shows that when using LQR the mean value of 
electrical power slightly decreases, however the DEL of the 

TABLE I 
PERFORMANCE DATA AT WIND SPEED OF 8M/S 23%TI 

Performance 
data 

Rotor speed (rpm) Generator Power (Mw) 
Mean Std. Mean Std. 

PI (A) 13.999 1.42 0.778 0.252 
LQR (B) 14.165 1.43 0.777 0.247 
(B-A)/A (%) 1.18 0.70 -0.13 -1.98 

 
TABLE II 

MECHANICAL LOAD AT WIND SPEED OF 8M/S 23%TI 

DEL 
Blade moment (kNm) Tower fore-aft moment 

(kNm) In plane Out-of plane 
PI (A) 2107 1618 4298 
LQR (B) 2061 1535 4030 
(B-A)/A (%) -2.18 -5.13 -6.23 
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blade bending moment in the in-plane and the out-of-plane 
direction as well as the tower root bending moment in the 
fore-aft direction are improved. 

Fig. 12 shows the time domain response simulation for above 
rated wind speed region. The wind speed in this simulation has 
the mean value of 18m/s with turbulence intensity of 16%. The 
first window of Fig. 12 shows the wind speed measured at the 
hub. The second one shows the rotor speed. The next windows 
present generator torque, generator power and blade pitch 
angle. It is easy to see that, in high wind speed region, LQR’s 
performance is quite good when comparing with PI. It can be 
seen in Table III, the electrical power slightly increases. It also 
shows that there are remarkable improvements in the 
fluctuations of rotor speed and electrical power around rated 
values. These are proved by standard deviations of rotor speed 
and electrical power in Table III. Furthermore, there is more 
than 20% DEL decrease of the tower bending moment in 
fore-aft direction, as shown in Table IV.    
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VI. CONCLUSION 

This paper investigated in designing a wind-scheduling linear 
quadratic controller with online wind speed estimation for a 
multi-MW size wind turbine. The controller was designed by 
linearising the nonlinear wind turbine along the operating point 
trajectory. The potential of the controller was checked by 
simulating with GH Bladed software. The responses of 
proposed method were compared with that of PI controller.  
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Fig. 12 Simulation result for wind speed of 18m/s 16% TI 
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TABLE III 
PERFORMANCE DATA AT WIND SPEED OF 18M/S 16%TI 

Performance 

PI (A) 15.270 0.3317 1.9873 0.0513 
LQR (B) 15.299 0.1785 1.9916 0.0300 
(B-A)/A (%) 0.19 -46.18 0.21 -41.52 

 

TABLE IV 
MECHANICAL LOAD AT WIND SPEED OF 18M/S 16%TI 

DEL 
Blade moment (kNm) Tower fore-aft moment 

(kNm) In plane Out-of plane 
PI (A) 2386 2472 7268 
LQR (B) 2367 2502 5808 
(B-A)/A (%) -0.79 1.21 -20.09 

 

Rotor speed (rpm) Generator Power (Mw) 
data Mean Std. Mean Std. 

Fig. 11represent the responses of the wind turbine when using

PI c
designed in [6])ontroller 


