
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3011

Abstract—One major difficulty that faces developers of
concurrent and distributed software is analysis for concurrency based
faults like deadlocks. Petri nets are used extensively in the
verification of correctness of concurrent programs. ECATNets are a
category of algebraic Petri nets based on a sound combination of
algebraic abstract types and high-level Petri nets. ECATNets have
'sound' and 'complete' semantics because of their integration in
rewriting logic and its programming language Maude. Rewriting
logic is considered as one of very powerful logics in terms of
description, verification and programming of concurrent systems We
proposed previously a method for translating Ada-95 tasking
programs to ECATNets formalism (Ada-ECATNet) and we showed
that ECATNets formalism provides a more compact translation for
Ada programs compared to the other approaches based on simple
Petri nets or Colored Petri nets. We showed also previously how the
ECATNet formalism offers to Ada many validation and verification
tools like simulation, Model Checking, accessibility analysis and
static analysis. In this paper, we describe the implementation of our
translation of the Ada programs into ECATNets.

Keywords—Ada tasking, Analysis, Automatic Translation,
ECATNets, Maude, Rewriting Logic.

I. INTRODUCTION

NE of the most attractive features of the Ada
programming language is the tasking, which allows

concurrent execution within Ada programs [11]. The presence
of concurrency greatly complicates analysis, testing and
debugging of code. The expression of concurrency is achieved
by the Ada tasking and rendez-vous. So, much effort is
focused on these mechanisms. To do such analysis, we often
find the utilization of Petri nets formalism [14], [15], [10]. The
choice of this formalism for the verification of the Ada
programs is reasonable, seen its strength to describe the
dynamic behavior of concurrent program. Others preferred
high-level Petri nets [7], [9] to analyze Ada programs. This
choice is motivated by the strength of CPNs unlike ordinary
Petri nets to describe both static and dynamic aspects of a
system, which is a natural need to serve the analysis of the
Ada programs in a satisfactory manner. On this path, we adopt
the utilization of ECATNets [1] to translate an Ada concurrent
program in order to verify it. As a kind of algebraic Petri nets,
ECATNets bring more intuitive description for Ada-95
constructs. ECATNets are a category of algebraic nets based
on a safe combination of algebraic abstract types and high-

N. Boudiaf is with the University of Oum El Bouaghi, Algeria (e-mail:
boudiafn@gmail.com).

level Petri nets. In our sense, they present strength of
expression enough for describing many concepts in Ada-95
and particularly the concept of task. The choice of ECATNets is
motivated by their 'sound' and 'complete' semantics because of their
integration in rewriting logic [12] and so its language Maude [13].
Moreover, ECATNets have already a strong battery of
description and some analysis tools, such as static analysis [2],
reduction rules [4], [5], reachability analysis and Model
Checking of Maude; all are based on only one logic, the
rewriting logic. Rewriting logic is considered as one of very
powerful logics in terms of description, verification and
programming of concurrent systems. The integration of
ECATNets in rewriting logic allows them to benefit from
Maude all development theories [8] and tools such as
simulation, accessibility analysis and Model Checking
techniques.

Previously, we showed in [6] how ECATNets formalism
presents a very compact representation for Ada program. In
[6], we present some refinement rules which allow reduction
during translation step. Such translation minimizes effectively
the number of program states. This proposed reduction is
specific to Ada-ECATNet. Therefore, the obtained reduced
Ada-ECATNet may be submitted to another reduction such
that proposed for APNs. This is possible because reduction
rules defined by Schmidt [16] are adapted and implemented to
ECATNets in [4], [5]. This double reduction allows a
meaningful decrease of the complexity of state-space analysis.
But, in the works based on simple Petri nets or CPNs like,
Quasar tool developed in [9], authors translate Ada programs
first to ordinary Petri nets or CPNs and they reduce obtained
Ada-nets after. So, only one reduction is possible for Ada-
nets.

In this paper, we describe the implementation of our
translation of the Ada programs to ECATNets. Considering
the complexity of Ada, this implementation touches only a
subset of the concepts of this language. Our efforts are
concentrated on the concepts relating to concurrency and the
definition of task. Our objective is to show the feasibility of an
automatic translation based-Maude of an Ada program
towards ECATNet. We show in this work the validation of the
translation of some basic concepts of concurrency as the
rendez-vous, etc. The Ada-ECATNet translator is based on the
integration of the three traditional phases of a compiler:
lexical analysis, syntactic analysis and generation of
ECATNet code. The language Maude is used to implement
such translator.

To simplify the use of our Ada-ECATNet translator, we
developed also a small application as an interface between

Automatic Translation of Ada-ECATNet
Using Rewriting Logic

N. Boudiaf

O

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3012

user and Maude system for a better execution of this
translator. The user can use this application to create or open
his Ada program; he can ask the application for lexical
analysis or ECATNet code generation by only clicking on the
appropriate command. In this paper we showed how this tool
woks.

The rest of this paper is organized as follows. In section 2,
we give a general description of ECATNets. In section 3, we
present some proposed translation guidelines in informal way
with the help of an example. In section 4, the main phases of
our Ada-ECATNet translator are described. Technical aspect
of the application is presented in section 5. In section 6, we
showed how we apply the translator on a simple example of
Ada program to get ECATNet code. Finally, we conclude the
paper in the section 7.

II. ECATNETS

ECATNets [1] are a kind of net/data model combining the
strengths of Petri nets with those of abstract data types. Places
are marked with multi-sets of algebraic terms. Input arcs of
each transition t, i.e. (p, t), are labeled by two inscriptions
IC(p, t) (Input Conditions) and DT(p, t) (Destroyed Tokens),
output arcs of each transition t, i.e. (t, p'), are labeled by CT(t,
p') (Created Tokens), and finally each transition t is labeled by
TC(t) (Transition Conditions) (see figure 1). IC(p, t) specifies
the enabling condition of the transition t, DT(p, t) specifies the
tokens (a multi-set) which have to be removed from p when t
is fired, CT(t, p') specifies the tokens which have to be added
to p' when t is fired. Finally, TC(t) represents a boolean term
which specifies an additional enabling condition for the
transition t. The current ECATNets’ state is given by the
union of terms having the following form (p, M(p)). As an
example, the distributed state s of a net having one transition t
and one input place p marked by the multi-set a b c, and
an empty output place p', is given by the following multi-set :
s = (p, a b c).

Fig. 1 A generic ECATNet

A transition t is enabled when various conditions are
simultaneously true. The first condition is that every IC(p, t)
for each input place p is enabled. The second condition is that
TC(t) is true. Finally, the addition of CT(t, p') to each output
place p' must not result in p' exceeding its capacity when this
capacity is finite. When t is fired, DT(p, t) is removed
(positive case) from the input place p and simultaneously
CT(t, p') is added to the output place p'. Let’s note that in the
non-positive case, the common elements between DT(p, t) and
M(p) are removed. Transition firing and its conditions are
formally expressed by rewrite rules. A rewrite rule is a
structure of the form ''t: u v if boolexp''; where u and v are
respectively the left and the righthand sides of the rule, t is the
transition associated with this rule and boolexp is a Boolean

term. Precisely u and v are multi-sets of pairs of the form (p,
[m]), where p is a place of the net, [m] a multi-set of
algebraic terms, and the multi-set union on these terms, when
the terms are considered as singletons. The multi-set union on
the pairs (p, [m]) will be denoted by . [x] denotes the
equivalence class of x, w.r.t. the ACI (Associativity,
Commutativity, Identity = M) axioms for . An ECATNet
state is itself represented by a multi-set of such pairs where a
place p is found at least once if it’s not empty. Now the forms
of the rewrite rules (i.e., the meta-rules) to associate with the
transitions of a given ECATNet are recalled.

IC(p,t) is of the form [m]

Case 1. [IC(p, t)] = [DT(p, t)]
The form of the rule is then given by:
t : (p, [IC(p, t)]) (p', [CT(t, p')])
where t is the involved transition, p its input place, and p' its
output place.

Case 2. [IC(p, t)] [DT(p, t)] = M
This situation corresponds to checking that IC(p, t) is included
in M(p) and, in the positive case, removing DT(p, t) from
M(p). In the case where DT(p, t) is not included in M(p), the
elements which are common to these two multi-sets have to be
removed. The form of the rule is given by:
t : (p, [IC(p, t)]) (p, [DT(p, t)] [M(p)]) (p, [IC(p,
t)]) (p', [CT(t, p')])

Case 3. [IC(p, t)] [DT(p, t)] M
This situation corresponds to the most general case. It may
however be solved in an elegant way by remarking that it
could be brought to the two already treated cases. This is
achieved by replacing the transition falling into this case by
two transitions which, when fired concurrently, give the same
global effect as our transition. In reality, this replacement
shows how ECATNets allow specifying a given situation at
two levels of abstraction. The forms of the axioms associated
with the extensions are, w.r.t. the explanation already given,
evident and thus not commented.

IC(p, t) is of the form ~[m]

The form of the rule is given by:
t : (p, [DT(p, t)] [M(p)]) (p', [CT(t, p')])
if ([IC(p, t)] \ ([IC(p,t)] [M(p)])) = M [false]

IC(p, t) = empty

The form of the rule is given by:
t: (p,[DT(p,t)] [M(p)]) (p',[CT(t,p')]) if [M(p)] M
When the place capacity C(p) is finite, the conditional part of
the rewrite rule will include the following component:

[CT(p,t)] [M(p)] [C(p)] [CT(p,t)] [M(p)] (Cap)
In the case where there is a transition condition TC(t), the
conditional part of our rewrite rule must contain the following
component: TC(t) [true].

P'P
IC(p, t)

DT(p, t)
TC (t)

CT(t, p’)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3013

III. SOME GUIDELINES OF TRANSLATION FROM ADA TO
ECATNET THROUGH AN EXAMPLE

Most concepts of Ada translation to ECATNets are defined
in [3]. For lack of space reason, here we give just some ideas
about the translation process through an example.

A. Example Presentation
The following segment of Ada program defines a buffer

reached by producing and consuming task. Producing task
might have the following structure:
task body Producer
Char : Character;
begin loop … -- produce the next character Char
Buffer.Write(Char) ; exit when Char = ASCII.EOT ; end loop;
end Producer;

Buffer contains an internal Pool of the managed characters.
This space has two indices, In_index denotes the place of the
next input character and Out_Index denotes the place of the
next output character.
protected Buffer is
entry Write(C : in character); entry Read(C : out character);
private Pool : Array[1..10] of character; Count : Natural := 0 ;
In_Index, Out_Index : positive := 1;
end Buffer;
protected body Buffer is
entry Write(C : in character) when Count < Pool’length is
 begin Pool(In_Index) := C; In_Index := (In_Index mod
Pool’length) + 1; Count := Count + 1; end Write;
…
end Buffer;

B. Translation of the Ada Segment to ECATNets
Types like character, positive, arrays and queues are

translated to equivalent abstract data types in ECATNets. A
sort ‘Producer’ to represent task type producer is defined. In
this case, a producer task is an algebraic term constant ‘Pr’ of
sort ‘Producer’. A n-tuple algebraic term composed of
algebraic terms that represent ‘task’ and its ‘local variables’ is
used. The translation of entry Write gives us the ECATNet of
the figure 2, where: Pr: producing task, BF: Buffer, P: Pool,
CT: count, II: In_Index, and IO: Out_Index. For this entry, we
associate two places to manage the queue containing waiting
tasks calling this entry. One place TaskAskWrite serves to
manage the order of task arrival and it must have the maximal
size of one task. This last must be transferred to the queue of
the entry that is in the other place WriteQueue. The
TaskAskWrite and AcWrite places have a maximal capacity
of one token. There is a condition isempty(q) == false for the
transition TaskSelectWrite. For the translation of a protected
type, a place is created to contain a n-uple composed of its
variables (place Buf). The n-uple (Bf, P, CT, II, OI) waits in
this place to be dealt by the entry Write or Read. If the token
(Pr, Ch) is in AcWrite and the token (Bf, P, CT, II, OI) is in
Buf, the rendez-vous can take place. The entry Write has a
guard which is translated directly to the condition of the
corresponding transition WriteEntry. When the rendez-vous
takes place, the firing of the transition WriteEntry removes
(Bf, P, CT, II, OI) and (Pr, Ch) from the appropriate places.
Removing (Bf, P, C, II, OI) from place Buf guarantees that

another entry, procedure or a function can not be executed at
the same time. So, another task can not execute entry Read
while entry White is in evolution. When the rendez-vous takes
place, Pr and Ch are integrated in the token representing
Buffer. Ch gives its value to the variable C according to the
mode ‘in’ of parameters passing. A statement is translated to a
transition. The transition S3Write translates the assignment
statement Count := Count+1;. This transition transforms the
token (Pr, Bf, P, CT, II, OI, C) to (Pr, Bf, P, CT+1, II, OI, C)
where CT is replaced by CT+1.

Fig. 2 Representation of entry Write of Buffer type by
ECATNets

C. Mapping the Obtained Ada-ECATNet to Maude
Among kinds of modules defined in Maude, there are

functional and system modules. Functional modules are used
to define data types and functions on these types through
theories of equations. System modules are used to define the
dynamic behavior of a system. This kind of modules adds
rewriting rules to the concepts defined by functional modules:
sorts, subsorts, and equations. A maximal degree of
concurrency is offered by this kind of modules. The following
module is part of the developed code which is executable
under Maude system.
fmod GENERIC-ECATNET is
 sorts Place Marking GenericTerm.
 op mt : -> Marking . op <_;_> : Place GenericTerm -> Marking .

TaskSelectWrite

WriteTaskFilter

(Pr,Ch)

(Pr,Ch)

(Pr,Bf,P,CT,II,OI,C)

(Pr,Bf,P,CT,II,OI,C)

(Pr,Bf,P,CT, mod(II,lengtha(P))+1,OI,C)

BeginS2Write

(Pr,Bf,P,CT,II,OI,C)

 WriteReturn

 EndWrite

 S3Write

 BeginS3Write

 S2Write

(Pr,Ch)

 TaskAskWrite

 WriteQueue

add(q,(Pr,Ch))
 q

remove(q) q

 WriteEntry
front(q)

front(q)
AcWrite

WaitAckEWrite

(Pr,Ch)

(Bf,P,CT,II,OI)

(Pr,Bf,P,CT,II,OI,Ch)

 S1Write

BeginWrite

(Bf,P,CT,II,OI)

Buf

ct<lengtha(p)

(Pr,Bf,P,CT+1,II,OI,C)

(Pr,BF,set(P,Ch,II) ,CT,II,OI,Ch)

(Pr,Bf,P,CT,II,OI,C)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3014

 op _._ : Marking Marking -> Marking [assoc comm. id: mt] .
endfm

As illustrated in this code, mt is an empty marking of a full
ECATNet. The operation "<_;_>" is defined to permit the
construction of elementary marking. The two Underlines
indicate the positions of operation's parameters. The first
parameter of this operation is a place and the second one is an
algebraic term (marking) in this place. An operation to
implement the operation is not defined. The operation "_._"
which implements the operation is sufficient while basing
on the concept of decomposition. If a place contains many
terms, for example (p, a b c), can be written as (p, a)
(p, b) (p, c). Now, a part of module implementing the
ECATNet buffer is presented: BUFFER which calls
BUFFER-DATA module. This last is a functional module
calling all functional modules concerning descriptions of types
used by system module BUFFER such as List, Queue, Array,
Consumer and Producer. Data types like Queue of this
ECATNet are described in a hierarchy of functional modules
when, Queue is declared as sub-sort of GenericTerm to be
able to have a Queue as second parameter of "<_;_>":

mod BUFFER is
protecting BUFFER-DATA .
...
ops TaskAskWrite WriteQueue AcWrite WaitAckEWrite BeginWrite
BeginS2Write BeginS3Write EndWrite : -> Place .
op Buf : -> Place .
var P : Array . var q : Queue . vars C Ch : EltArray .
vars II OI CT : Int .
var CharL : List . var Pr : Producer .eq EOT = endoflist .
… *** rules for Write
rl [WriteTaskFilter] : < TaskAskWrite ; (Pr , Ch) >
. < WriteQueue ; q > => < WriteQueue ; addq(q, (Pr ,, Ch)) > .
…
endm

The application of rules defined in [6] on entry Write of
Buffer type gives a compact representation in figure 3. In
Maude program, the rules WriteTaskFilter and
WriteTaskSelect are kept without any change. But, the
remaining five transitions are merged to only one transition :
crl [WriteS123EntryReturn] : < Buf ; (BF , P , CT , II , OI) >
. < AcWrite ; (Pr ,, Ch) > . < WaitAckEWrite ; (Pr ,, Ch) >
 => < Buf ; (BF , set(P, Ch, II) , (CT + 1), ((II rem lengtha(P)) + 1) ,
OI) > . < BeginS2Pr ; (Pr , Ch) > if CT < lengtha(P) .

IV. ADA-ECATNET TRANSLATOR
The Ada-ECATNet translator is developed in the same way

as any other compiler. Classical known phases are proposed :
a lexical analysis, a syntactic analysis and a phase of code
generation. Let us note that if the Ada program does not
contain errors, our application returns the ECATNet
equivalent code, in the presence of mistakes in Ada program,
our application returns the constant ‘ErrorUple’. Thereafter,
the realization’s details of this translator’s phases are
explained. Figure 4, describes a view on the different steps of
the Ada-ECATNet translator.

Fig. 3 Compact representation of entry Write of Buffer type after
applying refinement rules

Fig. 4 Methodical view on Ada-ECATNet translator

A. Lexical analysis
This phase takes Ada program as input and generates all the

lexemes constituting this program. This phase transforms the
Ada program to a list of its lexemes in form of list of strings.

B. Syntactic analysis
This step transforms the input list of Ada program lexemes

into an intermediate representation to facilitate us the
generation of the ECATNet code. For the development of this
phase, certain types of specific data are created. This phase
takes as input a data type ‘Uple’ composed of a list ‘List’ and
a stack ‘Stack’. The list contains the strings indicating the
lexemes of the program Ada (operator, identifier, keyword,
etc).

Data types. The stack contains information on the Ada
program necessary for the generation of equivalent ECATNet
code. Each time the parser evolves in the list, it collects
information on the Ada program and put it in the stack. The
basic element of the stack is a data type called ‘Code’. This
last contains also strings. The following operation allows the
construction of an ‘Uple’:
op (_;_) : List Stack -> Uple .

If the list to be analyzed contains a mistaken string (the Ada
program is erroneous), the analyzer returns ‘ErrorUple’:

ECATNet

code

Error

Intermediate
representation

List of
tokens

Ada
program

Creation
of Ada
program

Lexical
Analysis

Syntactic
Analysis

Code
generation

Error
Message

remove(q)

WriteTaskFilter

(Pr,Ch)
(Pr,Ch)

 (Pr,Bf, set(P,Ch,II),(CT+1),
mod(II,lengtha(P))+1,OI)

(Pr,Ch)

 TaskAskWrite

 WriteQueue

add(q,(Pr,Ch))q

q

front(q)

front(q)
AcWrite

WaitAckEWrite

(Pr,Ch) (Bf,P,CT,II,OI)

Buf

CT<lengtha(P)

 WriteTaskSelect

 WriteS123EntryReturn

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3015

op ErrorUple : -> Uple .
The operation 1st extracts the first parameter from (_;_),

which is a list and the function 2nd extracts the second
parameter which is of sort ‘Stack’. Now, the operations for the
construction of a code (element of sort ‘Code’) and the
construction of an empty code:
op _,_ : Code Code -> Code [assoc id : nullCode] .
op nullCode : -> Code .

Two constants BeginCode and EndCode are defined of the
type ‘Code’. These two constants are used to delimit in a
stack, the necessary information concerning a specific
syntactic construction of a Ada program. The type ‘Tuple’ is
defined to support the token consisted of the identifier of the
task and its variables. The operation _, _ allows building
extensible tuple:
sorts Elt Tuple . subsort Elt < Tuple . op _,_ : Elt Tuple -> Tuple .

Also another sort ‘ExtTuple’ is defined which to be
composed of several ‘Tuple’. This sort is useful in the cases of
passage of the parameters at the time of the call of an entry or
of procedure. According to our Ada-ECATNet translation,
when the task calls an entry, the tuple representing the state of
the task enters the place where it is the queue of the entry. In
this case, there is no mechanism to distinguish the current
parameters used in the call. Then, in order to not lose of such
information at the time of the call, the tuple is rewritten in a
term of kind ‘ExTuple’. This term is composed of two tuples:
the one which represents the state of the task and the other
contains the current parameters to pass later at the time of the
concretization of the rendez-vous between the two tasks.

Syntactic Analysis Functions. Now, we explain some
functions of syntactic analysis. It is about the functions
concerning the analysis of the statements. Initially, the
production rule of the assignment statement is:
assignment_statement ::= variable_name := expression;

Intuitively, after the analysis of this statement, the name of
the variable and the contents of the expression must be saved.
That is to say assignment-statement-Analysis (L; (Id, Ex)) is
the function which analyzes the assignment statement and
save the elements figuring in the assignment statement. Id is
the left part of the assignment and Ex is the right part of the
assignment:
op assignment-statement-Analysis : Uple -> Uple .
eq assignment-statement-Analysis(L ; (Id, Ex)) =
if IsIdentifier(head(L)) == true
 and head(tail(L)) == ":="
 and expression-Analysis(tail(tail(L)) ; Ex) =/= ErrorUple
 and head(1st(expression-Analysis(tail(tail(L)) ; Ex))) == ";"
then tail(1st(expression-Analysis(tail(tail(L)) ; Ex))) ;
 (head(L), 2nd(expression-Analysis(tail(tail(L)) ; Ex)))
else ErrorUple fi .

In this code, four conditions are defined:
- IsIdentifier(head(L)) == true : this condition is true if

head (L) is an identifier.
- head(tail(L)) == ":=" : this condition is true if the

element which is next this identifier is equal to “: =”.

- expression-Analysis(tail(tail(L)) ; Ex) : this condition
is correct if the elements which are in the list next the
identifier and “: =” constitutes a correct expression.

- head(1st(expression-Analysis(tail(tail(L)) ; Ex))) ==
";" : this last condition is true if the element which is
in the list next the elements constituting the
expression is equal to “; ”.

If the four conditions are valid, the function assignment-
statement-Analysis (L; (Id, Ex)) returns an ‘Uple’ tail (1st
(expression-Analysis (tail (tail (L)) ; Ex))) ; (head (L), 2nd
(expression-Analysis (tail (tail (L)) ; Ex))). This last is
consisted of the remainder of the list to analyze: tail (1st
(expression-Analysis (tail (tail (L)) ; Ex))) after eliminating
the elements described above concerning the assignment, and
a code (head (L), 2nd (expression-Analysis (tail (tail (L)) ;
Ex))) containing the necessary information for the generation
of the ECATNet code for this assignment later. This code
contains the right part of the assignment head(L) and its left
part 2nd (expression-Analysis (tail (tail (L)) ; Ex))). This part,
itself is returned by the function expression-Analysis (tail (tail
(L)) ; Ex)) who is responsible for the analysis of the
expressions.

The function assignment-statement-Analysis (L; (Id, Ex)) is
called during the analysis by the simple-statement-Analysis
function (L; (Kind, Id, IdL, Ex)) which analyzes the Ada code
generated by simple_statement. Four parameters for the code
are needed: Kind, Id, IdL and Ex. Initially, the production
rules of simple_statement are:
simple_statement ::= null_statement | assignment_statement |
 exit_statement | return_statement
 | entry_call_statement | abort_statement

Let’s give in detail also entry_call_statement:
entry_call_statement ::= entry_name [actual_parameter_part];
That is to say entry-call-statement-Analysis (L; (Id, IdL)) the
function which analyzes this instruction. It returns a code
composed of name of the entry Id and a list of the actual
parameters IdL. The last parameter Kind is used to save the
type of the instruction, the following code is a part of the
simple-statement-Analysis function (L; (Kind, Id, IdL, Ex)),
(Ex is condition returned by exit-statement-Analysis) :
op simple-statement-Analysis : Uple -> Uple .
eq simple-statement-Analysis(L ; (Kind, Id, IdL, Ex)) =
if IsIdentifier(head(L)) == true
then if assignment-statement-Analysis(L ; (Id, Ex))
 =/= ErrorUple
 then 1st(assignment-statement-Analysis(L ; (Id, Ex))) ;
 ("assg", 1stC(2nd(assignment-statement-Analysis(L ;
 (Id, Ex)))),
 empty, 2ndC(2nd(assignment-statement-Analysis(L ;
 (Id, Ex)))))
 else …
**** Analysis of the other types of statements
fi .

In this code, if head (L) is an identifier, then we test if
assignment-statement-Analysis (L; (Id, Ex)) =/= ErrorUple is
valid. If this condition is true, so it is about an assignment

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3016

statement in the code. The result returned in this case by the
function is composed by the remainder of the list of entry after
skipping the elements of the assignment: 1st (assignment-
statement-Analysis (L; (Id, Ex))). The code is consisted of
four elements: such as the first element “assg” indicate the
kind of the statement which is the assignment in this case, the
second element is the left part of the assignment, the third one
is empty (it is independent of the assignment, but it is not
empty for other instructions). The fourth element is the right
part of the assignment.

C. Code Generation
This phase takes the previous intermediate representation

and generates the ECATNet code equivalent to the Ada
program. The generated code is in the form of a hierarchy of
the functional modules and system modules. Functional
modules implement data types. System module implements
the concurrent behavior of the tasks and their
communications. The system module imports the last
functional module in the hierarchy of the functional modules.
A part of code which is used to generate the ECATNet code
relating to the assignment statement is explained. In our file
concerning the generation of the code, the following variables
are declared:
vars Id RuleOrder Place1 : String . vars L : List . var SK :
Stack .

The following function Create-RulesFor-assg-Stmts (L, SK,
Id, RuleOrder, Place1) generates the ECATNet code of an
assignment statement. Such as L is the list containing the
identifier and the local variables of the task, SK is the stack
containing the part of code relating to the assignment for
which, a code will be generated. Id is the name of the unit
(task, package, entry,…), RuleOrder is the order of next
rewriting rule to be generated. Place1 saves the order of the
next place to be generated. Create-RulesFor-assg-Stmts (L,
SK, Id, RuleOrder, Place1) starts by removing BeginCode and
EndCode by calling StackSubstraction (pop (SK), EndCode).
Then, it calls Create-RulesFor-assg-Stmts-1 (L,
StackSubstraction (pop (SK), EndCode), Id, RuleOrder,
Place1). StackSubstraction (pop (SK), EndCode) allows
returning in this case a code:
op Create-RulesFor-assg-Stmts :
 List Stack String String String -> String .

eq Create-RulesFor-assg-Stmts(L, SK, Id, RuleOrder, Place1) =
Create-RulesFor-assg-Stmts-1(L, StackSubstraction(pop(SK),
EndCode), Id, RuleOrder, Place1) .

This code returned is Cd which is composed of four
parameters saving the parts of the assignment. The function
Create-Tuple (L) transforms this list with a tuple. If L = a1.
a2… .an, then the tuple obtained is form (a1, a2,… ,an). The
function ReplaceEltinList (2ndC (Cd), 4rthC (Cd), L) allows
replacing the occurrence of the variable 2ndC (Cd) in the list
L by the expression 4rthC (Cd) which is the third part of the
assignment. The variables of the task are stored in a list L
saved in the code:
op Create-RulesFor-assg-Stmts-1 :
 List Stack String String String -> String .

eq Create-RulesFor-assg-Stmts-1(L, Cd, Id, RuleOrder, Place1) =
" rl [" + NewRule(RuleOrder, Id) + "] :
< " + NewPlace(Place1, Id) + " ; " + Create-Tuple(L) + " > "
+ " => " + " < " + NewPlace(SuccNumber(Place1), Id) + " ; "
+ Create-Tuple(ReplaceEltinList(2ndC(Cd), 4rthC(Cd), L))
+ " > . " .

Now, we explain another function Create-RulesFor-entry-
call-Stmt(L, SK, Id, RuleOrder, Place1) which is used to
generate the ECATNet code of an entry call statement. Such
as SK is the stack containing the part of code relating to the
call of the entry for which, a code will be generated. L, Id,
RuleOrder and Place1 have the same significance as in the
function Create-RulesFor-assg-Stmts(L, SK, Id, RuleOrder,
Place1). In the code created by Create-RulesFor-entry-call-
Stmt(L, SK, Id, RuleOrder, Place1), CreateTaskAsk-Place
(entry-call-name(SK)) creates a name of place containing the
name of the called entry. In fact, the function entry-call-
name(SK) returns the name of the called entry. The first built
rewriting rule, allows the token of the task which is Create-
Tuple (L) to put itself in the place of the entry entry-call-name
(SK). This place which is called CreateTaskA sk-Place (entry-
call-name(SK)) is also in the code of the suitable entry and is
used to receive the tasks which call this entry. The function
entry-call-list(SK) returns the current parameters passed to the
called entry:
op Create-RulesFor-entry-call-Stmt :
List Stack String String String -> String .
eq Create-RulesFor-entry-call-Stmt(L, SK, Id, RuleOrder, Place1) =
" rl [" + NewRule(RuleOrder, Id) + "] : "
+ " < " + NewPlace(Place1, Id) + " ; " + Create-Tuple(L)
+ " > "
+ " => " + " < " + CreateTaskAsk-Place(entry-call-name(SK)) + " ; "
+ "(" + Create-Tuple(L) + " ; "
+ Create-Tuple(entry-call-list(SK)) + ") > . "
+ " rl [" + NewRule(SuccNumber(RuleOrder), Id) + "] : "
+ " < " + CreateReturnFromCall-Place(entry-call-name(SK))
+ " ; " + "(" + Create-Tuple(L) + " ; "
+ Create-Tuple(entry-call-list(SK)) + ") > "
+ " => " + " < " + NewPlace(SuccNumber(Place1), Id)
+ " ; " + Create-Tuple(L) + " > . " .

The second rewriting rule built by this function represents
the return of the entry call. In the code of the entry, a place
CreateReturnFromCall-Place (entry-call-name (SK)) is
created. This rewriting rule allows to the task to leave this
place towards a new place to follow its activity. The function
entry-call-name(SK) returns the name of the called entry. The
function entry-call-list(SK) gets back the current parameters to
the called entry.

V. TECHNICAL ASPECT

Let’s note that Maude system has only textual version. So,
instead to use directly Maude system to execute the translator,
we developed a small application as interface between the user
and Maude system. This application is developed with Delphi
language to help user to use easily and in better way our
translator. The application provides to the user classical
edition of text files to create his Ada program with ‘File’ and
‘Edit’ options. ‘Help’ option contains some explanations

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3017

about this tool. Moreover, two options are proposed: ‘Lexical
Analysis’ and ‘Code Generation’ in the main menu. ‘Lexical
analysis’ contains two options: ‘List of Tokens Creation’ and
‘List of Tokens in Maude’. The first option allows the calling
of the lexical analyser and displaying all tokens of the Ada
program. The second one allows the transforming of this list
to a list of strings and creating a module containing this list as
constant to be treated by the code generator later. ‘Code
Generation’ option contains two options too. The first one is
‘ECATNet Code generation’ which allows the calling of the
translator written in Maude and generating a system module
equivalent to the Ada program. The second option which is
‘ECATNet Complete Code’ allows the extraction of the initial
marking equivalent to the initial state of the Ada program. So,
this option generates the ECATNet code and adds a rewriting
command with initial marking as parameter. The obtained
code in this case is ready to be simulated under Maude system.
In figure 5, we present a part of Ada-ECATNet based-Maude
translator.

Fig. 5. Part of Ada-ECATNet based-Maude translator

A. Ada-ECATNet Translator Files
Let’s go back to the Ada-ECATNet translator; we note that

a hierarchy of functional modules to implement in Maude this
translator are developed. For the simplicity reason, these
modules are distributed on some files. This file
LexAdaNets.maude contains lexical analyser. The file
AdaNetsData-1.maude contains a functional module which
defines some data types to be imported by the generated code,
for instance, arrays. The file AdaNets.maude includes all data
types used by the application. Finally, files AdaNets-1.maude,
AdaNets-2.maude and AdaNets-3.maude contain functions to
generate ECATNet code to an equivalent Ada program. The
first file contains modules to generate ECATNet code for Ada
basic statements, the file AdaNets-2.maude contains modules
to generate ECATNet code for statements related to task
concept and AdaNets-3.maude contains modules to generate
ECATNet code for general code (package).

VI. EXAMPLE

In this section, we show two things, the first one how the
phases of our translator act on the previous example and the

second one the execution of the example under our
application. Let’s note that some syntactic modifications are
done on the example. For instance, a package BufferPackage
to contain tasks and protected type Buffer is created. Consider
an Ada code composed of only one instruction:
Buffer.Write (Char);

The lexical analyzer transforms this code to an ‘Uple’
composed of a list of strings and an empty stack:
"Write" . "(" . "Char" . ")" . ";" ; emptystack

The syntactic analysis transforms this call of an entry with a
representation in the form of stack containing three elements
BeginCode, (“entry call”, “Write”, “Char”) and EndCode. The
two constants BeginCode and EndCode are used to delimit the
code of the entry call. The code in the middle contains three
strings: “entry call”, “Write” and “Char”.

In fact, the first string allows indicating that this code
concerns the entry call. The second string contains the name
of the entry called and the third string can be a list of the
parameters of the called entry. The result obtained after the
analysis of this instruction is the ‘Uple’ composed by the list
of entry which is empty in our case, and the representation in
form of stack of the entry call: empty ; push(BeginCode,
push((“entry call”, "Write", "Char"), EndCode))

The syntactic analysis generates an intermediate
representation in the form of stack (returned by the function
which analyzes a sequence of instructions. The latter contains
only one instruction in our example:
empty ; push(BeginCode, push("sequence of statements",
 push(BeginCode, push("entry call", "Write", "Char",
 "", EndCode))))

Only a small portion of code generated by our application is
presented. The generator of code creates a declaration of
variable var Generic-producer: producer. It allows writing
only one ECATNet code for all the producers. The rewriting
rule producer-Rule-4 translates a part of the call of the Write
entry. This call is expressed as putting the tuple (Generic-
producer, Char) in the place Task-Ask-Write-Place. Let us
note that the places used in this part of code are created before
their use like the code expressing the Write entry.

After the execution of this rewriting rule, the token
(Generic-producer, Char) is in the Write entry which is not
explained here for simplicity. Normally, at the end of the
execution of this entry, this token is found in a place named
Return-From-Call-Entry-Write-Place. The rewriting rule
producer-Rule-5 takes again the token and puts it in a place
named producer-Place-4; so, the task can continue its
execution:
var Generic-producer : producer .
rl [producer-Rule-4] :
< producer-Place-3 ; (Generic-producer, Char) >
=> < Task-Ask- Write-Place ; ((Generic-producer, Char) ;
 (Char)) > .
rl [producer-Rule-5] : < Return-From-Call-Entry- Write-Place ;
((Generic-producer, Char) ; (Char)) >
=> < producer-Place-4 ; (Generic-producer, Char) > .

After showing how our translator acts on the Ada program

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3018

to translate it to an ECATNet code, let’s explain how the user
can use the application ‘Ada-ECATNets Translator’ to get an
ECATNet code equivalent to an Ada program. After opening
the application, the user can create his Ada program or just
opened it if it exists. The figure 6 presents a part of the Ada
program example opened in our application:

Fig. 6. Part of the Ada program example

After calling the lexical analyser to identify every token in
the program in Ada, the application creates a list of strings in
Maude. Figure 7 describes a functional module created by our
application to contain the Ada program as a list of strings
(tokens) in Maude.

Fig .7. Part of the Maude module containing Ada program tokens

If we execute of the command ‘ECATNet Code generation’
in ‘Code Generation’ option, then the ECATNet code is
obtained after translating the Ada program example. To get
this ECATNet code, the application calls Maude system to
execute the translator written in Maude and saved in the file
AdaNets-3.maude. In the figure 8, there is a part of the
ECATNet code of translated Ada program Buffer. This part is
about the beginning of some created modules of data and the
principal module translating the package containing tasks and

the protected type buffer. In the figure 9, a part of the
ECATNet code is given, but this time, the part of the code is
about some rewriting rules translating some statements of the
Write entry.

Fig. 8. Part of ECATNet code of translated Ada program Buffer

Fig. 9. Part of ECATNet code of translated Ada program Buffer

VII. CONCLUSION

In this paper, we presented our approach in the
implementation of Ada-ECATNet translator. We explained
the various phases of this translator and we detailed the data
types used in these phases. The translator was developed with
the help of Maude language. Within the framework of the
implementation of this translator, the functional mode of the
Maude language is used. Also a small application is developed
as an interface between user and Maude system for a better
execution of this translator. The user can use this application
to create or open his Ada program, he can ask the application
for lexical analysis or ECATNet code generation by only
clicking on a command.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3019

This automatic translator gives us an environment to Ada
programs to be analysed by using ECATNets based on
rewriting logic and Maude language tools. It allows us to take
advantage of the battery of verification tools of ECATNets
formalism to check the correction of Ada programs. First
ECATNets offer a very compact representation and double
reduction to Ada program; one reduction can be done during
the translation step and the other one after the translation of
Ada code to ECATNet. On another hand, ECATNet
formalism offer many kinds of validation and verification
tools like: simulation, Model Checking, accessibility analysis
and static analysis.

REFERENCES

[1] M. Bettaz, M. Maouche, “How to specify Non Determinism and True
Concurrency with Algebraic Term Nets”, Vol. 655 of LNCS, Spring-
Verlag, p. 11-30, 1993.

[2] M. Bettaz, A. Chaoui, K. Barkkaoui, “On Finding Structural Deadlocks
in ECATNets Using a Logic of Concurrency”, Journal on Computing
and Information, Vol 2 No 1, pp. 495-506, 1996.

[3] N. Boudiaf, A. Chaoui, “Towards Automated Analysis of Ada-95
Tasking Behavior By Using ECATNets”, in Proc. Conference ISIIT’04,
Jordan, 2004.

[4] N. Boudiaf, K. Barkaoui, A. Chaoui, “Implémentation Des Règles de
Réduction des ECATNets dans Maude”, in Proc. Conference Mosim’06,
Rabat, Maroc, 2006, pp. 1505-514.

[5] N. Boudiaf, K. Barkaoui and A. Chaoui, “Applying Reduction Rules to
ECATNets”, in Proc. AVIS'06 Workshop (Co-located with the
conferences ETAPS'06), Vienna, Austria, 2006.

[6] N. Boudiaf, A. Chaoui, “Double Reduction of Ada-ECATNet
Representation Using Rewriting Logic”, Enformatika Journal
(Transactions on Engineering, Computing and Technology), Vol. 15,
ISSN 1305-5313, pp. 278-284, October 2006.

[7] E. Bruneton and J-F. Pradat-Peyre, “Automatic Verification of
Concurrent Ada Programs”, in Proc. Reliable Software Technologies-
Ada-Europe, 1999.

[8] M. Clavel and aL, “Maude Manual (Version 2.2)”, Internal report, SRI
International, December 2005.

[9] S. Evangelista, C. Kaiser, J. F. Pradat-Peyre, and P. Rousseau, “Quasar:
a new tool for analyzing concurrent programs”. in Proc. Ada-Europe
2003, LNCS, Springer-Verlag, 2003.

[10] Ravi K. Gedela, Sol M. Shatz and Haiping Xu, “Compositional Petri Net
Models of Advanced Tasking in Ada-95”, in Proc. Comput. Lang. 25(2),
1999, pp. 55-87.

[11] ISO/IEC 8652. “Information Technology – Programming Languages –
Ada”, 1995.

[12] J. Meseguer, “Rewriting Logic as a Semantic Framework of
Concurrency: a Progress Report”, in Proc. Seventh International
Conference on Concurrency Theory, Vol. 1119 of LNCS, Springer
Verlag, 1996, pp. 331-372.

[13] J. Meseguer, “Rewriting logic and Maude: a Wide-Spectrum Semantic
Framework for Object-based Distributed Systems”, In S. Smith and C.L.
Talcott, editors, in Proc. Formal Methods for Open Object-based
Distributed Systems. Kluwer, 2000.

[14] T. Murata, B. Shenker, S. M. Shatz, “Detection of Ada Static Deadlocks
Using Petri Nets Invariants”, IEEE trans. Oo Software Engineering, vol.
15, No. 3, pp 314-326, 1989.

[15] S. M. Shatz, S. Tu, T. Murata, S. Duri,. “An Application of Petri Net
Reduction for Ada Tasking Deadlock Analysis”, IEEE Transactions on
Parallel and Distributed Systems, 1996.

[16] K. Schmidt, “Applying Reduction Rules to Algebraic Petri Nets”, TKK
Monoistamo; Otaniemi 1997, ISSN 0783 5396, 1997.

