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Abstract—One major difficulty that faces developers of 
concurrent and distributed software is analysis for concurrency based 
faults like deadlocks. Petri nets are used extensively in the 
verification of correctness of concurrent programs. ECATNets are a 
category of algebraic Petri nets based on a sound combination of 
algebraic abstract types and high-level Petri nets. ECATNets have 
'sound' and 'complete' semantics because of their integration in 
rewriting logic and its programming language Maude. Rewriting 
logic is considered as one of very powerful logics in terms of 
description, verification and programming of concurrent systems We 
proposed previously a method for translating Ada-95 tasking 
programs to ECATNets formalism (Ada-ECATNet) and we showed 
that ECATNets formalism provides a more compact translation for 
Ada programs compared to the other approaches based on simple 
Petri nets or Colored Petri nets. We showed also previously how the 
ECATNet formalism offers to Ada many validation and verification 
tools like simulation, Model Checking, accessibility analysis and 
static analysis. In this paper, we describe the implementation of our 
translation of the Ada programs into ECATNets. 

Keywords—Ada tasking, Analysis, Automatic Translation, 
ECATNets, Maude, Rewriting Logic.

I. INTRODUCTION

NE of the most attractive features of the Ada 
programming language is the tasking, which allows 

concurrent execution within Ada programs [11]. The presence 
of concurrency greatly complicates analysis, testing and 
debugging of code. The expression of concurrency is achieved 
by the Ada tasking and rendez-vous. So, much effort is 
focused on these mechanisms. To do such analysis, we often 
find the utilization of Petri nets formalism [14], [15], [10]. The 
choice of this formalism for the verification of the Ada 
programs is reasonable, seen its strength to describe the 
dynamic behavior of concurrent program. Others preferred 
high-level Petri nets [7], [9] to analyze Ada programs. This 
choice is motivated by the strength of CPNs unlike ordinary 
Petri nets to describe both static and dynamic aspects of a 
system, which is a natural need to serve the analysis of the 
Ada programs in a satisfactory manner. On this path, we adopt 
the utilization of ECATNets [1] to translate an Ada concurrent 
program in order to verify it.  As a kind of algebraic Petri nets, 
ECATNets bring more intuitive description for Ada-95 
constructs. ECATNets are a category of algebraic nets based 
on a safe combination of algebraic abstract types and high-
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level Petri nets. In our sense, they present strength of 
expression enough for describing many concepts in Ada-95 
and particularly the concept of task. The choice of ECATNets is 
motivated by their 'sound' and 'complete' semantics because of their 
integration in rewriting logic [12] and so its language Maude [13]. 
Moreover, ECATNets have already a strong battery of 
description and some analysis tools, such as static analysis [2], 
reduction rules [4], [5], reachability analysis and Model 
Checking of Maude; all are based on only one logic, the 
rewriting logic. Rewriting logic is considered as one of very 
powerful logics in terms of description, verification and 
programming of concurrent systems. The integration of 
ECATNets in rewriting logic allows them to benefit from 
Maude all development theories [8] and tools such as 
simulation, accessibility analysis and Model Checking 
techniques.  

Previously, we showed in [6] how ECATNets formalism 
presents a very compact representation for Ada program. In 
[6], we present some refinement rules which allow reduction 
during translation step. Such translation minimizes effectively 
the number of program states. This proposed reduction is 
specific to Ada-ECATNet. Therefore, the obtained reduced 
Ada-ECATNet may be submitted to another reduction such 
that proposed for APNs. This is possible because reduction 
rules defined by Schmidt [16] are adapted and implemented to 
ECATNets in [4], [5]. This double reduction allows a 
meaningful decrease of the complexity of state-space analysis. 
But, in the works based on simple Petri nets or CPNs like, 
Quasar tool developed in [9], authors translate Ada programs 
first to ordinary Petri nets or CPNs and they reduce obtained 
Ada-nets after. So, only one reduction is possible for Ada-
nets. 

In this paper, we describe the implementation of our 
translation of the Ada programs to ECATNets. Considering 
the complexity of Ada, this implementation touches only a 
subset of the concepts of this language. Our efforts are 
concentrated on the concepts relating to concurrency and the 
definition of task. Our objective is to show the feasibility of an 
automatic translation based-Maude of an Ada program 
towards ECATNet. We show in this work the validation of the 
translation of some basic concepts of concurrency as the 
rendez-vous, etc. The Ada-ECATNet translator is based on the 
integration of the three traditional phases of a compiler: 
lexical analysis, syntactic analysis and generation of 
ECATNet code. The language Maude is used to implement 
such translator. 

To simplify the use of our Ada-ECATNet translator, we 
developed also a small application as an interface between 
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user and Maude system for a better execution of this 
translator. The user can use this application to create or open 
his Ada program; he can ask the application for lexical 
analysis or ECATNet code generation by only clicking on the 
appropriate command. In this paper we showed how this tool 
woks.

The rest of this paper is organized as follows. In section 2, 
we give a general description of ECATNets. In section 3, we 
present some proposed translation guidelines in informal way 
with the help of an example. In section 4, the main phases of 
our Ada-ECATNet translator are described. Technical aspect 
of the application is presented in section 5. In section 6, we 
showed how we apply the translator on a simple example of 
Ada program to get ECATNet code. Finally, we conclude the 
paper in the section 7. 

II. ECATNETS

ECATNets [1] are a kind of net/data model combining the 
strengths of Petri nets with those of abstract data types. Places 
are marked with multi-sets of algebraic terms. Input arcs of 
each transition t, i.e. (p, t), are labeled by two inscriptions 
IC(p, t) (Input Conditions) and DT(p, t) (Destroyed Tokens), 
output arcs of each transition t, i.e. (t, p'), are labeled by CT(t, 
p') (Created Tokens), and finally each transition t is labeled by 
TC(t) (Transition Conditions) (see figure 1). IC(p, t) specifies 
the enabling condition of the transition t, DT(p, t) specifies the 
tokens (a multi-set) which have to be removed from p when t 
is fired, CT(t, p') specifies the tokens which have to be added 
to p' when t is fired. Finally, TC(t) represents a boolean term 
which specifies an additional enabling condition for the 
transition t. The current ECATNets’ state is given by the 
union of terms having the following form (p, M(p)). As an 
example, the distributed state s of a net having one transition t 
and one input place p marked by the multi-set a   b   c, and 
an empty output place p', is given by the following multi-set : 
s = (p, a   b   c). 

Fig. 1  A generic ECATNet 

A transition t is enabled when various conditions are 
simultaneously true. The first condition is that every IC(p, t) 
for each input place p is enabled. The second condition is that 
TC(t) is true. Finally, the addition of CT(t, p') to each output 
place p' must not result in p' exceeding its capacity when this 
capacity is finite. When t is fired, DT(p, t) is removed 
(positive case) from the input place p and simultaneously 
CT(t, p') is added to the output place p'. Let’s note that in the 
non-positive case, the common elements between DT(p, t) and 
M(p) are removed. Transition firing and its conditions are 
formally expressed by rewrite rules. A rewrite rule is a 
structure of the form ''t: u  v if boolexp''; where u and v are 
respectively the left and the righthand sides of the rule, t is the 
transition associated with this rule and boolexp is a Boolean 

term. Precisely u and v are multi-sets of pairs of the form (p, 
[m] ), where p is a place of the net, [m] a multi-set of 
algebraic terms, and the multi-set union on these terms, when 
the terms are considered as singletons. The multi-set union on 
the pairs (p, [m] ) will be denoted by . [x]  denotes the 
equivalence class of x, w.r.t. the ACI (Associativity, 
Commutativity, Identity = M) axioms for . An ECATNet 
state is itself represented by a multi-set of such pairs where a 
place p is found at least once if it’s not empty. Now the forms 
of the rewrite rules (i.e., the meta-rules) to associate with the 
transitions of a given ECATNet are recalled. 

IC(p,t) is of the form [m]

Case 1. [IC(p, t)]  =  [DT(p, t)]
The form of the rule is then given by:  
t : (p, [IC(p, t)] )  (p', [CT(t, p')] )
where t is the involved transition, p its input place, and p' its 
output place. 

Case 2. [IC(p, t)]  [DT(p, t)]   = M
This situation corresponds to checking that IC(p, t) is included 
in M(p) and, in the positive case, removing DT(p, t) from 
M(p). In the case where DT(p, t) is not included in M(p), the 
elements which are common to these two multi-sets have to be 
removed. The form of the rule is given by: 
t : (p, [IC(p, t)] )  (p, [DT(p, t)]  [M(p)] )  (p, [IC(p, 
t)] )   (p', [CT(t, p')] )

Case 3. [IC(p, t)]  [DT(p, t)] M
This situation corresponds to the most general case. It may 
however be solved in an elegant way by remarking that it 
could be brought to the two already treated cases. This is 
achieved by replacing the transition falling into this case by 
two transitions which, when fired concurrently, give the same 
global effect as our transition. In reality, this replacement 
shows how ECATNets allow specifying a given situation at 
two levels of abstraction. The forms of the axioms associated 
with the extensions are, w.r.t. the explanation already given, 
evident and thus not commented. 

IC(p, t) is of the form ~[m]

The form of the rule is given by: 
t : (p, [DT(p, t)]  [M(p)] )  (p', [CT(t, p')] )
if ([IC(p, t)] \ ([IC(p,t)]  [M(p)] )) = M   [false] 

IC(p, t) = empty 

The form of the rule is given by: 
t: (p,[DT(p,t)] [M(p)] )  (p',[CT(t,p')] ) if [M(p)] M
When the place capacity C(p) is finite, the conditional part of 
the rewrite rule will include the following component: 

[CT(p,t)] [M(p)] [C(p)]  [CT(p,t)]  [M(p)]  (Cap)
In the case where there is a transition condition TC(t), the 
conditional part of our rewrite rule must contain the following 
component:  TC(t)  [true]. 

P'P
IC(p, t) 

DT(p, t) 
TC (t) 

CT(t, p’) 
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III. SOME GUIDELINES OF TRANSLATION FROM ADA TO 
ECATNET THROUGH AN EXAMPLE

Most concepts of Ada translation to ECATNets are defined 
in [3]. For lack of space reason, here we give just some ideas 
about the translation process through an example. 

A. Example Presentation 
The following segment of Ada program defines a buffer 

reached by producing and consuming task. Producing task 
might have the following structure: 
task body Producer 
Char : Character; 
begin   loop … -- produce the next character Char 
Buffer.Write(Char) ;   exit when Char = ASCII.EOT ;    end loop; 
end Producer;

Buffer contains an internal Pool of the managed characters. 
This space has two indices, In_index denotes the place of the 
next input character and Out_Index denotes the place of the 
next output character. 
protected Buffer is 
entry Write(C : in character);    entry Read(C : out character);   
private   Pool : Array[1..10] of character; Count : Natural := 0 ; 
In_Index, Out_Index : positive := 1; 
end Buffer; 
protected body Buffer is 
entry Write(C : in  character) when Count < Pool’length is 
    begin Pool(In_Index) := C; In_Index := (In_Index mod 
Pool’length) + 1; Count := Count + 1;  end Write;
…
end Buffer; 

B. Translation of the Ada Segment to ECATNets 
Types like character, positive, arrays and queues are 

translated to equivalent abstract data types in ECATNets. A 
sort ‘Producer’ to represent task type producer is defined. In 
this case, a producer task is an algebraic term constant ‘Pr’ of 
sort ‘Producer’. A n-tuple algebraic term composed of 
algebraic terms that represent ‘task’ and its ‘local variables’ is 
used. The translation of entry Write gives us the ECATNet of 
the figure 2, where: Pr: producing task, BF: Buffer, P: Pool, 
CT: count, II: In_Index, and IO: Out_Index. For this entry, we 
associate two places to manage the queue containing waiting 
tasks calling this entry. One place TaskAskWrite serves to 
manage the order of task arrival and it must have the maximal 
size of one task. This last must be transferred to the queue of 
the entry that is in the other place WriteQueue. The 
TaskAskWrite and AcWrite places have a maximal capacity 
of one token. There is a condition isempty(q) == false for the 
transition TaskSelectWrite. For the translation of a protected 
type, a place is created to contain a n-uple composed of its 
variables (place Buf). The n-uple (Bf, P, CT, II, OI) waits in 
this place to be dealt by the entry Write or Read. If the token 
(Pr, Ch) is in AcWrite and the token (Bf, P, CT, II, OI) is in 
Buf, the rendez-vous can take place. The entry Write has a 
guard which is translated directly to the condition of the 
corresponding transition WriteEntry. When the rendez-vous 
takes place, the firing of the transition WriteEntry removes 
(Bf, P, CT, II, OI) and (Pr, Ch) from the appropriate places. 
Removing (Bf, P, C, II, OI) from place Buf guarantees that 

another entry, procedure or a function can not be executed at 
the same time. So, another task can not execute entry Read 
while entry White is in evolution. When the rendez-vous takes 
place, Pr and Ch are integrated in the token representing 
Buffer. Ch gives its value to the variable C according to the 
mode ‘in’ of parameters passing. A statement is translated to a 
transition. The transition S3Write translates the assignment 
statement Count := Count+1;. This transition transforms the 
token (Pr, Bf, P, CT, II, OI, C) to (Pr, Bf, P, CT+1, II, OI, C) 
where CT is replaced by CT+1.

Fig. 2 Representation of entry Write of Buffer type by 
ECATNets

C. Mapping the Obtained Ada-ECATNet to Maude 
Among kinds of modules defined in Maude, there are 

functional and system modules. Functional modules are used 
to define data types and functions on these types through 
theories of equations. System modules are used to define the 
dynamic behavior of a system. This kind of modules adds 
rewriting rules to the concepts defined by functional modules: 
sorts, subsorts, and equations. A maximal degree of 
concurrency is offered by this kind of modules. The following 
module is part of the developed code which is executable 
under Maude system.  
fmod GENERIC-ECATNET is 
 sorts Place Marking GenericTerm. 
 op mt : -> Marking .   op <_;_> : Place GenericTerm -> Marking . 

TaskSelectWrite 

WriteTaskFilter 
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 op _._ : Marking Marking -> Marking [assoc comm. id: mt] . 
endfm

As illustrated in this code, mt is an empty marking of a full 
ECATNet. The operation "<_;_>" is defined to permit the 
construction of elementary marking. The two Underlines 
indicate the positions of operation's parameters. The first 
parameter of this operation is a place and the second one is an 
algebraic term (marking) in this place. An operation to 
implement the operation  is not defined. The operation "_._" 
which implements the operation  is sufficient while basing 
on the concept of decomposition. If a place contains many 
terms, for example (p, a  b  c), can be written as (p, a) 
(p, b)  (p, c). Now, a part of module implementing the 
ECATNet buffer is presented: BUFFER which calls 
BUFFER-DATA module. This last is a functional module 
calling all functional modules concerning descriptions of types 
used by system module BUFFER such as List, Queue, Array, 
Consumer and Producer. Data types like Queue of this 
ECATNet are described in a hierarchy of functional modules 
when, Queue is declared as sub-sort of GenericTerm to be 
able to have a Queue as second parameter of  "<_;_>": 

mod BUFFER is 
protecting BUFFER-DATA . 
...
ops TaskAskWrite WriteQueue AcWrite WaitAckEWrite BeginWrite 
BeginS2Write BeginS3Write EndWrite : -> Place .   
op Buf : -> Place . 
var P : Array . var q : Queue . vars C Ch : EltArray . 
vars II OI CT : Int .
var CharL : List . var Pr : Producer .eq EOT = endoflist . 
…  *** rules for Write 
rl [WriteTaskFilter] : < TaskAskWrite ; (Pr , Ch) > 
. < WriteQueue ; q >  => < WriteQueue ; addq(q, (Pr ,, Ch)) > . 
…
endm

The application of rules defined in [6] on entry Write of 
Buffer type gives a compact representation in figure 3. In 
Maude program, the rules WriteTaskFilter and 
WriteTaskSelect are kept without any change. But, the 
remaining five transitions are merged to only one transition : 
crl [WriteS123EntryReturn] :  < Buf ; (BF , P , CT , II , OI) >  
. < AcWrite ; (Pr ,, Ch) > . < WaitAckEWrite ; (Pr ,, Ch) > 
 => < Buf ; (BF , set(P, Ch, II) , (CT + 1), ((II rem lengtha(P)) + 1) , 
OI) > . < BeginS2Pr ; (Pr , Ch) >   if CT < lengtha(P) . 

IV. ADA-ECATNET TRANSLATOR
The Ada-ECATNet translator is developed in the same way 

as any other compiler. Classical known phases are proposed : 
a lexical analysis, a syntactic analysis and a phase of code 
generation. Let us note that if the Ada program does not 
contain errors, our application returns the ECATNet 
equivalent code, in the presence of mistakes in Ada program, 
our application returns the constant ‘ErrorUple’. Thereafter, 
the realization’s details of this translator’s phases are 
explained. Figure 4, describes a view on the different steps of 
the Ada-ECATNet translator. 

Fig. 3 Compact representation of entry Write of Buffer type after 
applying refinement rules 

Fig. 4  Methodical view on Ada-ECATNet translator 

A. Lexical analysis 
This phase takes Ada program as input and generates all the 

lexemes constituting this program. This phase transforms the 
Ada program to a list of its lexemes in form of list of strings.  

B. Syntactic analysis 
This step transforms the input list of Ada program lexemes 

into an intermediate representation to facilitate us the 
generation of the ECATNet code. For the development of this 
phase, certain types of specific data are created. This phase 
takes as input a data type ‘Uple’ composed of a list ‘List’ and 
a stack ‘Stack’. The list contains the strings indicating the 
lexemes of the program Ada (operator, identifier, keyword, 
etc).

Data types. The stack contains information on the Ada 
program necessary for the generation of equivalent ECATNet 
code. Each time the parser evolves in the list, it collects 
information on the Ada program and put it in the stack. The 
basic element of the stack is a data type called ‘Code’. This 
last contains also strings. The following operation allows the 
construction of an ‘Uple’: 
op (_;_) : List Stack -> Uple . 

If the list to be analyzed contains a mistaken string (the Ada 
program is erroneous), the analyzer returns ‘ErrorUple’:  
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op ErrorUple : -> Uple . 
The operation 1st extracts the first parameter from (_;_), 

which is a list and the function 2nd extracts the second 
parameter which is of sort ‘Stack’. Now, the operations for the 
construction of a code (element of sort ‘Code’) and the 
construction of an empty code:   
op _,_ : Code Code -> Code [assoc id : nullCode] .    
op nullCode : -> Code . 

Two constants BeginCode and EndCode are defined of the 
type ‘Code’. These two constants are used to delimit in a 
stack, the necessary information concerning a specific 
syntactic construction of a Ada program. The type ‘Tuple’ is 
defined to support the token consisted of the identifier of the 
task and its variables. The operation _, _ allows building 
extensible tuple:  
sorts Elt Tuple . subsort Elt < Tuple . op _,_ : Elt Tuple -> Tuple .

Also another sort ‘ExtTuple’ is defined which to be 
composed of several ‘Tuple’. This sort is useful in the cases of 
passage of the parameters at the time of the call of an entry or 
of procedure. According to our Ada-ECATNet translation, 
when the task calls an entry, the tuple representing the state of 
the task enters the place where it is the queue of the entry. In 
this case, there is no mechanism to distinguish the current 
parameters used in the call. Then, in order to not lose of such 
information at the time of the call, the tuple is rewritten in a 
term of kind ‘ExTuple’. This term is composed of two tuples: 
the one which represents the state of the task and the other 
contains the current parameters to pass later at the time of the 
concretization of the rendez-vous between the two tasks. 

Syntactic Analysis Functions. Now, we explain some 
functions of syntactic analysis. It is about the functions 
concerning the analysis of the statements. Initially, the 
production rule of the assignment statement is: 
assignment_statement ::=   variable_name := expression;

Intuitively, after the analysis of this statement, the name of 
the variable and the contents of the expression must be saved. 
That is to say assignment-statement-Analysis (L; (Id, Ex)) is 
the function which analyzes the assignment statement and 
save the elements figuring in the assignment statement. Id is 
the left part of the assignment and Ex is the right part of the 
assignment: 
op assignment-statement-Analysis : Uple -> Uple . 
eq assignment-statement-Analysis(L ; (Id, Ex)) = 
if IsIdentifier(head(L)) == true 
   and head(tail(L)) == ":=" 
   and expression-Analysis(tail(tail(L)) ; Ex) =/= ErrorUple 
   and head(1st(expression-Analysis(tail(tail(L)) ; Ex))) == ";" 
then tail(1st(expression-Analysis(tail(tail(L)) ; Ex))) ; 
         (head(L), 2nd(expression-Analysis(tail(tail(L)) ; Ex))) 
else ErrorUple fi . 

In this code, four conditions are defined: 
- IsIdentifier(head(L)) == true : this condition is true if 

head (L) is an identifier. 
- head(tail(L)) == ":=" : this condition is true if the 

element which is next this identifier is equal to “: =”. 

- expression-Analysis(tail(tail(L)) ; Ex) : this condition 
is correct if the elements which are in the list next the 
identifier and “: =” constitutes a correct expression. 

- head(1st(expression-Analysis(tail(tail(L)) ; Ex))) == 
";" : this last condition is true if the element which is 
in the list next the elements constituting the 
expression is equal to “; ”. 

If the four conditions are valid, the function assignment-
statement-Analysis (L; (Id, Ex)) returns an ‘Uple’ tail (1st 
(expression-Analysis (tail (tail (L)) ; Ex))) ; (head (L), 2nd 
(expression-Analysis (tail (tail (L)) ; Ex))). This last is 
consisted of the remainder of the list to analyze: tail (1st 
(expression-Analysis (tail (tail (L)) ; Ex))) after eliminating 
the elements described above concerning the assignment, and 
a code (head (L), 2nd (expression-Analysis (tail (tail (L)) ; 
Ex))) containing the necessary information for the generation 
of the ECATNet code for this assignment later. This code 
contains the right part of the assignment head(L) and its left 
part 2nd (expression-Analysis (tail (tail (L)) ; Ex))). This part, 
itself is returned by the function expression-Analysis (tail (tail 
(L)) ; Ex)) who is responsible for the analysis of the 
expressions. 

The function assignment-statement-Analysis (L; (Id, Ex)) is 
called during the analysis by the simple-statement-Analysis 
function (L; (Kind, Id, IdL, Ex)) which analyzes the Ada code 
generated by simple_statement. Four parameters for the code 
are needed: Kind, Id, IdL and Ex. Initially, the production  
rules of simple_statement are: 
simple_statement ::= null_statement | assignment_statement   |  
                                  exit_statement  | return_statement
                                  | entry_call_statement   | abort_statement

Let’s give in detail also entry_call_statement:   
entry_call_statement ::= entry_name [actual_parameter_part];
That is to say entry-call-statement-Analysis (L; (Id, IdL)) the 
function which analyzes this instruction. It returns a code 
composed of name of the entry Id and a list of the actual 
parameters IdL. The last parameter Kind is used to save the 
type of the instruction, the following code is a part of the 
simple-statement-Analysis function (L; (Kind, Id, IdL, Ex)), 
(Ex is condition returned by exit-statement-Analysis) : 
op simple-statement-Analysis : Uple -> Uple . 
eq simple-statement-Analysis(L ; (Kind, Id, IdL, Ex)) = 
if IsIdentifier(head(L)) == true 
then if assignment-statement-Analysis(L ; (Id, Ex))  
           =/= ErrorUple 
        then 1st(assignment-statement-Analysis(L ; (Id, Ex))) ;  
                ("assg", 1stC(2nd(assignment-statement-Analysis(L ; 
                 (Id, Ex)))),
                empty, 2ndC(2nd(assignment-statement-Analysis(L ;  
                (Id, Ex))))) 
       else … 
**** Analysis of the other types of statements 
fi . 

In this code, if head (L) is an identifier, then we test if 
assignment-statement-Analysis (L; (Id, Ex)) =/= ErrorUple is  
valid. If this condition is true, so it is about an assignment 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3016

statement in the code. The result returned in this case by the 
function is composed by the remainder of the list of entry after 
skipping the elements of the assignment: 1st (assignment-
statement-Analysis (L; (Id, Ex))). The code is consisted of 
four elements: such as the first element “assg” indicate the 
kind of the statement which is the assignment in this case, the 
second element is the left part of the assignment, the third one 
is empty (it is independent of the assignment, but it is not 
empty for other instructions). The fourth element is the right 
part of the assignment. 

C. Code Generation 
This phase takes the previous intermediate representation 

and generates the ECATNet code equivalent to the Ada 
program. The generated code is in the form of a hierarchy of 
the functional modules and system modules. Functional 
modules implement data types. System module implements 
the concurrent behavior of the tasks and their 
communications. The system module imports the last 
functional module in the hierarchy of the functional modules.  
A part of code which is used to generate the ECATNet code 
relating to the assignment statement is explained. In our file 
concerning the generation of the code, the following variables 
are declared: 
vars Id RuleOrder Place1  : String .  vars L : List .  var SK  : 
Stack . 

The following function Create-RulesFor-assg-Stmts (L, SK, 
Id, RuleOrder, Place1) generates the ECATNet code of an 
assignment statement. Such as L is the list containing the 
identifier and the local variables of the task, SK is the stack 
containing the part of code relating to the assignment for 
which, a code will be generated. Id is the name of the unit 
(task, package, entry,…), RuleOrder is the order of next 
rewriting rule to be generated. Place1 saves the order of the 
next place to be generated. Create-RulesFor-assg-Stmts (L, 
SK, Id, RuleOrder, Place1) starts by removing BeginCode and 
EndCode by calling StackSubstraction (pop (SK), EndCode). 
Then, it calls Create-RulesFor-assg-Stmts-1 (L, 
StackSubstraction (pop (SK), EndCode), Id, RuleOrder, 
Place1). StackSubstraction (pop (SK), EndCode) allows 
returning in this case a code: 
op Create-RulesFor-assg-Stmts :  
     List Stack String String String  -> String . 

eq Create-RulesFor-assg-Stmts(L, SK, Id, RuleOrder, Place1) =  
Create-RulesFor-assg-Stmts-1(L, StackSubstraction(pop(SK), 
EndCode), Id, RuleOrder, Place1) . 

This code returned is Cd which is composed of four 
parameters saving the parts of the assignment. The function 
Create-Tuple (L) transforms this list with a tuple. If L = a1. 
a2… .an, then the tuple obtained is form (a1, a2,… ,an). The 
function ReplaceEltinList (2ndC (Cd), 4rthC (Cd), L) allows 
replacing the occurrence of the variable 2ndC (Cd) in the list 
L by the expression 4rthC (Cd) which is the third part of the 
assignment. The variables of the task are stored in a list L 
saved in the code: 
op Create-RulesFor-assg-Stmts-1  :  
     List Stack String String String -> String . 

eq Create-RulesFor-assg-Stmts-1(L, Cd, Id, RuleOrder,  Place1) = 
" rl [" + NewRule(RuleOrder, Id) + "] :  
< " + NewPlace(Place1, Id) + " ;  " + Create-Tuple(L) + " > "  
+ " => " + " < " + NewPlace(SuccNumber(Place1), Id) + " ; "  
+ Create-Tuple(ReplaceEltinList(2ndC(Cd), 4rthC(Cd), L))
+ " > . "  . 

Now, we explain another function Create-RulesFor-entry-
call-Stmt(L, SK, Id, RuleOrder, Place1) which is used to 
generate the ECATNet code of an entry call statement. Such 
as SK is the stack containing the part of code relating to the 
call of the entry for which, a code will be generated. L, Id, 
RuleOrder and Place1 have the same significance as in the 
function Create-RulesFor-assg-Stmts(L, SK, Id, RuleOrder, 
Place1). In the code created by Create-RulesFor-entry-call-
Stmt(L, SK, Id, RuleOrder, Place1), CreateTaskAsk-Place 
(entry-call-name(SK)) creates a name of place containing the 
name of the called entry. In fact, the function entry-call-
name(SK) returns the name of the called entry. The first built 
rewriting rule, allows the token of the task which is Create-
Tuple (L) to put itself in the place of the entry entry-call-name 
(SK). This place which is called CreateTaskA sk-Place (entry-
call-name(SK)) is also in the code of the suitable entry and is 
used to receive the tasks which call this entry. The function 
entry-call-list(SK) returns the current parameters passed to the 
called entry: 
op Create-RulesFor-entry-call-Stmt :  
List Stack String String String -> String . 
eq Create-RulesFor-entry-call-Stmt(L, SK, Id, RuleOrder, Place1) = 
" rl [" + NewRule(RuleOrder, Id) + "] : " 
+ " < " + NewPlace(Place1, Id) +  " ; " + Create-Tuple(L)  
+ " > "
+ " => " + " < " + CreateTaskAsk-Place(entry-call-name(SK)) +  " ; " 
+ "(" + Create-Tuple(L) + " ; "
+ Create-Tuple(entry-call-list(SK)) + ") >  . " 
+ " rl [" + NewRule(SuccNumber(RuleOrder), Id) + "] : " 
+ " < " + CreateReturnFromCall-Place(entry-call-name(SK))  
+ " ; " + "(" + Create-Tuple(L) + " ; "
+ Create-Tuple(entry-call-list(SK)) + ") >  "  
+ " => " + " < " + NewPlace(SuccNumber(Place1), Id)  
+  " ; " + Create-Tuple(L) + " > . "  . 

The second rewriting rule built by this function represents 
the return of the entry call. In the code of the entry, a place 
CreateReturnFromCall-Place (entry-call-name (SK)) is 
created. This rewriting rule allows to the task to leave this 
place towards a new place to follow its activity. The function 
entry-call-name(SK) returns the name of the called entry. The 
function entry-call-list(SK) gets back the current parameters to 
the called entry. 

V. TECHNICAL ASPECT

Let’s note that Maude system has only textual version. So, 
instead to use directly Maude system to execute the translator, 
we developed a small application as interface between the user 
and Maude system. This application is developed with Delphi 
language to help user to use easily and in better way our 
translator. The application provides to the user classical 
edition of text files to create his Ada program with ‘File’ and 
‘Edit’ options.  ‘Help’ option contains some explanations 
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about this tool. Moreover, two options are proposed: ‘Lexical 
Analysis’ and ‘Code Generation’ in the main menu. ‘Lexical 
analysis’ contains two options: ‘List of Tokens Creation’ and 
‘List of Tokens in Maude’. The first option allows the calling 
of the lexical analyser and displaying all tokens of the Ada 
program. The second one allows the transforming of this list 
to a list of strings and creating a module containing this list as 
constant to be treated by the code generator later. ‘Code 
Generation’ option contains two options too. The first one is 
‘ECATNet Code generation’ which allows the calling of the 
translator written in Maude and generating a system module 
equivalent to the Ada program. The second option which is 
‘ECATNet Complete Code’ allows the extraction of the initial 
marking equivalent to the initial state of the Ada program. So, 
this option generates the ECATNet code and adds a rewriting 
command with initial marking as parameter. The obtained 
code in this case is ready to be simulated under Maude system. 
In figure 5, we present a part of Ada-ECATNet based-Maude 
translator.

Fig. 5. Part of Ada-ECATNet based-Maude translator 

A. Ada-ECATNet Translator Files 
Let’s go back to the Ada-ECATNet translator; we note that 

a hierarchy of functional modules to implement in Maude this 
translator are developed. For the simplicity reason, these 
modules are distributed on some files. This file 
LexAdaNets.maude contains lexical analyser. The file 
AdaNetsData-1.maude contains a functional module which 
defines some data types to be imported by the generated code, 
for instance, arrays. The file AdaNets.maude includes all data 
types used by the application. Finally, files AdaNets-1.maude, 
AdaNets-2.maude and AdaNets-3.maude contain functions to 
generate ECATNet code to an equivalent Ada program. The 
first file contains modules to generate ECATNet code for Ada 
basic statements, the file AdaNets-2.maude contains modules 
to generate ECATNet code for statements related to task 
concept and AdaNets-3.maude contains modules to generate 
ECATNet code for general code (package). 

VI. EXAMPLE

In this section, we show two things, the first one how the 
phases of our translator act on the previous example and the 

second one the execution of the example under our 
application. Let’s note that some syntactic modifications are 
done on the example. For instance, a package BufferPackage 
to contain tasks and protected type Buffer is created. Consider 
an Ada code composed of only one instruction:  
Buffer.Write (Char); 

The lexical analyzer transforms this code to an ‘Uple’ 
composed of a list of strings and an empty stack: 
"Write" . "(" . "Char" . ")" . ";"  ; emptystack 

The syntactic analysis transforms this call of an entry with a 
representation in the form of stack containing three elements 
BeginCode, (“entry call”, “Write”, “Char”) and EndCode. The 
two constants BeginCode and EndCode are used to delimit the 
code of the entry call. The code in the middle contains three 
strings: “entry call”, “Write” and “Char”. 

In fact, the first string allows indicating that this code 
concerns the entry call. The second string contains the name 
of the entry called and the third string can be a list of the 
parameters of the called entry. The result obtained after the 
analysis of this instruction is the ‘Uple’ composed by the list 
of entry which is empty in our case, and the representation in 
form of stack of the entry call: empty ;  push(BeginCode, 
push((“entry call”,   "Write",    "Char"),  EndCode)) 

The syntactic analysis generates an intermediate 
representation in the form of stack (returned by the function 
which analyzes a sequence of instructions. The latter contains 
only one instruction in our example: 
empty ;  push(BeginCode, push("sequence of statements",  
              push(BeginCode, push( "entry call", "Write", "Char", 
                        "", EndCode )))) 

Only a small portion of code generated by our application is 
presented. The generator of code creates a declaration of 
variable var Generic-producer: producer.  It allows writing 
only one ECATNet code for all the producers. The rewriting 
rule producer-Rule-4 translates a part of the call of the Write 
entry. This call is expressed as putting the tuple (Generic-
producer, Char) in the place Task-Ask-Write-Place. Let us 
note that the places used in this part of code are created before 
their use like the code expressing the Write entry. 

After the execution of this rewriting rule, the token 
(Generic-producer, Char) is in the Write entry which is not 
explained here for simplicity. Normally, at the end of the 
execution of this entry, this token is found in a place named 
Return-From-Call-Entry-Write-Place. The rewriting rule 
producer-Rule-5 takes again the token and puts it in a place 
named producer-Place-4; so, the task can continue its 
execution:
var Generic-producer : producer .   
rl [producer-Rule-4] :  
< producer-Place-3 ; (Generic-producer, Char) >
=> < Task-Ask- Write-Place ; ((Generic-producer, Char) ;
      (Char)) >  . 
rl [producer-Rule-5] :  < Return-From-Call-Entry- Write-Place ; 
((Generic-producer, Char) ; (Char)) >
=>  < producer-Place-4 ; (Generic-producer, Char) > . 

After showing how our translator acts on the Ada program 
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to translate it to an ECATNet code, let’s explain how the user 
can use the application ‘Ada-ECATNets Translator’ to get an 
ECATNet code equivalent to an Ada program. After opening 
the application, the user can create his Ada program or just 
opened it if it exists. The figure 6 presents a part of the Ada 
program example opened in our application: 

Fig. 6. Part of the Ada program example 

After calling the lexical analyser to identify every token in 
the program in Ada, the application creates a list of strings in 
Maude. Figure 7 describes a functional module created by our 
application to contain the Ada program as a list of strings 
(tokens) in Maude. 

Fig .7. Part of the Maude module containing Ada program tokens 

If we execute of the command ‘ECATNet Code generation’ 
in ‘Code Generation’ option, then the ECATNet code is 
obtained after translating the Ada program example. To get 
this ECATNet code, the application calls Maude system to 
execute the translator written in Maude and saved in the file 
AdaNets-3.maude. In the figure 8, there is a part of the 
ECATNet code of translated Ada program Buffer. This part is 
about the beginning of some created modules of data and the 
principal module translating the package containing tasks and 

the protected type buffer. In the figure 9, a part of the 
ECATNet code is given, but this time, the part of the code is 
about some rewriting rules translating some statements of the 
Write entry. 

Fig. 8.  Part of ECATNet code of translated Ada program Buffer 

Fig.  9. Part of ECATNet code of translated Ada program Buffer 

VII. CONCLUSION

In this paper, we presented our approach in the 
implementation of Ada-ECATNet translator. We explained 
the various phases of this translator and we detailed the data 
types used in these phases. The translator was developed with 
the help of Maude language. Within the framework of the 
implementation of this translator, the functional mode of the 
Maude language is used. Also a small application is developed 
as an interface between user and Maude system for a better 
execution of this translator. The user can use this application 
to create or open his Ada program, he can ask the application 
for lexical analysis or ECATNet code generation by only 
clicking on a command. 
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This automatic translator gives us an environment to Ada 
programs to be analysed by using ECATNets based on 
rewriting logic and Maude language tools. It allows us to take 
advantage of the battery of verification tools of ECATNets 
formalism to check the correction of Ada programs. First 
ECATNets offer a very compact representation and double 
reduction to Ada program; one reduction can be done during 
the translation step and the other one after the translation of 
Ada code to ECATNet. On another hand, ECATNet 
formalism offer many kinds of validation and verification 
tools like: simulation, Model Checking, accessibility analysis 
and static analysis. 

REFERENCES

[1] M. Bettaz, M. Maouche, “How to specify Non Determinism and True 
Concurrency with Algebraic Term Nets”, Vol. 655 of LNCS, Spring-
Verlag, p. 11-30, 1993.  

[2] M. Bettaz, A. Chaoui, K. Barkkaoui, “On Finding Structural Deadlocks 
in ECATNets Using a Logic of Concurrency”, Journal on Computing 
and Information, Vol 2 No 1, pp. 495-506, 1996. 

[3] N. Boudiaf, A. Chaoui, “Towards Automated Analysis of Ada-95 
Tasking Behavior By Using ECATNets”, in Proc. Conference ISIIT’04,
Jordan, 2004. 

[4] N. Boudiaf, K. Barkaoui, A. Chaoui,  “Implémentation Des Règles de 
Réduction des ECATNets dans Maude”, in Proc. Conference Mosim’06,
Rabat, Maroc, 2006, pp. 1505-514. 

[5] N. Boudiaf, K. Barkaoui and A. Chaoui, “Applying Reduction Rules to 
ECATNets”, in Proc. AVIS'06 Workshop (Co-located with the 
conferences ETAPS'06), Vienna, Austria, 2006. 

[6] N. Boudiaf, A. Chaoui, “Double Reduction of Ada-ECATNet 
Representation Using Rewriting Logic”, Enformatika Journal 
(Transactions on Engineering, Computing and Technology), Vol. 15, 
ISSN 1305-5313, pp. 278-284, October 2006. 

[7] E. Bruneton and J-F. Pradat-Peyre, “Automatic Verification of 
Concurrent Ada Programs”,  in Proc. Reliable Software Technologies-
Ada-Europe, 1999. 

[8] M. Clavel and aL, “Maude Manual (Version 2.2)”, Internal report, SRI 
International, December 2005. 

[9] S. Evangelista, C. Kaiser, J. F. Pradat-Peyre, and P. Rousseau, “Quasar: 
a new tool for analyzing concurrent programs”. in Proc. Ada-Europe 
2003, LNCS, Springer-Verlag, 2003. 

[10] Ravi K. Gedela, Sol M. Shatz and Haiping Xu, “Compositional Petri Net 
Models of Advanced Tasking in Ada-95”, in Proc. Comput. Lang. 25(2),
1999, pp. 55-87.  

[11] ISO/IEC 8652. “Information Technology – Programming Languages – 
Ada”, 1995. 

[12] J. Meseguer, “Rewriting Logic as a Semantic Framework of 
Concurrency: a Progress Report”, in Proc. Seventh International 
Conference on Concurrency Theory, Vol. 1119 of LNCS, Springer 
Verlag, 1996, pp. 331-372. 

[13] J. Meseguer, “Rewriting logic and Maude: a Wide-Spectrum Semantic 
Framework for Object-based Distributed Systems”, In S. Smith and C.L. 
Talcott, editors, in Proc. Formal Methods for Open Object-based 
Distributed Systems. Kluwer, 2000. 

[14] T. Murata, B. Shenker, S. M. Shatz, “Detection of Ada Static Deadlocks 
Using Petri Nets Invariants”, IEEE trans. Oo Software Engineering, vol. 
15, No. 3, pp 314-326, 1989. 

[15] S. M. Shatz, S. Tu, T. Murata, S. Duri,. “An Application  of Petri Net 
Reduction for Ada Tasking Deadlock Analysis”, IEEE Transactions on 
Parallel and Distributed Systems, 1996. 

[16] K. Schmidt, “Applying Reduction Rules to Algebraic Petri Nets”, TKK
Monoistamo; Otaniemi 1997, ISSN 0783 5396, 1997. 


