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Abstract—In this paper, the implementation of low power, 

high throughput convolutional filters for the one dimensional 
Discrete Wavelet Transform and its inverse are presented. The 
analysis filters have already been used for the implementation of a 
high performance DWT encoder [15] with minimum memory 
requirements for the JPEG 2000 standard. This paper presents the 
design techniques and the implementation of the convolutional filters 
included in the JPEG2000 standard for the forward and inverse DWT 
for achieving low-power operation, high performance and reduced 
memory accesses. Moreover, they have the ability of performing 
progressive computations so as to minimize the buffering between 
the decomposition and reconstruction phases. The experimental 
results illustrate the filters’ low power high throughput characteristics 
as well as their memory efficient operation. 
 

Keywords—Discrete Wavelet Transform; JPEG2000 standard; 
VLSI design; Low Power-Throughput-optimized filters  

I. INTRODUCTION 
HE Discrete Wavelet Transform (DWT) has been 
introduced as a highly efficient and flexible method for 
subband decomposition of signals [1]. In digital signal 

processing, good algorithmic performance especially in the 
fields of image and video compression has been demonstrated 
[2], [3], [4]. The inclusion of the DWT in contemporary 
multimedia compression standards, such as the JPEG2000 [5] 
and MPEG-4 [6], has lead to intensive research efforts for 
improving the implementation aspects of the transform. 
Our paper is focused on the 1 Dimensional (1D) convolutional 
DWT which is used for the realization of the seperable 2 
Dimensional (2D) DWT. In detail the separable 2D-DWT is 
realized with two 1D-DWT filterings one along the rows and 
one along the columns of the input image. A diversity of 
filters has been proposed for the 1D-DWT [7]. The two 
extremes of filter types are the serial and parallel ones. Serial 
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filters, which are efficient in terms of area, are characterized 
by low throughput making their use in streaming applications 
inefficient. On the other hand, parallel filters dominate in 
streaming applications as they are characterized by high 
throughput. However, there are quite many opportunities for 
improvements that can be made to them. 
Many architectures that implement the Two-Dimensional 
separable Forward (2D-DWT) and Inverse DWT (2D-IDWT) 
in order to be applied on 2D signals have been presented in 
the past [7], [8], [9] and [10] . These architectures are 
consisting of filters for performing the 1D-DWT and memory 
units for storing the results of the transformation. Due to the 
fact that streaming multimedia applications - in which the 
DWT is present - are characterized by high throughput 
requirements, this imposes the need for optimizing the design 
of the filters in terms of speed. Moreover, portable multimedia 
devices require low power consumption for increasing the 
battery lifetime and this can be achieved by minimizing the 
storage size and number of memory accesses [11].  
In this paper, the design techniques and VLSI realization of 
parallel Low Power Throughput Optimized (LPTO) 
convolutional filters that implement the 1D-DWT and the 1D-
IDWT of a signal are presented. These filters are based on the 
DWT as specified in JPEG2000 standard [5], [13]. The filters 
studied, are the 9/7 and 5/3 for odd taps and the 10/18, 2/10, 
and 2/6 for even taps. These filters produce two subband 
samples in every cycle taking as input two signal samples. 
Also, they don’t need separate subsampling and upsampling 
units for computing the DWT and IDWT, respectively. The 
proposed synthesis filters employ an adder less than the 
original Mallat’s scheme [12] and the introduced scheme in 
[10]. Furthermore, exploiting the symmetric nature of the 
proposed filters the signal extension prior to actual filtering is 
avoided. Hence, the memory accesses are reduced. Finally, the 
need for buffering and reordering between the analysis and 
synthesis filters is eliminated because the samples are 
consumed in the way they are produced [14]. The 
aforementioned characteristic makes them useful for 
streaming applications. The experimental results and the work 
in [15] illustrate the efficiency of the proposed 
implementation for the aforementioned filters in terms of 
performance, power, and memory access efficiency.  
The rest of the paper is organized as follows. In section 2 the 
related work in developing hardware architectures for the 
DWT is presented. Section 3 depicts the background theory of 
wavelet transform. In section 4 the architecture of the analysis 
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and synthesis filters is shown. The results for the VLSI 
synthesis of the analysis and synthesis filters are given in 
section 5. Finally, section 6 concludes the paper  

II. RELATED WORK 
Numerous architectures have been proposed for computing 
the 1D-DWT [7], [8], [9], [10], [16], [17], [18], [19] and [20]. 
The 1D-DWT architectures can, in principle, be extended to 
architectures for computing the separable 2D-DWT. This is 
because the separable 2D-DWT can be computed by one 1D-
DWT filtering along the rows followed by a 1D-DWT 
filtering along the columns.  In addition, the non-separable 
2D-DWT process 2D data directly. Due to the fact that the 
minimizations of latency and of storage requirements are 
important goals for most streaming multimedia applications, 
mapping 1D-DWT architectures to 2D-DWT architectures is 
not a trivial issue.  
Lewis and Knowles [21] were the first to propose an 
architecture for the 2D-DWT. Their architecture was tuned to 
the Daubechies four-tap filters, so it suffered from scalability 
since it is strongly dependent on the limited properties of the 
filters used. Chakrabarti and Vishwanath [7] have proposed a 
scalable architecture for the encoder based on the non-
separable 2D-DWT. Their architecture consists of two parallel 
computation units of size K2 and a storage unit of size NK≈ . 
A parallel computation unit of size M consists of M 
multipliers and a tree of adders to add the M products. 
Vishwanath et al. [9] have proposed an architecture for 
separable 2D-DWT, which consists of two systolic arrays of 
size K, two parallel computational units of size K, and a 
storage unit of size ≈N(2K+J). A drawback of this architecture 
is that two rows of inputs are fed into the two systolic arrays 
every two cycles and as a result, an additional data converter 
is required to convert the raster scan input (one per cycle) into 
two per two cycles output. Chakrabarti and Mumford [16] 
introduced an architecture for the analysis (synthesis) filters 
based on the 2D-DWT, together with two scheduling 
algorithms for computing the forward (inverse) 2D-DWT. The 
goal was to minimize the storage requirements and keep the 
data-flow regular.  

III. PRELIMINARIES 
The 1D-DWT and the 1D-IDWT of an input signal x[n] is 
implemented by the filter bank shown in Fig.1. The 1D-DWT 
is a two-channel subband decomposition of an input signal 
x[n] that produces two subband coefficients y0[n] and y1[n] for 
one-stage of decomposition [12] according to the following 
equations. 

[ ] [ ] [ ]1 2
k

y n x k h n k= −∑                                         (1) 

 [ ] [ ] [ ]0 2
k

y n x k w n k= −∑                                         (2) 

 The 1D-IDWT is a two-channel subband reconstruction, 
taking as inputs the y0[n] and y1[n] coefficients and producing 
the x΄[n] signal, where x΄[n] has to be equal or a very good 
approximation of the input signal x[n]. The reconstruction of 
the original is done according to the following equations. 

[ ] [ ] [ ] [ ] [ ]' ' '
1 02 2

k
x n y k h n k y k w n k⎡ ⎤= ⋅ − ⋅ + ⋅ − ⋅⎣ ⎦∑                (3) 

The h΄[n] and w΄[n] are high-pass filters and low-pass filters 
respectively, used in the analysis (synthesis) section. After the 
filtering operations in analysis (synthesis) section the 
produced sequences are downsampled (upsampled) by a factor 
of 2.  
The four-channel subband decomposition of 2D-DWT is 
obtained by the successive applications of two-channel 
decomposition of 1D-DWT in the rows and columns of the 
input image. Similarly, 2D-IDWT is obtained by two channel 
reconstruction of 1D-IDWT along the rows and columns. In 
Fig. 2 the 2D-DWT and 2D-IDWT filter banks are illustrated 
for two stages of decomposition and reconstruction. 
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Fig. 1 One-stage of subband decomposition and reconstruction. 
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Fig. 2 2D-DWT and IDWT filter banks for J=2 stages. 
 
Throughout this paper, we assume that: a) The signal length is 
N samples and b) the maximum number of filter taps among 
the high-pass and low-pass filters is K. Note that K is the 
maximum number of taps of the high- and low-pass filters. 
For example, for the 5/3 filter K=5, while for the 9/7 filter 
K=9. 

IV. PROPOSED LPTO FILTERS DESCRIPTION 
In this section, the novel LPTO filters for computing the 1D-
DWT and 1D-IDWT, are presented. The filters are based on 
the well-known convolution equations (1), (2) and (3) 
described in the previous section. These equations were 
modified for including the subsampling and upsampling 
operations inside the filters. Also, there is a different filter 
design depending on the number of filter coefficients and on 
the number of the input signal samples. The special features of 
each filter and their design are illustrated in the following 
paragraphs. 
The equations describing the DWT as implemented in the 
proposed filters are described as follows. Let x[n] denote the 
1D sequence of input samples and let y[n] denote the one 1D 
sequence of interleaved subband samples, where 0≤n<N. The 
low-pass subband corresponds to the even samples y[2n], 
while the high-pass subband corresponds to the odd samples 
y[2n+1]. The relevant analysis operation in the forward 1D-
DWT in terms of inner products is expressed as: 
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where, h[k] and w[k] denote the high-pass and low-pass 
analysis filters respectively and ln  and hn  are the indexes for 
the low-pass and high-pass coefficients. The synthesis 
operation in the 1D-IDWT reproduces the original signal x[n] 
from the interleaved subband sequence y[n] according to the 
following equation: 

])]12([]12[]2[]2[[][ ∑ +−′⋅++−′⋅=
k

knhkyknwkynx    (6) 

where, h'[k] and w'[k] are the high-pass and low-pass 
synthesis filters respectively. 
 Equation (6) has been modified for designing synthesis 
filters with an adder less than the original Mallat’s 
implementation [12]. With this modification the synthesis 
filters have the same structure as the analysis ones. Equation 
(6), describing the synthesis operation, can be modified as: 

[ ] [ ] [ ] [ ] ( )2 2 2 2 2 1 2 2 1  ,     2
k

x l y k w l k y k h l k n l⎡ ⎤′ ′= ⋅ − + + ⋅ − + =⎡ ⎤⎣ ⎦⎣ ⎦∑    (7) 
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where 0 ≤ l ≤ (N-2)/2. 
Two new functions are defined such that: 
           wt΄ (m) = w΄(m)  and ht΄(m) = h΄(m) ,  if m is even 

wt΄ (m) = h΄(m)  and ht΄(m) = w΄(m) ,  if m is odd      (9) 
Then (7) and (8) are transformed to:     
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From (10) and (11) it is concluded that the synthesis operation 
can be done as a convolution of the interleaved sequence of 
subband samples without the necessity of the addition 
operation of (6), and with the impulse response of the filters 
defined by (9). Also, there is no need for buffering because 
sequence y[k] is consumed in the way it is produced.  
The equations (4), (5) for the analysis operation and (10), (11) 
for the synthesis operation, can be implemented mainly with 
two hardware designs using parallel filters. The first design 
[8], called to hereafter as conventional architecture, consists of 
an input delay line equal to the number Ntaps of filter 
coefficients (taps). The same Ntaps multipliers are used for 
computing the low- and high-pass coefficients. The 
conventional architecture implements analysis and synthesis 
operations in an interleaved manner. Specifically, for the even 
clock cycles the multipliers are fed with the taps of the low-
pass filter, while for the odd cycles the same multipliers are 
fed with the constant coefficients of the high-pass filter. In 

this way, a pair of low- and high-pass coefficients is produced 
every two clock cycles. 
The proposed architecture, called hereafter LPTO, consist of a 
modified delay line that receives two input samples per clock 
cycle and a separate data path for high-pass and low-pass 
filtering. So, LPTO architecture produces a pair of low- and 
high-pass coefficient every clock cycle, resulting in greater 
speed than the conventional architecture. Also, although it is 
expected that the conventional architecture occupies less area 
than the LPTO, this is not always the case. This is because 
with the LPTO architecture, an additional optimization is 
enabled called strength reduction [23]. Specifically, 
multiplication among a variable (input sample) and a constant 
can be easily reduced to a number of shift-and-add operations, 
resulting this way in a much smaller implementation. For 
example, a multiplication times 3 is reduced to a left shift by 
one and an increment by one. Fig. 3 illustrates the 
conventional architecture, while in Fig. 4 the LPTO 
architecture is given, both for the case of 4/3 filter.  
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Fig. 3 Conventional filter architecture. 
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Fig. 4 LPTO filter architecture. 

A. Symmetric Extension 
Due to the finite length of the input signal sequences, 
problems arise when the filter processes the signal’s 
boundaries. This problem can be solved by extending the 
signal at the boundaries as much as needed to complete the 
filtering operation. In the proposed filter’s design the 
symmetric extension is adopted.  
 The symmetric extension is a simple method for extending 
a finite length signal [22]. In this method the signal is 
extended so as it becomes periodic and symmetric. The type 
of the symmetric extension is denoted by (x, y), where x and y 
is the number of times the first and the last sample of the 
signal is repeated, respectively. Two special cases of 
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extension are the Whole Sample (WS) symmetry and the Half 
Sample (HS) symmetry. The WS extends the signal having as 
center of symmetry the last sample of the signal sequence, so 
it is a (1, 1) symmetry. The HS extends the signal having as 
center of symmetry the half of the distance between the last 
sample and the first sample of the extension, so it is a (2, 2) 
symmetry. The two basic kinds of symmetric extension are 
illustrated in Fig. 5.  

Symmetric extension (1-1) Symmetric extension (2-2)Initial Signal

Initial Signal Whole Sample Symmetry Half Sample Symmetry

 
 Fig. 5 Types of symmetric extension 

 
The filter’s operation consists of three phases: a) Initialization 
phase: initially, the filter loads its delay line with the 
appropriate number of samples in order start the filtering. 
Since these samples are present in the delay line, symmetric 
extension takes place. b) Filtering phase: the filter processes 
the input signal samples present in the delay line. c) 
Finalization phase: at the end of filter’s operation, when the 
input samples are fully consumed, the input signal must be 
extended to perform the remaining filtering operations 
imposed by the algorithm. 
The symmetric extension during phases (a) and (c) for each 
type of filter is described in the following. 
 For the case of odd-tap filters the input signal x[n] is extended 
using the (1,1) symmetry, described by the equations: 

x[-n] = x[n]  x[N-1+1] = x[N-1-n]                             (12) 
It can be easily shown that the produced sequence of 
coefficients (low- and high-pass) y[n] has also (1, 1) 
symmetry, as in the case of the input signal x[n]. So, the time 
relations are:    

y[n] = y[-n],  y[N-1+1] = y[N-1-n]                                    (13) 

Thus, we need N subband coefficients when the number of 
samples of the input signal is even, and N-1 subband 
coefficients when the number of samples is odd.     
For the case of even-tap filters the input signal x[n] is 
extended using the (2, 2) symmetry, described by the 
equations: 

x[-n] = x[n-1]  x[N-1+n] = x[N-n]                                       (14) 

It can be easily shown that the produced sequence of 
coefficients (low- and high-pass) y[n] has a symmetry which, 
is described in the following: 
For the case of x[n] having even number of samples, in the left 
edge of the y[n] sequence the time relations are: 
y[-2n] = y[2n-2],  y[-2n+1] = -y[2n-1]                                (15) 
while in the right edge the relations are: 

y[N+2n] = y[N-2n-2],  y[N+2n+1] = -y[N-2n-1]                (16) 

For the case of x[n] having odd number of samples, in the 
right edge of the y[n] sequence the time relations are: 

y[N+2n-1] = y[N-2n-1],  y[N+2n] = -y[N-2n]                  (17) 

Thus, we need N subband coefficients when the number of 
samples of the input signal is even, and N-1 subband 
coefficients when the number of samples is odd.     

B. Analysis Filters 
For the implementation of the analysis operation, described by 
equations (4) and (5), two types of filters are proposed. The 
first one is for the case of odd number of taps and it is called 
Odd Tap Analysis Filter (OTAF). This type of filters can also 
be represented as 2Ml+1/2Ml-1 based on the number of taps of 
the lowpass and highpass filter respectively. The 
implementation refers to the 5/3 (Ml = 2) and 9/7 (Ml = 4) 
analysis filters of the JPEG2000. The second one is for the 
case of even number of taps and it is called Even Tap Analysis 
Filters (ETAF). The implementation refers to the 10/18, 2/10 
and 2/6 analysis filters of the JPEG2000. Their detailed 
implementations are described in the following. 
In OTAFs the delay lines consist totally of 2Ml+1 registers, 
which is equal to the number of taps of the low-pass analysis 
filter. The delay line holding the odd index samples has Ml 
registers, while the delay line holding the even index samples 
has Ml+1 registers. For the 5/3 filter Ml=2, while for the 9/7 
filter Ml=4. Assuming that the registers are counted from left 
to right, the Ml register will feed the central coefficient of the 
low-pass filter. For the first filtering operation, Ml+1 samples 
are needed. The rest of the samples are image copies of the 
existing samples in reference to the first sample of the input 
sequence. The register transfer relation of the (1, 1) symmetric 
extension is: 

RMl+n<= RMl-n-2, for n = [1, Ml]                                (18) 
 where R-1 : comes directly from input  x[2n-1], and 
           R-2 : comes directly from input x[2n] 

4
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1

2

3

8[ ]nx 2

[ ]2 1x n −

 
Fig. 6 Structure for the (1, 1) symmetric extension in 9/7 analysis 

filter. 
 

The four multiplexers in Fig.6 implement the (1, 1) symmetric 
extension for the 9/7 filter. For Fig.6 and the similar figures 
that show the structure of the filter’s delay line, the numbers 
in the small rectangles indicate the enumeration of the delay 
line’s registers. For example, number 6 corresponds to register 
R6. 
When the input signal’s samples are consumed the filtering 
must continue for some more cycles until the last sample of 
the input signal reaches the last register of its respective delay 
line. This stage of the filtering is called final filtering stage 
and is a part of the filtering process for both even- and odd-tap 
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filters of both analysis and synthesis operations. The required 
signal samples to complete the filtering process are generated 
according to [5]. Depending on whether the number of input 
samples is even or odd, the mathematical relations of 
symmetric extension at the final stage of filtering is: 
 for even samples:R0<=R4n-4 , for n = [1, Ml / 2]       
                R1<=R4n-5 , for n = [2, Ml / 2]               (19) 
for odd  samples: R0<=R4n-2 ,   for n = [1, Ml / 2]       
         R1<=R4n-3 ,   for n = [1, Ml / 2]                  (20) 
For the case of the 9/7 filter, the circuit realization of the 
symmetric extension at the final filtering stage for even 
number of input samples is shown in Fig.7, while for the odd  
number of input samples is shown in Fig. 8. 
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Fig. 7 (1, 1) symmetric extension at the final filtering stage for even 
number of samples in 9/7 analysis filter. 
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Fig. 8 (1, 1) symmetric extension at the final filtering stage for odd 

number of samples in 9/7 analysis filter. 
According to equations (18),(19) and (20) it is concluded that: 

a) (K-1)/2 samples are symmetrically extended into the 
filter’s delay line during the initialization phase. 

b) (K-3)/2, (K-1)/2 samples are symmetrically extended 
into the filter’s delay line during the finalization phase, for 
even or odd samples respectively. 
Hence, totally K-2, K-1 samples are symmetrically extended 
into the filter’s delay line, for even or odd samples 
respectively. 
In ETAFs the delay lines consist totally of 2Mh registers, 
which is equal to the number of taps of the high-pass analysis 
filter. The number of registers in each delay line is Mh. For the 
10/18 filter Mh=9, for the 2/10 Mh=5 and for Mh=3. Assuming 
that the registers are counted from left to right, the center of 
the low-pass filter will be fed from the Mh register. In this 
case, Mh samples are needed for the first filtering. The rest 
ones are produced with a (2, 2) symmetric extension. The 
register transfer relation of this extension is: 

RMh+n<= RMh-n-1, for n = [1, Mh-1]              (21) 
The multiplexers in Fig.9 implement the symmetric extension 
for the 10/18 analysis filter.  

7
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3

0
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2

11[ ]nx 2 1

10 128 1614

13 15 17

[ ]12 +nx  
Fig. 9 Structure for the (2, 2) symmetric extension in 10/18 analysis 

filter. 

The symmetric extension at the final stage of filtering is done 
according to [5]. Depending on whether the number of input 
samples is even or odd the mathematical relation of the 
extension at the final filtering stage is: 
for even samples:R0 <= R4n-3 , for n = [1, (Mh - 1) / 2]          

                      R1 <= R4n-4 ,  for n = [1, (Mh - 1) / 2]        (22) 
for odd samples:R0 <= R4n-5 , for n = [1, (Mh - 1) / 2]     

     R1 <= R4n-6 , for n = [2, (Mh - 1) / 2]          (23) 
where, R-1 comes directly from input x[2n]. 
The circuit realizations of the symmetric extension at the final 
filtering stage for even and odd number of input samples are 
shown in Fig. 10 and Fig. 11, respectively. 
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Fig. 10 (2, 2) symmetric extension at the final filtering stage for even 

number of samples in 10/18 analysis filter. 
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Fig. 11 (2, 2) symmetric extension at the final filtering stage for odd 
number of samples in 10/18 analysis filter. 
According to equations (21),(22) and (23) it is concluded that: 
a) (K-2)/2 samples are symmetrically extended into the filter’s 
delay line during the initialization phase. 
b) (K-2)/2, (K-4)/2 samples are symmetrically extended into 
the filter’s delay line during the finalization phase, for even or 
odd samples respectively. 
Hence, totally K-2, K-3 samples are symmetrically extended 
into the filter’s delay line, for even or odd samples 
respectively. 

C. Synthesis Filters 
For the implementation of the synthesis operation, described 
by equations (10) and (11), two types of filters are proposed 
as in the case of analysis operation. The first one is for the 
case of odd number of taps and it is called Odd Tap Synthesis 
Filter (OTSF). It is used for the 3/5 and 7/9 synthesis filters in 
JPEG2000. The second one is for the case of even number of 
taps and it is called Even Tap Synthesis Filters (ETSF). It is 
used for the 18/10, 10/2 and 6/2 synthesis filters in JPEG2000. 
Their detailed implementations are described in the following 
two sub-sections. 
In OTSFs the delay lines consist totally of 2Ml +1 registers, 
which is equal to the number of taps of the respective low-
pass analysis filter. The delay line holding the odd index 
samples has Ml+1 registers, while the delay line holding the 
even index samples has Ml registers. For the 3/5 synthesis 
filter Ml=2, and for the 7/9 filter Ml=4. Assuming that the 
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registers are counted from left to right, the Ml+1 register will 
feed the central coefficient of the low-pass filter. Before the 
first filtering the delay line must be filled with the appropriate 
samples. Totally Ml+2 samples are needed for the first 
filtering. The rest of the samples are produce by (1, 1) 
symmetric extension. The register transfer relation of the 
extension is: 

RMl+n+1<= RMl-n-1, for n = [1, Ml-1]  (24) 
The three multiplexers in Fig.12 realize the symmetric 
extension for the 7/9 synthesis filter. 
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Fig. 12 Structure for the symmetric extension in 7/9 synthesis filter. 

 
At the last stage of filtering, depending whether the number of 
input samples is even or odd the mathematical relation of 
symmetric extension at the final filtering stage is: 
for even samples: R0<=R4n-2, for n = [1, Ml / 2]  

    R1<=R4n-3 , for n = [1, Ml / 2]                   (25) 
for odd samples: R0<=R4n-4    for n = [1, Ml / 2 + 1] 
       R1<=R4n-5 ,  for n = [2, Ml / 2 + 1]           (26) 
For even number of input samples the circuit realizing the 
symmetric extension at the final filtering stage is shown in 
Fig. 13, while in Fig.14 the extension for odd number of input 
samples is shown.  
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Fig. 13 Symmetric extension at the final filtering stage for even 

number of samples in 7/9 synthesis filter. 
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Fig. 14 Symmetric extension at the final filtering stage for odd 

number of samples in 7/9 synthesis filter. 

According to equations (24), (25) and (26) it is concluded 
that: 
a) (K-3)/2 samples are symmetrically extended into the filter’s 
delay line during the initialization phase. 
b) (K-1)/2, (K-3)/2 samples are symmetrically extended into 
the filter’s delay line during the finalization phase, for even or 
odd samples respectively. 
Hence, totally K-2, K-3 samples are symmetrically extended 
into the filter’s delay line, for even or odd samples 
respectively. 
In ETSFs the delay lines consist totally of 2Mh registers, 
which is equal to the number of taps of the high-pass analysis 
filter. The number of registers in each delay line is Mh. For the 

18/10 filter Mh=9, while for the 10/2 Mh=5. Assuming that the 
registers are counted from left to right, the Mh-1 register will 
feed the central coefficient of the transformed low-pass filter. 
For the first filtering, Mh+1 samples are needed, the rest 
samples are produced by symmetric extension according to 
[5]. The register transfer relation is: 
RMh+n-1<= RMh-n-1,  
RMh+2n-2<= -RMh-2n-2, for n=2k, where  n = [1, (Mh-1)/2]           (27) 
The multiplexers in Fig.15 realize the extension operation for 
the 18/10 synthesis filter. 
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Fig. 15 Structure for the symmetric extension in 18/10 synthesis 

filter. 
The samples that are needed at the final filtering stage are 
generated by symmetric extension according to the following 
register transfer relations:  
for even samples: R0<=R4n-4

 ,  for n = [1, (Mh - 1) / 2] 
        R1<= -R4n-7 ,for n = [2, (Mh - 1) / 2]          (28) 

for odd samples: R0<=R4n-2 , for n = [1, (Mh - 1) / 2] 
   R1<= -R4n-5 , for n = [1,(Mh - 1) / 2]       (29) 

with R-1  taking the value 0. 
The circuit realizations of the symmetric extension at the final 
filtering stage for even and odd number of input samples are 
shown in Fig. 16 and Fig. 17, respectively. 
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Fig. 16 Symmetric extension at the final filtering stage for even 

samples in 18/10 synthesis filter. 
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Fig. 17 Symmetric extension at the final filtering stage for odd 

samples in 18/10 synthesis filter. 
According to equations (27), (28) and (29) it is concluded 
that: 
a) (K-2)/2 samples are symmetrically extended into the filter’s 
delay line during the initialization phase. 
b) (K-4)/2 samples are symmetrically extended into the filter’s 
delay line during the finalization phase, for even and odd 
samples. 
Hence, totally K-3 samples are symmetrically extended into 
the filter’s delay line, for even and odd samples. 
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From the results presented, relative to the number of samples 
symmetrically extended into the filter’s delay line, we can 
estimate the ratio by which the number of memory accesses is 
reduced. Let e be the number of signal samples symmetrically 
extended during a filtering over an input signal sequence of 
size N. Then the reduction of the memory accesses is:  

% 100%er
N e

= ⋅
+

 

where N+e is the total number of memory accesses without 
the symmetric extension taking place in the filter’s delay line.  
In Tables 1 and 2 the values of the memory accesses reduction 
are illustrated for the Odd-Tap and Even-Tap filters, 
respectively. The values for each filter type are considered for 
four cases of input signal’s size N and two cases of filter’s size 
K.  

TABLE I  
REDUCTION OF THE MEMORY ACCESSES FOR THE ODD-TAP 

FILTERS 
N=16 N=32 N=64 N=128 Filter type 

              

Samples 

K=5 K=9 K=5 K=9 K=5 K=9 K=5 K=9 

Even 16% 30% 8.5% 18% 4.8% 9.8% 2.3% 5.2% OTAF 

Odd  21% 33.3% 11.1% 20% 5.9% 11.1% 3% 5.9% 

Even 16% 30% 8.5% 18% 4.8% 9.8% 2.3% 5.2% OTSF 

Odd 11.1% 27.2% 5.9% 15.8% 3.0% 8.6% 1.5% 4.5%  
TABLE II  

REDUCTION OF THE MEMORY ACCESSES FOR THE EVEN-TAP 
FILTERS 

N=32 N=64 N=128 N=256 Filter type 

              

Samples 

K=18 K=10 K=18 K=10 K=18 K=10 K=18 K=10 

Even 33.3% 20% 20% 11.1% 11.1% 5.9% 5.9% 3% ETAF 

Odd 31.9% 17.9% 19% 9.9% 10.5% 5.2% 5.5% 2.7% 

Even 31.9% 17.9% 19% 9.9% 10.5% 5.2% 5.5% 2.7% ETSF 

Odd 31.9% 17.9% 19% 9.9% 10.5% 5.2% 5.5% 2.7%  
As concluded from the Tables 1 and 2 there is a reduction in 
memory accesses that depend on the length of the input signal 
sequence and reaches 33.3%. This reduction is due to the 
symmetric extension occurring internally in the filter’s delay 
line, something that it is not the case in previously published 
works [7], [8], [9] and [10]. In [11] it is shown that a 
reduction in memory accesses results in an analogous 
reduction in memory power consumption.  The same 
reduction is achieved for the case of 2D signals since the 
filters, in the separable 2D-DWT case, are applied first in the 
rows and then in the columns of the input image.  
A significant reduction is also accomplished by applying the 
proposed filters for computing the tile based 2D-DWT [15]. In 
this way of computing, the 2D-DWT is applied in blocks of 
the input image. These blocks have typical sizes from 16× 16 
to 64×64 samples in multiples of 2. Thus, according to Tables 
1 and 2 a reduction that ranges from 5% to 33.3% is achieved. 

V. EXPERIMENTAL RESULTS 
The eight filters designs were captured by using VHDL 
language (VHSIC Hardware Description Language). All of 
the system components have been described with structural 
architecture. Two different VLSI implementations are 
presented. 

TABLE  III  
AREA (FPGA): CONFIGURABLE LOGIC BLOCKS (CLB), FUNCTION 

GENERATORS (FG), AREA (ASIC): SQMILS, F: OPERATING 
FREQUENCY (MHZ), P: ESTIMATED POWER (MW) 

FPGA 
(XILINX v50ecs144) ASIC (0.33 um) 

Area 

Filter 
Type 

CLB FG 
Freq Area Freq  P  

OTAF 183 365 71.4 995 46.8 3.6  
OTSF 134 268 72  985 48.8 2.1  
ETAF 345  490  57.8 2267 48.5 5.2  
ETSF 359  497  57.5 3120 41.1 5.2  
COTAF 121 241 57.3 951 48.2 6.2  
COTSF 122 244 63.4 960 50.1 5.9  
CETAF  271 541 46.9 2278 45.7 12.7  
CETSF 336 671 61.7 2787 40.2 13.3  

According to the first approach all the introduced filters were 
synthesized placed and routed using an FPGA device. 
Additionally experimental results were taken for the ASIC 
implementation. For the synthesis a 0.33 um CMOS standard 
cell library was used. In the Table 3 the synthesis results for 
both FPGA and ASIC implementations are illustrated in terms 
of covered area and operating frequency. 
Finally the area-delay model for the ASIC technology is 
illustrated in the Fig. 18. Based on the experimental results it 
is cleared that the proposed filter architectures has almost the 
same covered area and performance compared with the 
conventional but with lower power consumption (Fig. 19). 
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Fig. 18 Area-delay model for the DWT filters. 
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Fig. 19 Power consumption for the DWT filters. 

VI. CONCLUSIONS 
In the design techniques for implementing throughput 
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optimized 1-D filters for forward and invert wavelet transform 
was introduced. These filters can be embedded in a 2D-DWT 
encoder/decoder [15] for implementing the convolutional 2D-
DWT according to the JPEG2000 standard. The illustrated 
filter architectures are based on reduced memory accesses, 
power and progressive computations. More specifically, the 
synthesis filters employ an adder less than the original 
Mallat’s scheme and the proposed scheme in [5]. The signal 
extension prior to actual filtering is avoided and a great 
reduction in memory accesses is achieved. Finally, the need 
for buffering and reordering between the analysis and 
synthesis filters is eliminated. The proposed filter architecture 
has almost the same covered area and performance compared 
with the conventional but with low power estimation 
consumption.  
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