
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1126

 1
Abstract—In this paper, the implementation of low power,

high throughput convolutional filters for the one dimensional
Discrete Wavelet Transform and its inverse are presented. The
analysis filters have already been used for the implementation of a
high performance DWT encoder [15] with minimum memory
requirements for the JPEG 2000 standard. This paper presents the
design techniques and the implementation of the convolutional filters
included in the JPEG2000 standard for the forward and inverse DWT
for achieving low-power operation, high performance and reduced
memory accesses. Moreover, they have the ability of performing
progressive computations so as to minimize the buffering between
the decomposition and reconstruction phases. The experimental
results illustrate the filters’ low power high throughput characteristics
as well as their memory efficient operation.

Keywords—Discrete Wavelet Transform; JPEG2000 standard;
VLSI design; Low Power-Throughput-optimized filters

I. INTRODUCTION
HE Discrete Wavelet Transform (DWT) has been
introduced as a highly efficient and flexible method for
subband decomposition of signals [1]. In digital signal

processing, good algorithmic performance especially in the
fields of image and video compression has been demonstrated
[2], [3], [4]. The inclusion of the DWT in contemporary
multimedia compression standards, such as the JPEG2000 [5]
and MPEG-4 [6], has lead to intensive research efforts for
improving the implementation aspects of the transform.
Our paper is focused on the 1 Dimensional (1D) convolutional
DWT which is used for the realization of the seperable 2
Dimensional (2D) DWT. In detail the separable 2D-DWT is
realized with two 1D-DWT filterings one along the rows and
one along the columns of the input image. A diversity of
filters has been proposed for the 1D-DWT [7]. The two
extremes of filter types are the serial and parallel ones. Serial

1 Grigorios D. Dimitroulakos is with the Electrical and Computer

Engineering Dep. Of the University of Patras, Greece. (corresponding author
to provide phone: +30 2610 993421; fax: +30 2610 994798; e-mail:
dhmhgre@ ee.upatras.gr)

N. D. Zervas, was with the the Electrical and Computer Engineering Dep.
Of the University of Patras, Greece. (e-mail: zervas@alma-tech.com)

N. Sklavos was with the the Electrical and Computer Engineering Dep. Of
the University of Patras, Greece. (e-mail: nsklavos@ieee.org)

Costas E. Goutis is a professor in he Electrical and Computer Engineering
Dep. Of the University of Patras, Greece. (goutis@ee.upatras.gr)

filters, which are efficient in terms of area, are characterized
by low throughput making their use in streaming applications
inefficient. On the other hand, parallel filters dominate in
streaming applications as they are characterized by high
throughput. However, there are quite many opportunities for
improvements that can be made to them.
Many architectures that implement the Two-Dimensional
separable Forward (2D-DWT) and Inverse DWT (2D-IDWT)
in order to be applied on 2D signals have been presented in
the past [7], [8], [9] and [10] . These architectures are
consisting of filters for performing the 1D-DWT and memory
units for storing the results of the transformation. Due to the
fact that streaming multimedia applications - in which the
DWT is present - are characterized by high throughput
requirements, this imposes the need for optimizing the design
of the filters in terms of speed. Moreover, portable multimedia
devices require low power consumption for increasing the
battery lifetime and this can be achieved by minimizing the
storage size and number of memory accesses [11].
In this paper, the design techniques and VLSI realization of
parallel Low Power Throughput Optimized (LPTO)
convolutional filters that implement the 1D-DWT and the 1D-
IDWT of a signal are presented. These filters are based on the
DWT as specified in JPEG2000 standard [5], [13]. The filters
studied, are the 9/7 and 5/3 for odd taps and the 10/18, 2/10,
and 2/6 for even taps. These filters produce two subband
samples in every cycle taking as input two signal samples.
Also, they don’t need separate subsampling and upsampling
units for computing the DWT and IDWT, respectively. The
proposed synthesis filters employ an adder less than the
original Mallat’s scheme [12] and the introduced scheme in
[10]. Furthermore, exploiting the symmetric nature of the
proposed filters the signal extension prior to actual filtering is
avoided. Hence, the memory accesses are reduced. Finally, the
need for buffering and reordering between the analysis and
synthesis filters is eliminated because the samples are
consumed in the way they are produced [14]. The
aforementioned characteristic makes them useful for
streaming applications. The experimental results and the work
in [15] illustrate the efficiency of the proposed
implementation for the aforementioned filters in terms of
performance, power, and memory access efficiency.
The rest of the paper is organized as follows. In section 2 the
related work in developing hardware architectures for the
DWT is presented. Section 3 depicts the background theory of
wavelet transform. In section 4 the architecture of the analysis

Design Techniques and Implementation of Low
Power High-Throughput Discrete Wavelet
Transform Tilters for JPEG 2000 Standard

Grigorios D. Dimitroulakos, N. D. Zervas, N. Sklavos and Costas E. Goutis

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1127

and synthesis filters is shown. The results for the VLSI
synthesis of the analysis and synthesis filters are given in
section 5. Finally, section 6 concludes the paper

II. RELATED WORK
Numerous architectures have been proposed for computing
the 1D-DWT [7], [8], [9], [10], [16], [17], [18], [19] and [20].
The 1D-DWT architectures can, in principle, be extended to
architectures for computing the separable 2D-DWT. This is
because the separable 2D-DWT can be computed by one 1D-
DWT filtering along the rows followed by a 1D-DWT
filtering along the columns. In addition, the non-separable
2D-DWT process 2D data directly. Due to the fact that the
minimizations of latency and of storage requirements are
important goals for most streaming multimedia applications,
mapping 1D-DWT architectures to 2D-DWT architectures is
not a trivial issue.
Lewis and Knowles [21] were the first to propose an
architecture for the 2D-DWT. Their architecture was tuned to
the Daubechies four-tap filters, so it suffered from scalability
since it is strongly dependent on the limited properties of the
filters used. Chakrabarti and Vishwanath [7] have proposed a
scalable architecture for the encoder based on the non-
separable 2D-DWT. Their architecture consists of two parallel
computation units of size K2 and a storage unit of size NK≈ .
A parallel computation unit of size M consists of M
multipliers and a tree of adders to add the M products.
Vishwanath et al. [9] have proposed an architecture for
separable 2D-DWT, which consists of two systolic arrays of
size K, two parallel computational units of size K, and a
storage unit of size ≈N(2K+J). A drawback of this architecture
is that two rows of inputs are fed into the two systolic arrays
every two cycles and as a result, an additional data converter
is required to convert the raster scan input (one per cycle) into
two per two cycles output. Chakrabarti and Mumford [16]
introduced an architecture for the analysis (synthesis) filters
based on the 2D-DWT, together with two scheduling
algorithms for computing the forward (inverse) 2D-DWT. The
goal was to minimize the storage requirements and keep the
data-flow regular.

III. PRELIMINARIES
The 1D-DWT and the 1D-IDWT of an input signal x[n] is
implemented by the filter bank shown in Fig.1. The 1D-DWT
is a two-channel subband decomposition of an input signal
x[n] that produces two subband coefficients y0[n] and y1[n] for
one-stage of decomposition [12] according to the following
equations.

[] [] []1 2
k

y n x k h n k= −∑ (1)

 [] [] []0 2
k

y n x k w n k= −∑ (2)

 The 1D-IDWT is a two-channel subband reconstruction,
taking as inputs the y0[n] and y1[n] coefficients and producing
the x΄[n] signal, where x΄[n] has to be equal or a very good
approximation of the input signal x[n]. The reconstruction of
the original is done according to the following equations.

[] [] [] [] []' ' '
1 02 2

k
x n y k h n k y k w n k⎡ ⎤= ⋅ − ⋅ + ⋅ − ⋅⎣ ⎦∑ (3)

The h΄[n] and w΄[n] are high-pass filters and low-pass filters
respectively, used in the analysis (synthesis) section. After the
filtering operations in analysis (synthesis) section the
produced sequences are downsampled (upsampled) by a factor
of 2.
The four-channel subband decomposition of 2D-DWT is
obtained by the successive applications of two-channel
decomposition of 1D-DWT in the rows and columns of the
input image. Similarly, 2D-IDWT is obtained by two channel
reconstruction of 1D-IDWT along the rows and columns. In
Fig. 2 the 2D-DWT and 2D-IDWT filter banks are illustrated
for two stages of decomposition and reconstruction.

h[n]

w[n]

2

2

[]1v n

[]0v n

2

2

h'[n]

w'[n]

+

[]1y n

[]0y n

[]'
1v n

[]'
0v n

[]1x n

[]0x n

1D-DWT 1D-IDWT

x[n] x'[n]

Fig. 1 One-stage of subband decomposition and reconstruction.

H

L

H

L

H

L H

L

H

L

H

L

H'

L'

H'

L'

+

+ H'

L'

+

H'

L'

+

H'

L'
+ H'

L'

+

Row Filtering
Column Filtering

Row Filtering
Column Filtering

Stage 1 of
decomposition

Stage 2 of
decomposition

Stage 2 of
reconstruction

Stage 1 of
reconstruction

x'[n]x[n]

Fig. 2 2D-DWT and IDWT filter banks for J=2 stages.

Throughout this paper, we assume that: a) The signal length is
N samples and b) the maximum number of filter taps among
the high-pass and low-pass filters is K. Note that K is the
maximum number of taps of the high- and low-pass filters.
For example, for the 5/3 filter K=5, while for the 9/7 filter
K=9.

IV. PROPOSED LPTO FILTERS DESCRIPTION
In this section, the novel LPTO filters for computing the 1D-
DWT and 1D-IDWT, are presented. The filters are based on
the well-known convolution equations (1), (2) and (3)
described in the previous section. These equations were
modified for including the subsampling and upsampling
operations inside the filters. Also, there is a different filter
design depending on the number of filter coefficients and on
the number of the input signal samples. The special features of
each filter and their design are illustrated in the following
paragraphs.
The equations describing the DWT as implemented in the
proposed filters are described as follows. Let x[n] denote the
1D sequence of input samples and let y[n] denote the one 1D
sequence of interleaved subband samples, where 0≤n<N. The
low-pass subband corresponds to the even samples y[2n],
while the high-pass subband corresponds to the odd samples
y[2n+1]. The relevant analysis operation in the forward 1D-
DWT in terms of inner products is expressed as:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1128

∑ +⋅=
k

ll knxkwny]2[][]2[(4)

∑ ++⋅=+
k

hh knxkhny]12[][]12[(5)

where, h[k] and w[k] denote the high-pass and low-pass
analysis filters respectively and ln and hn are the indexes for
the low-pass and high-pass coefficients. The synthesis
operation in the 1D-IDWT reproduces the original signal x[n]
from the interleaved subband sequence y[n] according to the
following equation:

])]12([]12[]2[]2[[][∑ +−′⋅++−′⋅=
k

knhkyknwkynx (6)

where, h'[k] and w'[k] are the high-pass and low-pass
synthesis filters respectively.
 Equation (6) has been modified for designing synthesis
filters with an adder less than the original Mallat’s
implementation [12]. With this modification the synthesis
filters have the same structure as the analysis ones. Equation
(6), describing the synthesis operation, can be modified as:

[] [] [] [] ()2 2 2 2 2 1 2 2 1 , 2
k

x l y k w l k y k h l k n l⎡ ⎤′ ′= ⋅ − + + ⋅ − + =⎡ ⎤⎣ ⎦⎣ ⎦∑ (7)

[] [] [] [] []2 1 2 2 1 2 2 1 2 2 , 2 1
k

x l y k w l k y k h l k n l′ ′⎡ ⎤+ = ⋅ + − + + ⋅ − = +⎣ ⎦∑ (8)

where 0 ≤ l ≤ (N-2)/2.
Two new functions are defined such that:
 wt΄ (m) = w΄(m) and ht΄(m) = h΄(m) , if m is even

wt΄ (m) = h΄(m) and ht΄(m) = w΄(m) , if m is odd (9)
Then (7) and (8) are transformed to:

[] [] [] [] ()2 2 ' 2 2 2 1 ' 2 2 1 , 2
k

x l y k wt l k y k wt l k n l⎡ ⎤= ⋅ − + + ⋅ − + =⎡ ⎤⎣ ⎦⎣ ⎦∑

[] [] [] [] []2 1 2 ' 2 1 2 2 1 ' 2 2 , 2 1
k

x l y k ht l k y k ht l k n l⎡ ⎤+ = ⋅ + − + + ⋅ − = +⎣ ⎦∑ ⇒

[] [] [] [] ()2 ' 2 2 1 ' 2 1 , 2
k

x n y k wt n k y k wt n k n l⎡ ⎤= ⋅ − + + ⋅ − + =⎡ ⎤⎣ ⎦⎣ ⎦∑

[] [] [] [] ()2 ' 2 ' 2 1 , 2 1
k

x n y k ht n k y n ht n k n l⎡ ⎤= ⋅ − + ⋅ − + = +⎡ ⎤⎣ ⎦⎣ ⎦∑ ⇒

[][] [] []
k

x n y k wt n k′= ⋅ −∑ 2n l= (10)

[][] [] []
k

x n y k ht n k′= ⋅ −∑ 2 1n l= + (11)

From (10) and (11) it is concluded that the synthesis operation
can be done as a convolution of the interleaved sequence of
subband samples without the necessity of the addition
operation of (6), and with the impulse response of the filters
defined by (9). Also, there is no need for buffering because
sequence y[k] is consumed in the way it is produced.
The equations (4), (5) for the analysis operation and (10), (11)
for the synthesis operation, can be implemented mainly with
two hardware designs using parallel filters. The first design
[8], called to hereafter as conventional architecture, consists of
an input delay line equal to the number Ntaps of filter
coefficients (taps). The same Ntaps multipliers are used for
computing the low- and high-pass coefficients. The
conventional architecture implements analysis and synthesis
operations in an interleaved manner. Specifically, for the even
clock cycles the multipliers are fed with the taps of the low-
pass filter, while for the odd cycles the same multipliers are
fed with the constant coefficients of the high-pass filter. In

this way, a pair of low- and high-pass coefficients is produced
every two clock cycles.
The proposed architecture, called hereafter LPTO, consist of a
modified delay line that receives two input samples per clock
cycle and a separate data path for high-pass and low-pass
filtering. So, LPTO architecture produces a pair of low- and
high-pass coefficient every clock cycle, resulting in greater
speed than the conventional architecture. Also, although it is
expected that the conventional architecture occupies less area
than the LPTO, this is not always the case. This is because
with the LPTO architecture, an additional optimization is
enabled called strength reduction [23]. Specifically,
multiplication among a variable (input sample) and a constant
can be easily reduced to a number of shift-and-add operations,
resulting this way in a much smaller implementation. For
example, a multiplication times 3 is reduced to a left shift by
one and an increment by one. Fig. 3 illustrates the
conventional architecture, while in Fig. 4 the LPTO
architecture is given, both for the case of 4/3 filter.

x x x x

0, w[0]

+

In[2n] In[2n-1] In[2n-2] In[2n-3]

h[0], w[1] h[1], w[2] h[2], w[3]

H[n], L[n]
Fig. 3 Conventional filter architecture.

x

+

x x

x x x x

+

In[2n] In[2n-2]

In[2n-1] In[2n-4]

h[0] h[1] h[2]

w[0] w[1] w[2] w[3]

L[n]

H[n]

Fig. 4 LPTO filter architecture.

A. Symmetric Extension
Due to the finite length of the input signal sequences,
problems arise when the filter processes the signal’s
boundaries. This problem can be solved by extending the
signal at the boundaries as much as needed to complete the
filtering operation. In the proposed filter’s design the
symmetric extension is adopted.
 The symmetric extension is a simple method for extending
a finite length signal [22]. In this method the signal is
extended so as it becomes periodic and symmetric. The type
of the symmetric extension is denoted by (x, y), where x and y
is the number of times the first and the last sample of the
signal is repeated, respectively. Two special cases of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1129

extension are the Whole Sample (WS) symmetry and the Half
Sample (HS) symmetry. The WS extends the signal having as
center of symmetry the last sample of the signal sequence, so
it is a (1, 1) symmetry. The HS extends the signal having as
center of symmetry the half of the distance between the last
sample and the first sample of the extension, so it is a (2, 2)
symmetry. The two basic kinds of symmetric extension are
illustrated in Fig. 5.

Symmetric extension (1-1) Symmetric extension (2-2)Initial Signal

Initial Signal Whole Sample Symmetry Half Sample Symmetry

 Fig. 5 Types of symmetric extension

The filter’s operation consists of three phases: a) Initialization
phase: initially, the filter loads its delay line with the
appropriate number of samples in order start the filtering.
Since these samples are present in the delay line, symmetric
extension takes place. b) Filtering phase: the filter processes
the input signal samples present in the delay line. c)
Finalization phase: at the end of filter’s operation, when the
input samples are fully consumed, the input signal must be
extended to perform the remaining filtering operations
imposed by the algorithm.
The symmetric extension during phases (a) and (c) for each
type of filter is described in the following.
 For the case of odd-tap filters the input signal x[n] is extended
using the (1,1) symmetry, described by the equations:

x[-n] = x[n] x[N-1+1] = x[N-1-n] (12)
It can be easily shown that the produced sequence of
coefficients (low- and high-pass) y[n] has also (1, 1)
symmetry, as in the case of the input signal x[n]. So, the time
relations are:

y[n] = y[-n], y[N-1+1] = y[N-1-n] (13)

Thus, we need N subband coefficients when the number of
samples of the input signal is even, and N-1 subband
coefficients when the number of samples is odd.
For the case of even-tap filters the input signal x[n] is
extended using the (2, 2) symmetry, described by the
equations:

x[-n] = x[n-1] x[N-1+n] = x[N-n] (14)

It can be easily shown that the produced sequence of
coefficients (low- and high-pass) y[n] has a symmetry which,
is described in the following:
For the case of x[n] having even number of samples, in the left
edge of the y[n] sequence the time relations are:
y[-2n] = y[2n-2], y[-2n+1] = -y[2n-1] (15)
while in the right edge the relations are:

y[N+2n] = y[N-2n-2], y[N+2n+1] = -y[N-2n-1] (16)

For the case of x[n] having odd number of samples, in the
right edge of the y[n] sequence the time relations are:

y[N+2n-1] = y[N-2n-1], y[N+2n] = -y[N-2n] (17)

Thus, we need N subband coefficients when the number of
samples of the input signal is even, and N-1 subband
coefficients when the number of samples is odd.

B. Analysis Filters
For the implementation of the analysis operation, described by
equations (4) and (5), two types of filters are proposed. The
first one is for the case of odd number of taps and it is called
Odd Tap Analysis Filter (OTAF). This type of filters can also
be represented as 2Ml+1/2Ml-1 based on the number of taps of
the lowpass and highpass filter respectively. The
implementation refers to the 5/3 (Ml = 2) and 9/7 (Ml = 4)
analysis filters of the JPEG2000. The second one is for the
case of even number of taps and it is called Even Tap Analysis
Filters (ETAF). The implementation refers to the 10/18, 2/10
and 2/6 analysis filters of the JPEG2000. Their detailed
implementations are described in the following.
In OTAFs the delay lines consist totally of 2Ml+1 registers,
which is equal to the number of taps of the low-pass analysis
filter. The delay line holding the odd index samples has Ml
registers, while the delay line holding the even index samples
has Ml+1 registers. For the 5/3 filter Ml=2, while for the 9/7
filter Ml=4. Assuming that the registers are counted from left
to right, the Ml register will feed the central coefficient of the
low-pass filter. For the first filtering operation, Ml+1 samples
are needed. The rest of the samples are image copies of the
existing samples in reference to the first sample of the input
sequence. The register transfer relation of the (1, 1) symmetric
extension is:

RMl+n<= RMl-n-2, for n = [1, Ml] (18)
 where R-1 : comes directly from input x[2n-1], and
 R-2 : comes directly from input x[2n]

4

5

6

7

0

1

2

3

8[]nx 2

[]2 1x n −

Fig. 6 Structure for the (1, 1) symmetric extension in 9/7 analysis

filter.

The four multiplexers in Fig.6 implement the (1, 1) symmetric
extension for the 9/7 filter. For Fig.6 and the similar figures
that show the structure of the filter’s delay line, the numbers
in the small rectangles indicate the enumeration of the delay
line’s registers. For example, number 6 corresponds to register
R6.
When the input signal’s samples are consumed the filtering
must continue for some more cycles until the last sample of
the input signal reaches the last register of its respective delay
line. This stage of the filtering is called final filtering stage
and is a part of the filtering process for both even- and odd-tap

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1130

filters of both analysis and synthesis operations. The required
signal samples to complete the filtering process are generated
according to [5]. Depending on whether the number of input
samples is even or odd, the mathematical relations of
symmetric extension at the final stage of filtering is:
 for even samples:R0<=R4n-4 , for n = [1, Ml / 2]
 R1<=R4n-5 , for n = [2, Ml / 2] (19)
for odd samples: R0<=R4n-2 , for n = [1, Ml / 2]
 R1<=R4n-3 , for n = [1, Ml / 2] (20)
For the case of the 9/7 filter, the circuit realization of the
symmetric extension at the final filtering stage for even
number of input samples is shown in Fig.7, while for the odd
number of input samples is shown in Fig. 8.

4

5

6

7

0

1

2

3

8[]nx 2

[]2 1x n −

C

Fig. 7 (1, 1) symmetric extension at the final filtering stage for even
number of samples in 9/7 analysis filter.

4

5

6

7

0

1

2

3

8[]nx 2

[]2 1x n −

C

Fig. 8 (1, 1) symmetric extension at the final filtering stage for odd

number of samples in 9/7 analysis filter.
According to equations (18),(19) and (20) it is concluded that:

a) (K-1)/2 samples are symmetrically extended into the
filter’s delay line during the initialization phase.

b) (K-3)/2, (K-1)/2 samples are symmetrically extended
into the filter’s delay line during the finalization phase, for
even or odd samples respectively.
Hence, totally K-2, K-1 samples are symmetrically extended
into the filter’s delay line, for even or odd samples
respectively.
In ETAFs the delay lines consist totally of 2Mh registers,
which is equal to the number of taps of the high-pass analysis
filter. The number of registers in each delay line is Mh. For the
10/18 filter Mh=9, for the 2/10 Mh=5 and for Mh=3. Assuming
that the registers are counted from left to right, the center of
the low-pass filter will be fed from the Mh register. In this
case, Mh samples are needed for the first filtering. The rest
ones are produced with a (2, 2) symmetric extension. The
register transfer relation of this extension is:

RMh+n<= RMh-n-1, for n = [1, Mh-1] (21)
The multiplexers in Fig.9 implement the symmetric extension
for the 10/18 analysis filter.

7

4

9

6

3

0

5

2

11[]nx 2 1

10 128 1614

13 15 17

[]12 +nx
Fig. 9 Structure for the (2, 2) symmetric extension in 10/18 analysis

filter.

The symmetric extension at the final stage of filtering is done
according to [5]. Depending on whether the number of input
samples is even or odd the mathematical relation of the
extension at the final filtering stage is:
for even samples:R0 <= R4n-3 , for n = [1, (Mh - 1) / 2]

 R1 <= R4n-4 , for n = [1, (Mh - 1) / 2] (22)
for odd samples:R0 <= R4n-5 , for n = [1, (Mh - 1) / 2]

 R1 <= R4n-6 , for n = [2, (Mh - 1) / 2] (23)
where, R-1 comes directly from input x[2n].
The circuit realizations of the symmetric extension at the final
filtering stage for even and odd number of input samples are
shown in Fig. 10 and Fig. 11, respectively.

7

4

9

6

3

0

5

2

11

[]nx 2

[]12 +nx

1

10 128 1614

13 15 17

Fig. 10 (2, 2) symmetric extension at the final filtering stage for even

number of samples in 10/18 analysis filter.

7

4

9

6

3

0

5

2

11

[]nx 2

[]12 +nx

1

10 128 1614

13 15 17

Fig. 11 (2, 2) symmetric extension at the final filtering stage for odd
number of samples in 10/18 analysis filter.
According to equations (21),(22) and (23) it is concluded that:
a) (K-2)/2 samples are symmetrically extended into the filter’s
delay line during the initialization phase.
b) (K-2)/2, (K-4)/2 samples are symmetrically extended into
the filter’s delay line during the finalization phase, for even or
odd samples respectively.
Hence, totally K-2, K-3 samples are symmetrically extended
into the filter’s delay line, for even or odd samples
respectively.

C. Synthesis Filters
For the implementation of the synthesis operation, described
by equations (10) and (11), two types of filters are proposed
as in the case of analysis operation. The first one is for the
case of odd number of taps and it is called Odd Tap Synthesis
Filter (OTSF). It is used for the 3/5 and 7/9 synthesis filters in
JPEG2000. The second one is for the case of even number of
taps and it is called Even Tap Synthesis Filters (ETSF). It is
used for the 18/10, 10/2 and 6/2 synthesis filters in JPEG2000.
Their detailed implementations are described in the following
two sub-sections.
In OTSFs the delay lines consist totally of 2Ml +1 registers,
which is equal to the number of taps of the respective low-
pass analysis filter. The delay line holding the odd index
samples has Ml+1 registers, while the delay line holding the
even index samples has Ml registers. For the 3/5 synthesis
filter Ml=2, and for the 7/9 filter Ml=4. Assuming that the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1131

registers are counted from left to right, the Ml+1 register will
feed the central coefficient of the low-pass filter. Before the
first filtering the delay line must be filled with the appropriate
samples. Totally Ml+2 samples are needed for the first
filtering. The rest of the samples are produce by (1, 1)
symmetric extension. The register transfer relation of the
extension is:

RMl+n+1<= RMl-n-1, for n = [1, Ml-1] (24)
The three multiplexers in Fig.12 realize the symmetric
extension for the 7/9 synthesis filter.

80

1

2

3

4

5

6

7[]2y n

[]2 1y n +

Fig. 12 Structure for the symmetric extension in 7/9 synthesis filter.

At the last stage of filtering, depending whether the number of
input samples is even or odd the mathematical relation of
symmetric extension at the final filtering stage is:
for even samples: R0<=R4n-2, for n = [1, Ml / 2]

 R1<=R4n-3 , for n = [1, Ml / 2] (25)
for odd samples: R0<=R4n-4 for n = [1, Ml / 2 + 1]
 R1<=R4n-5 , for n = [2, Ml / 2 + 1] (26)
For even number of input samples the circuit realizing the
symmetric extension at the final filtering stage is shown in
Fig. 13, while in Fig.14 the extension for odd number of input
samples is shown.

80

1

2

3

4

5

6

7[]2y n

[]2 1y n +

Fig. 13 Symmetric extension at the final filtering stage for even

number of samples in 7/9 synthesis filter.

80

1

2

3

4

5

6

7[]2y n

[]2 1y n +

Fig. 14 Symmetric extension at the final filtering stage for odd

number of samples in 7/9 synthesis filter.

According to equations (24), (25) and (26) it is concluded
that:
a) (K-3)/2 samples are symmetrically extended into the filter’s
delay line during the initialization phase.
b) (K-1)/2, (K-3)/2 samples are symmetrically extended into
the filter’s delay line during the finalization phase, for even or
odd samples respectively.
Hence, totally K-2, K-3 samples are symmetrically extended
into the filter’s delay line, for even or odd samples
respectively.
In ETSFs the delay lines consist totally of 2Mh registers,
which is equal to the number of taps of the high-pass analysis
filter. The number of registers in each delay line is Mh. For the

18/10 filter Mh=9, while for the 10/2 Mh=5. Assuming that the
registers are counted from left to right, the Mh-1 register will
feed the central coefficient of the transformed low-pass filter.
For the first filtering, Mh+1 samples are needed, the rest
samples are produced by symmetric extension according to
[5]. The register transfer relation is:
RMh+n-1<= RMh-n-1,
RMh+2n-2<= -RMh-2n-2, for n=2k, where n = [1, (Mh-1)/2] (27)
The multiplexers in Fig.15 realize the extension operation for
the 18/10 synthesis filter.

6

3

8

5

2 4

1

10[]nx 2

[]2 1x n −

0

9 117 1513

12 14 16

-1

-1

-1

-1
Fig. 15 Structure for the symmetric extension in 18/10 synthesis

filter.
The samples that are needed at the final filtering stage are
generated by symmetric extension according to the following
register transfer relations:
for even samples: R0<=R4n-4

 , for n = [1, (Mh - 1) / 2]
 R1<= -R4n-7 ,for n = [2, (Mh - 1) / 2] (28)

for odd samples: R0<=R4n-2 , for n = [1, (Mh - 1) / 2]
 R1<= -R4n-5 , for n = [1,(Mh - 1) / 2] (29)

with R-1 taking the value 0.
The circuit realizations of the symmetric extension at the final
filtering stage for even and odd number of input samples are
shown in Fig. 16 and Fig. 17, respectively.

6

3

8

5

2 4

1

10

[]nx 2

[]2 1x n −

0

9 117 1513

12 14 16

-1
-1

-1
Fig. 16 Symmetric extension at the final filtering stage for even

samples in 18/10 synthesis filter.

6

3

8

5

2 4

1

10

[]nx 2

[]2 1x n −

0

9 117 1513

12 14 16

-1

-1

0

-1

Fig. 17 Symmetric extension at the final filtering stage for odd

samples in 18/10 synthesis filter.
According to equations (27), (28) and (29) it is concluded
that:
a) (K-2)/2 samples are symmetrically extended into the filter’s
delay line during the initialization phase.
b) (K-4)/2 samples are symmetrically extended into the filter’s
delay line during the finalization phase, for even and odd
samples.
Hence, totally K-3 samples are symmetrically extended into
the filter’s delay line, for even and odd samples.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1132

From the results presented, relative to the number of samples
symmetrically extended into the filter’s delay line, we can
estimate the ratio by which the number of memory accesses is
reduced. Let e be the number of signal samples symmetrically
extended during a filtering over an input signal sequence of
size N. Then the reduction of the memory accesses is:

% 100%er
N e

= ⋅
+

where N+e is the total number of memory accesses without
the symmetric extension taking place in the filter’s delay line.
In Tables 1 and 2 the values of the memory accesses reduction
are illustrated for the Odd-Tap and Even-Tap filters,
respectively. The values for each filter type are considered for
four cases of input signal’s size N and two cases of filter’s size
K.

TABLE I
REDUCTION OF THE MEMORY ACCESSES FOR THE ODD-TAP

FILTERS
N=16 N=32 N=64 N=128 Filter type

Samples

K=5 K=9 K=5 K=9 K=5 K=9 K=5 K=9

Even 16% 30% 8.5% 18% 4.8% 9.8% 2.3% 5.2% OTAF

Odd 21% 33.3% 11.1% 20% 5.9% 11.1% 3% 5.9%

Even 16% 30% 8.5% 18% 4.8% 9.8% 2.3% 5.2% OTSF

Odd 11.1% 27.2% 5.9% 15.8% 3.0% 8.6% 1.5% 4.5%
TABLE II

REDUCTION OF THE MEMORY ACCESSES FOR THE EVEN-TAP
FILTERS

N=32 N=64 N=128 N=256 Filter type

Samples

K=18 K=10 K=18 K=10 K=18 K=10 K=18 K=10

Even 33.3% 20% 20% 11.1% 11.1% 5.9% 5.9% 3% ETAF

Odd 31.9% 17.9% 19% 9.9% 10.5% 5.2% 5.5% 2.7%

Even 31.9% 17.9% 19% 9.9% 10.5% 5.2% 5.5% 2.7% ETSF

Odd 31.9% 17.9% 19% 9.9% 10.5% 5.2% 5.5% 2.7%
As concluded from the Tables 1 and 2 there is a reduction in
memory accesses that depend on the length of the input signal
sequence and reaches 33.3%. This reduction is due to the
symmetric extension occurring internally in the filter’s delay
line, something that it is not the case in previously published
works [7], [8], [9] and [10]. In [11] it is shown that a
reduction in memory accesses results in an analogous
reduction in memory power consumption. The same
reduction is achieved for the case of 2D signals since the
filters, in the separable 2D-DWT case, are applied first in the
rows and then in the columns of the input image.
A significant reduction is also accomplished by applying the
proposed filters for computing the tile based 2D-DWT [15]. In
this way of computing, the 2D-DWT is applied in blocks of
the input image. These blocks have typical sizes from 16× 16
to 64×64 samples in multiples of 2. Thus, according to Tables
1 and 2 a reduction that ranges from 5% to 33.3% is achieved.

V. EXPERIMENTAL RESULTS
The eight filters designs were captured by using VHDL
language (VHSIC Hardware Description Language). All of
the system components have been described with structural
architecture. Two different VLSI implementations are
presented.

TABLE III
AREA (FPGA): CONFIGURABLE LOGIC BLOCKS (CLB), FUNCTION

GENERATORS (FG), AREA (ASIC): SQMILS, F: OPERATING
FREQUENCY (MHZ), P: ESTIMATED POWER (MW)

FPGA
(XILINX v50ecs144) ASIC (0.33 um)

Area

Filter
Type

CLB FG
Freq Area Freq P

OTAF 183 365 71.4 995 46.8 3.6
OTSF 134 268 72 985 48.8 2.1
ETAF 345 490 57.8 2267 48.5 5.2
ETSF 359 497 57.5 3120 41.1 5.2
COTAF 121 241 57.3 951 48.2 6.2
COTSF 122 244 63.4 960 50.1 5.9
CETAF 271 541 46.9 2278 45.7 12.7
CETSF 336 671 61.7 2787 40.2 13.3

According to the first approach all the introduced filters were
synthesized placed and routed using an FPGA device.
Additionally experimental results were taken for the ASIC
implementation. For the synthesis a 0.33 um CMOS standard
cell library was used. In the Table 3 the synthesis results for
both FPGA and ASIC implementations are illustrated in terms
of covered area and operating frequency.
Finally the area-delay model for the ASIC technology is
illustrated in the Fig. 18. Based on the experimental results it
is cleared that the proposed filter architectures has almost the
same covered area and performance compared with the
conventional but with lower power consumption (Fig. 19).

ASIC Technology

0

10

20

30

40

50

60

70

80

OTAF-COTAF OTSF-COTSF ETAF-CETAF ETSF-CETSF

Filters Set

A
re

a-
D

el
ay

 M
od

el

Proposed Convetional

Fig. 18 Area-delay model for the DWT filters.

Power Consumption

0

2

4

6

8

10

12

14

OTAF-COTAF OTSF-COTSF ETAF-CETAF ETSF-CETSF

Filters Set

Es
tim

at
ed

 P
ow

er
 (m

W
)

Proposed Convetional

Fig. 19 Power consumption for the DWT filters.

VI. CONCLUSIONS
In the design techniques for implementing throughput

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1133

optimized 1-D filters for forward and invert wavelet transform
was introduced. These filters can be embedded in a 2D-DWT
encoder/decoder [15] for implementing the convolutional 2D-
DWT according to the JPEG2000 standard. The illustrated
filter architectures are based on reduced memory accesses,
power and progressive computations. More specifically, the
synthesis filters employ an adder less than the original
Mallat’s scheme and the proposed scheme in [5]. The signal
extension prior to actual filtering is avoided and a great
reduction in memory accesses is achieved. Finally, the need
for buffering and reordering between the analysis and
synthesis filters is eliminated. The proposed filter architecture
has almost the same covered area and performance compared
with the conventional but with low power estimation
consumption.

REFERENCES
[1] I. Daubechies, “Ten Lectures on Wavelets,” CBMS-NSF Series in

Applied Mathematics, 61, SIAM, Philadelphia, 1992.
[2] Munteanu, J. Cornelis, G. V. der Auwera, P. Cristea, “Wavelet based

lossless compression scheme with progressive transmission capability,”
International Journal of Imaging Systems and Technology, vol. 10, pp.
76-85, January 1999.

[3] Said and W. A. Pearlman, "A new fast and efficient image codec based
on set partitioning in hierarchical trees," IEEE Trans. Circuits and Syst.
Video Technol., vol. 6, pp. 243-250, June 1996.

[4] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients,” IEEE Trans. On Signal Processing, vol. 41, pp. 3445-
3462, Dec. 1993.

[5] JPEG 2000 Image Coding System, ISO/IEC FCD15444-1, 2000.
[6] MPEG-4, ISO/IEC JTC1/SC29/WG11, FCD 14496, “Coding of Moving

Pictures and Audio,” May 1998.
[7] C. Chakrabarti and M. Vishwanath, “Efficient realizations of the discrete

and continuous wavelet transforms: from single chip implementations to
SIMD parallel computers,” IEEE Trans. Signal Processing, vol. 43,
no.3, pp. 759-771, March 1995.

[8] C. Chakrabarti and M. Vishwanath and R. M. Owens, “Architectures for
wavelet transforms: A survey,” Journal of VLSI Signal Processing, vol.
4, no. 2, pp 171-192, 1996.

[9] Vishwanath, R. M. Owens, M. J. Irwin “VLSI architectures for the
discrete wavelet transform”, IEEE Trans. Circuits and Syst. II, vol. 42,
no. 5, May 1995.

[10] N. D. Zervas, G. P. Anagnostopoulos, V. Spiliotopoulos, Y.
Andreopoulos and C.E. Goutis, “Evaluation of design alternatives for
the 2-D-discrete wavelet transform”, IEEE Trans. Circuits and Syst.
Video Technol., vol. 11, no. 2, pp. 1246-1262, December 2001.

[11] F. Catthoor, S. Wuytack, E. De Greff, F. Balasa, L.Nachtergale, A.
Vandecappele, “Custom Memory Management Methodology -
Exploration of Memory management Organization for Embedded
Multimedia System Design”, Kluwer Academic Publishers, 1998.

[12] S. Mallat, “A Wavelet Tour of Signal Processing”, 2nd Edition.
[13] A. Skodras, C. Christopoulos, T. Ebrahimi, “The JPEG 2000 still image

compression standard”, in IEEE Signal Processing Magazine, vol. 18,
no. 5, pp. 36-58, Sept. 2001.

[14] G. Lafruit, L. Nachtergale, J. Bormans, M. Engels, I. Bolsens, “Optimal
memory organizations for scalable texture codecs in MPEG-4”, IEEE
Trans. Circuits and Syst. Video Technol., vol. 9, no. 2, pp. 218-242,
March 1999.

[15] G. Dimitroulakos, M. D. Galanis, A. Milidonis and C.E. Goutis, ”A
high- throughput memory efficient architecture for computing the tile-
based 2D Discrete Wavelet Transform for the JPEG 2000 Standard”,
Integration the VLSI Journal, Elsevier Publishers, vol. 39, no. 1, pp. 1-
11, 2005.

[16] C. Chakrabarti and C. Mumford, “Efficient realizations of analysis and
synthesis filters based on the 2-D discrete wavelet transform,” in Proc.
Int. Conf. On Acoustics, Speech and Signal processing, pp. 3256-3259,
May 1996.

[17] F. Fridman and E. S. Manolakos, “Distributed memory and control VLSI
architectures for the 1-D discrete wavelet transform,” in IEEE VLSI
Signal Processing VII, pp. 388-397, 1994.

[18] Grzeszczak, M. K. Mandal, S. Panchanathan, and T. Yeap, “VLSI
implementation of discrete wavelet transform,” IEEE Trans. VLSI Syst.,
vol. 4, pp. 421–433, Dec. 1996.

[19] G. Knowles, “VLSI architecture for the discrete wavelet transform”,
Electronic Letters, vol. 26, no.5, pp. 1184-1185, July 1990.

[20] R. Lang, E. Plesner, H. Schroder, and A. Spray, “An efficient systolic
architecture for the one-dimensional wavelet transform,” in Proc. SPIE
Conf. Wavelet Applicat., pp. 925–935, April 1994.

[21] A. S. Lewis and G. Knowles, “VLSI architecture for 2-D Daubechies
wavelet transform without multipliers,” Electronic Letters, vol. 27, no.5,
pp. 171-173, Jan 1991.

[22] C.M. Brislawn, “Classification of nonexpansive symmetric extension
transforms for multirate filter banks” Tech. Rep. LA-UR-94-1747, Los
Alamos, Nat. Laboratory, May 1994.

[23] T. Denk and K. Parhi, “Calculation of minimum number of registers in
2-D discrete wavelet transforms using lapped block processing,” in
Proc. Int. Symp. Circuits Syst., pp. 77–81, 1994.

