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Abstract—This paper proposes a solution to the motion planning 

and control problem of car-like mobile robots which is required to 
move safely to a designated target in a priori known workspace 
cluttered with swarm of boids exhibiting collective emergent 
behaviors. A generalized algorithm for target convergence and 
swarm avoidance is proposed that will work for any number of 
swarms. The control laws proposed in this paper also ensures 
practical stability of the system. The effectiveness of the proposed 
control laws are demonstrated via computer simulations of an 
emergent behavior. 

 
Keywords—Swarm, practical stability, motion planning, 

emergent. 

I. INTRODUCTION 
RAJECTORY planning and control of holonomic and 
nonholonomic systems has been an active area of research 

for more than two decades now. Basically, it involves finding 
a feasible trajectory from some initial configuration to a 
desired one while satisfying the velocity constraints of the 
system. In recent years, with the rapid advances in sensing, 
communication, computation, and actuation capabilities, 
groups or swarms are expected to cooperatively perform 
dangerous or explorative tasks in a broad range of potential 
applications. As highlighted by Latombe [1], motion planning 
is “eminently necessary, since, by definition, a robot 
accomplishes tasks by moving in the real world”. The essence 
of robot motion planning problem can be formulated as a two-
dimensional problem and is captured in the following classic 
definition (adopted from [2]): 

Definition 1: Given a robot and a description of its 
workspace, propose a path that the robot can follow. In 
particular, if the workspace is cluttered with solid objects, 
propose a collision-free path that can lead the mobile robot 
from the desired starting point to the desired goal or target. 

Devising motion planning algorithms for multi-agents 
sharing a common workspace is inherently difficult. This is a 
result of the environment being no longer static but dynamic. 
Static environments have provided excellent breeding grounds 
for high-powered algorithms so far. However, more recently 
there has been a shift of emphasis to include dynamic 
environments due to its applications in the real world. The 
dynamic environment is composed of both the stationary and 
the unpredictable (or predictable) dynamic obstacles [3]. 
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These dynamic obstacles can incorporate the mobile robots 
themselves as well as other moving solid objects or obstacles 
in the environment. Thus, fundamental to the motion planning 
problem of multi-agents is the need to control and plan the 
motions of the agents that would yield inter-agent and agent to 
obstacle collision avoidances. Numerous papers have 
discussed this problem, some of which includes methods such 
as discretization of the configuration time-space using 
sequential space slicing [4], sheared cylindrical 
representations of moving obstacles and generating optimal 
tangential paths to the goals [5], hybrid systems [6], threaded 
petri nets [7], plan-merging [8], negotiations [9], online 
artificial potential fields strategy [1], [10], decomposition of 
the problem into path planning and velocity planning sub-
problems [11] and a Lyapunov based control scheme for 
various nonholonomic multi-agents [2], [3], [12], to name a 
few. 

This article explores the challenging but indispensable area 
of multi-agent research. We will consider multiple vehicles 
and dynamic environments.  The other novel aspects of this 
article are the moving obstacles, that is, the swarm of boids. 
Hence, there will be a number of car-like robots moving 
between start and goal configurations in a constrained 
environment.   

II.    SYSTEM MODELLING 
In this section, we shall model a rear driven car-like vehicle 

and a general 2-dimensional swarm. Both the models will be 
used to illustrate via the Lyapunov based control scheme the 
effectiveness of the system models. 

A. Vehicle Model - The Kinematics and Dynamics of the 
Car-like Robot 

In this subsection, the kinematics and the dynamics of a 
car-like system will be described. The vehicle model consists 
of a rear wheel driven car-like vehicle, whereby engine power 
is applied to the rear wheels (see Fig. 1). Although polar 
coordinates are more popular with moving obstacle [13], we 
utilize the Cartesian coordinate system since it does not inject 
undesired singularities into the navigation problem [2]. 

Definition 2: The k th nonholonomic car-like mobile robot is 
a circular disk with krv  and is positioned at center ( ),k kxv yv . 
In addition, the k th car-like robot is the set  

( ) ( ) ( ){ }2 22
1 2 1 2, : ,k k k kA z z z xv z yv rv= ∈ − + − ≤R  

for { }1,..., , ,k m m∈ ∈ N  where kA  embodies a rear-wheel 
driven and front-wheel steered car-like vehicle. 
 

 Jai Raj, Jito Vanualailai, Bibhya Sharma, and Shonal Singh 

T

Swarm Navigation in a Complex Environment 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:12, 2012

1677

 

 

 
Fig. 1 A rear wheel driven vehicle with front wheel steering and 

steering angle  .kφ  
 

Inclusion of the dynamics will then be producing a 
trajectory in the state-space. Thus, if km  is the mass of the 
vehicle, kF  the force along the axis of the vehicle, kΓ the 
torque about a vertical axis at ( ),k kxv yv  and kI  the moment 
of inertia of the vehicle, then dynamic model of the vehicle is 
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where the variable kθ  gives the vehicles’s orientation with 
respect to the main axes, kv  and kw  are the translational and 
rotational velocities, respectively, while 1kσ  and 2kσ  are, 
respectively, the instantaneous translational and rotational 
accelerations.  

Referring to Fig. 1, to ensure that the entire vehicle safely 
steers past an obstacle, the planar vehicle will be enclosed by 
the smallest circle possible. L and l  are, respectively, the 
length and width of the vehicle, then given the clearance 
parameters 1ε  and 2ε , enclose the vehicle by a protective 
circular region centered at ( ),k kxv yv , with radius 

 

( ) ( )2 2
1 2: 2 2 / 2krv L lε ε= + + + . 

 

Assumption 1: The instantaneous accelerations 1kσ  and 2kσ  
can move the car-like robot of kA  to its designated target and 
attain the desired final orientation. 

B. A Two Dimensional Swarm Model 
Following the nomenclature of Reynolds [15], each 

member of the flock is denoted as a boid. We shall construct a 
model of a swarm with m  individuals moving with the 
velocity of the swarm’s centroid. Following previous work 
such as those of [16] and [17], we consider the individuals as 
point masses.  

At time 0t ≥ , let ( ) ( )( ), , 1,...,i ixb t yb t i n=  be the planar 

position of the i th individual, which we shall define as a 
point mass residing in a disk of radius 0,irb >  

 

( ) ( ) ( ){ }2 22 2
1 2 1 2, : .i i i iB z z z xb z yb rb= ∈ − + − ≤R        (2) 

 
At time 0t ≥ , let ( ) ( )( ) ( ) ( )( ), : ,i i i ivb t wb t xb t yb t=  be its 

instantaneous velocity of the i th point mass. Using the above 
notations, we thus have a system of first order ODE’s for the 
i th individual, assuming the initial conditions at 0 0t t= ≥ : 

 

                            

( )
( )
( ) ( )0 0 0 0

,

,

: , .

i i

i i

i i i i

xb vb t

yb wb t

xb xb t yb yb y

= ⎫
⎪

= ⎬
⎪= = ⎭

                (3) 

 
If ( ) ( ) 2: ,i i ig x vb wb= ∈ R and ( ) ( ) ( )( ) 2

1: ,..., n
nG x g x g x= ∈R

, then our swarm system of m  individuals is 
 

                         ( ) ( )0 0, .G x x x t= =x                              (4) 
 
Definition 3: System (4) is said to be 
(S1)   practically stable if given ( ), Aλ  with 0 Aλ< < , we 

           have *
0x x λ− <  implies that 

          ( ) ( )*
0,x t x t A t t− < ≥  for some 0t +∈ R ; 

(S2)   uniformly practically stable if (S1) holds for every 
           0t +∈ R . 

The following comparison principle for practical stability is 
also adapted from [18] for system (4), where, 

[ ] ( ){ , :K a C a u+ += ∈ R R is strictly increasing in u  and 

( )a u → ∞  as u → ∞ , ( ) { }2 *:nS x x xρ ρ= ∈ − <R , and, 

for any Lyapunov-like function 2 , ,nV C + +⎡ ⎤∈ ×⎣ ⎦R R R  

( )
( )( ) ( )

0

, ,
, : limsup ,

h

V t h x hG x V t x
D V t x

h+

+

→

+ + −
=  for 

( ) 2, ,nt x +∈ ×R R  noting that if [ ]1
2 , ,nV C + +∈ ×R R R  then 

( ) ( ), ' , ,D V t x V t x+ = where ( ) ( ) ( ) ( )' , , , .t xV t x V t x V t x G x= +  
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Theorem 1: Lakshmikantham, Leela and Martynyuk [18]. 
Assume that 
1.  λ and A  are given such that 0 Aλ< < ; 
2.  2 ,nV C + +⎡ ⎤∈ ×⎣ ⎦R R R  and ( ),V t x  is locally Lipschitzian 

in x ; 

3. for ( ) ( ) ( ) ( ) ( )* *
1 2, , , ,t x S A b x x V t x b x x+∈ × − ≤ ≤ −R  

1 2,b b K∈ and ( ) ( )( ) 2, , , , ,D V t x q t V t x q C+
+⎡ ⎤≤ ∈ ⎣ ⎦R R ; 

4. ( ) ( )2 1b b Aλ <  holds. 
Then the practical stability properties of the scalar 

differential equation 
 

( ) ( ) ( )0 0' , , 0,z t q t z z t z= = ≥  
 

imply the corresponding practical stability properties of 
system (4). 
 

III. DEPLOYMENT OF THE LYAPUNOV-BASED 
CONTROL SCHEME 

The principal control objective of this section is to utilize 
the Lyapunov-based control scheme to design the translational 
acceleration 1kσ  and the rotational acceleration 2kσ  such that 
the car-like vehicle, represented by system (1), will navigate 
safely among obstacles, reach a neighborhood of its 
destination whilst respecting kinodynamic constraints. 

A. Details of the Vehicular Agents 
1) Target of the Vehicle:  
Now, in the target-attraction component of the Lyapunov-

like function, intuitively, we want to have a kind of a 
yardstick that measures, at time 0t ≥ , the midpoint position 
of kA  from its destination ( )1 2,k kp p  and the rate at which it 

approaches or moves away from ( )1 2,k kp p . A choice of 
probable target attractive functions that could accomplish this, 
on suppressing t , is 

 

( ) ( ) ( )2 2 2 2
1 2

1 .
2k k k k k k kV x xv p yv p v w⎡ ⎤= − + − + +⎣ ⎦  

 
2) Convergence of the Vehicle (Car-like robot):  
We need to guarantee the convergence of the car-like robot 

to its prescribed target and ensure that the nonlinear 
controllers vanish at the target configuration. We adopt a new 
attractive function whose role is purely mathematical, and 
hence auxiliary. This function will be multiplied to each of the 
obstacle avoidance functions. This strategy implicitly 
guarantees that the goal configuration is a global minimum of 
the total potential. Thus an appropriate auxiliary function is 
defined as follows: 

 

( ) ( ) ( ) ( )2 2 2
1 2 3

1 .
2k k k k k k kG x xv p yv p pθ⎡ ⎤= − + − + −⎣ ⎦  

 
 

3) Kinodynamic Constraints:  
The kinodynamic planning problem involves synthesizing a 

robots motion subject to kinematic constraints, such as any 
fixed or moving obstacle in the workspace and dynamic 
constraints, such as modulus bound on velocity. 

Workspace: Boundary Limitations:  
The boundaries of the workspace are considered as fixed 

obstacles, which have to be avoided by each articulated body 
at every time 0t ≥  so that the robot is confined within the 
workspace. Accordingly, for the avoidance we construct the 
following obstacle avoidance functions for the avoidance of 
the left, lower, right and upper boundaries, respectively, as 
follows: 

( )
( )

1

2

3 1

4 2

,
,

,

.

k k k

k k k

k k k

k k k

WV xv rv
WV yv rv
WV b xv rv

WV b yv rv

= −
= −

= − −

= − −

 

 
Each of these is positive within the rectangle. That is, 

1 3, 0k kWV WV > , for all ( )1,k k kxv rv b rv∈ − and   

2 4, 0k kWV WV >  for all ( )2,k k kyv rv b rv∈ − . 
 

Modulus Bound on Velocities: 
 From a practical viewpoint, the translational speed and the 

steering angle of a car-like system are limited. If max 0v >  is 
the maximum speed, and maxφ  is the maximum steering angle 
satisfying max0 / 2φ π< <  then, as shown in [19], the 
additional constraints imposed on the translational and the 
rotational velocities are: 
i.      maxkv v< , where maxv  is the maximal achievable speed 

of the mobile robot; 

ii.      max

min min

k
k

v v
w

ρ ρ
≤ <  where minρ  is known as the 

minimum turning radius and is given as min
maxtan

Pρ
φ

= . 

 
For the avoidance, we design the following obstacle 

avoidance functions: 
 

( ) ( )( )

( )

1 max max

max max
2

min min

1 ,
2
1 ,
2

k k k

k k k

U x v v v v

v v
U x w w

ρ ρ

= − +

⎛ ⎞⎛ ⎞
= − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

 

 
for 1,...,k n= , which would guarantee the adherence to the 
limitations placed upon translational velocity kv  and the 
steering angle kφ , respectively. 
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4) Inter-individual Collision Avoidance for the Carlike 
Mobile Robots:  

In practice, the control algorithms must generate feasible 
trajectories based upon real-time perceptual information. A 
moving car-like mobile robot itself becomes a moving 
obstacle for all the other car-like mobile robots in the 
workspace. First, we make the following assumption: 

Assumption 1: Due to the deterministic nature of our 
kinodynamic system, there is a prior knowledge of the 
directions of motion and the instantaneous velocities of the 
car like robots available to the system. 

For car kA  to avoid car lA , we design repulsive potential 
field functions with the associated obstacle avoidance function 
of the form 

   ( ) ( ) ( ) ( )2 2 21 ,
2kl k l k l k lM x xv xv yv yv rv rv⎡ ⎤= − + − − +⎣ ⎦   

for , 1,..., , .k l m l k= ≠  
 

B. Details of the Leader-less Swarm 
For the attraction of the swarm to the centroid and for the 

inter-individual avoidance of the swarm, the functions are: 

1) Attraction to the Centroid:   
To ensure that the individuals of the swarm are attracted 

towards each other and also form a cohesive group by having 
a measurement of the distance from the ith individual to the 
swarm centroid, we use the following attraction function: 

 

( )
2 2

1 1

1 1 1 .
2

n n

i i j i j
j j

R x xb xb yb yb
n n= =

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= − + −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑  

 
2) Avoidance of the Boundaries of the Workspace: This 

subsection adopts the planar workspace WS designed in the 
previous section. For the avoidance of the left, upper, right 
and lower boundaries, the following functions are utilized, 
respectively: 

 

( )
( )

1

2

3 1

4 2

,
,

,

,

i i i

i i i

i i i

i i i

WB xb rb
WB yb rb
WB b xb rb

WB b yb rb

= −

= −

= − −

= − −

 

 
where ( ){ }2

1 2 1 1 2 2: , : 0 ,0WS z z z b z b= ∈ ≤ ≤ ≤ ≤R and noting 
that they are all positive within the workspace. 
 

3) Inter-individual Collision Avoidance:  
For the boids to avoid each other, we design repulsive 

potential field functions of the form 

( ) ( ) ( ) ( )2 2 21 ,
2ij i j i j i jQ x xb xb yb yb rb rb⎡ ⎤= − + − − +⎢ ⎥⎣ ⎦

 

for , 1,..., ,i j n j i= ≠ . The function is an Euclidean measure 
of the distance between the individual boids, and will appear 
in the denominator of an appropriate term in the candidate 
Lyapunov-like function to be proposed. 

4) Avoidance of Vehicular Agents by the Boids:  
In practice, effective avoidance of moving obstacles is 

etiquette for mobile robots. Hence, avoidance of the moving 
swarms is another addition to the multitasking problem in this 
paper. Here, the car-like mobile robots becomes the moving 
obstacles for the swarm of boids in the workspace.  This is a 
one-way collision avoidance whereby the swarm of boids 
avoids the car-like mobile robots. For the boids to avoid the 
vehicular agents, we design repulsive potential field function 
of the form 

( ) ( ) ( ) ( )2 2 21 ,
2ik i k i k i kS x xb xv yb yv rb rv⎡ ⎤= − + − − +⎣ ⎦  

where 1,...,k m=  and 1,..., .i n=  

IV. DESIGN OF NONLINEAR CONTROLLERS 
This section will represent a Lyapunov-like function 

candidate and the nonlinear control laws for systems (1) and 
(3) will be designed. In parallel, we will consider the stability 
analysis pertaining to the dynamic system. 

A. Lyapunov Function 
As per the LbCS, we combine all the attractive and 

repulsive potential field functions, and introducing tuning 
parameters 0, 0, 0, 0, 0, 0i is ij ik ks klγ η β σ τ ϕ> > > > > >  
and 0kuξ >  for , , , , , , ,i j k l m n s u ∈ N  we define a Lyapunov-
like function candidate for systems (1) and (3) as 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

4

1 1 1 1

4 2

1 1 1 1

n n m
ijis ik

i i i
i s j kis ij ik

j i

m m
ks kl ku

k k
k s l uks kl ku

l k

L x R x R x
WB x Q x S x

V x G x
WV x M x U x

βη σ
γ

τ ϕ ξ

= = = =
≠

= = = =
≠

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= + + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟+ + + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

                                         
B. Controller Design 
To extract the control laws for the kinodynamic system, we 

differentiate the various components of ( )L x  separately with 
respect to t  along a solution of systems (1) and (3), carry out 
the necessary substitutions and upon suppressing x , we have 
the following for the swarm of boids and the vehicular agents: 
 
1) Swarm of boids: Upon suppressing x  and for 1,...,i n= , 
we have 
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( )

( ) ( ) ( )

( )

3 1
2 2

1 1 3 1

2 2
1 1

4 2
2 2

1 1 4 2
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1
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i i i j i
j jij i i
j i

n m
ij ik

i i j i i k
j kij ik
j i
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j jij i i
j i

Lx xb xb R
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R xb xb R xb xv
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β σ
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≠

= =
≠

= =
≠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

− − − −

⎛ ⎞⎛ ⎞⎜ ⎟= + − + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑

∑ ∑

∑ ∑

( ) ( ) ( )2 2
1 1

2 .
n m

ij ik
i i j i i k

j kij ik
j i

R yb yb R yb yv
Q x S

β σ
= =
≠

⎛ ⎞
⎜ ⎟
⎝ ⎠

− − − −∑ ∑

 

 
Next, given the convergence parameters 1 2, 0i iα α > , the 

nonlinear velocity controllers for the swarm of boids is: 
 

                             1

2

,
,

i i i

i i i

vb Lx
wb Ly

α
α

= −
= −

                                 (5) 

where 1,..., .i n=  
 
2) Vehicular Agents: Upon suppressing x and 

for 1,...,k m= , we have 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

4 2
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1 1 1

3 1
2 2 2

13 1

2
1

4 2

2
1 1 1

1

,

1

m
ks kl ku

k k k
s l uks kl ku

l k

m
k k kl

k k k l
lk k kl
l k

m
kl

l l k
l kl
l k

m
ks kl ku

k
s l uks kl ku

l k

f xv p
WV x M x U x

G G xv xv
WV WV M x

G xv xv
M x

f
WV x M x U x

τ ϕ ξ

τ τ ϕ

ϕ

τ ϕ ξ

= = =
≠

=
≠

=
≠

= = =
≠

⎛ ⎞
⎜ ⎟= + + + −⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
+ − − −⎜ ⎟

⎝ ⎠

+ −

⎛ ⎞
⎜ ⎟= + + +⎜⎜
⎝ ⎠

∑ ∑ ∑

∑

∑

∑ ∑ ∑ ( )

( ) ( )

( ) ( )

2

4 2
2 2 2

14 2

2
1

1
1 2

1

2
2 2

2

,

1 ,

1 .

k k

m
k k kl

k k k l
lk k kl
l k

m
kl

l l k
l kl
l k

k
k k

k

k
k k

k

yv p

G G yv yv
WV WV M x

G yv yv
M x

g G
U

g G
U

τ τ ϕ

ϕ

ξ

ξ

=
≠

=
≠

−⎟⎟

⎛ ⎞
+ − − −⎜ ⎟

⎝ ⎠

+ −

= +

= +

∑

∑

 

 
Next, given convergence parameters 1 2, 0k kδ δ > , the 

translational and rotational speeds are given the following 
forms: 

( ) ( )( ) ( )

( ) ( )( ) ( )

1 1 2 1 1

2 2 1 2 2

cos sin

cos sin
2

k k k k k k k k

k k k k k k k k

v f x f x g x u

Lw f x f x g x u

δ θ θ

δ θ θ

− × = + +

− × = − +
 

where 1,...,k m=  and L is the length of the k th car. 
 

Hence, along a trajectory of system (1) 
 

                    ( ) ( )2 2
1 2

1
0

m

k k k k
k

L x v wδ δ
=

= − + ≤∑                       (6) 

 
provided that the state feedback nonlinear navigation laws 
governing the k th car are of the form 
 

        
( )

( )

1 1 1 2 1

1 2 2 1 2

cos sin / ,

cos sin / .
2

k k k k k k k k

k k k k k k k k

u v f f g

Lu v f f g

δ θ θ

δ θ θ

= − + +

⎡ ⎤= − + −⎢ ⎥⎣ ⎦

         (7) 

 
Note that  ( ) 0L x ≤  for all ( )( ).x D L x∈  

V.   STABILITY ANALYSIS 
Theorem 2: System (1) and (3) is uniformly practically stable. 
 
Proof: Since 

( )( ) 0L x t ≤ , 

we have 
 
                 ( )( ) ( )( )0 00 0.L x t L x t t t≤ ≤ ∀ ≥ ≥                 (8) 

 
Accordingly, for comparative analysis, it is sufficient to 

consider the practical stability of the scalar differential 
equation 
 
                            ( ) ( )0 0 0' 0, : , 0.z t z t z t= = ≥                  (9) 

 
The solution is 

( )0 0 0; , ,z t t z z=  
 

so that relative to every point  *z ∈ R , we have 
 

( )* *
0 0 0; , ,z t t z z z z− = −  

 
so that for any given number  0 0,P >  
 

( )* *
0 0 0 0; , .z t t z z z z P− ≤ − +  

 
We shall next show that by applying Theorem 1, we can 

simultaneously derive the explicit form of 0 0,P >  with which 
it is easy to see that (S2) holds for equation (9) if 

 
( ) 0: .A A Pλ λ= = +  

 
To apply Theorem 1, we restrict our domain to 

( )( )D L x over which we see that ( ) ( )( ) ,L x C D L x +⎡ ⎤∈ ⎣ ⎦R , 
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and note that ( )L x  is locally Lipschitzian in ( )( )D L x  since 

/ 0dL dt ≤  in ( )( )D L x . Re-defining ( )S ρ  as 

( ) ( )( ){ :S x D L xρ = ∈  * }x x ρ− < , we get 

( ) ( )( ){ }*
0: .S A x D L x x x Pλ= ∈ − < +  

Recalling that 0,i iγ > ∈ N , we let 

min : min ,i iγ γ= ∈ N  and max : max ,i iγ γ= ∈ N . 
 

Further, let 

( ) 2* *
1 min

1:
2

b x x x xγ− = −   

and 

( ) ( )
2* *

2 max 0
1: ,
2

b x x x x L xγ ⎡ ⎤− = − +⎣ ⎦  

noting that 1 2,b b K∈ . Then assuming 0 0P >  is given, we 
easily see that, with (8), we have 

( ) ( ) ( )* *
1 2b x x L x b x x− ≤ ≤ − for ( ) ,x S A∈  since 

( )
2 2

1 1 1

*

1 1 1
2

1 .
2

n n n

i i j i j
i j j

R x xb xb yb yb
n n

x x

= = =

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= − + −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= =

∑ ∑ ∑
 

Indeed, the inequality ( ) ( )2 1b bλ λ<  yields 

( ) [ ]2 2
max 0 min 0

1 1 ,
2 2

L x Pγ λ γ λ+ < +⎡ ⎤⎣ ⎦  

which holds if we choose 

( )max max
0 0

min min

1 .P L x
γ γ
γ γ

⎡ ⎤⎛ ⎞ ⎛ ⎞
> − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

Since max

min

1
γ
γ

≥  for any max min, 0γ γ > , and because of (8), it is 

clear that 0P  exists and 0 0P > . Thus, with ( ), 0q t z = , we 
conclude the proof of Theorem 2. 

VI. SIMULATION 
This section demonstrates the simulation results for the car-

like mobile robots navigating in a well-defined workspace 
cluttered with moving obstacles. The stability results obtained 
from the Lyapunov-like function will be verified numerically. 

In this scenario, the car-like mobile robots move from an 
initial configuration to the target position whilst avoiding each 
other and the swarm of boids on its way to its target. This 
scenario could be modeled as a swarm of bees or pigeons 
following a car from one destination to another. 
 

 
Fig. 2 The initial position of the car-like mobile robot and the swarm 

of boids 
 

 
Fig. 3 The car-like mobile robot avoiding the swarm of boids at 

100t =  units 
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Fig. 4 The car-like mobile robot avoiding the swarm of boids at 

400t =  units 
 

 
Fig. 5 The car-like mobile robot avoiding the swarm of boids at 

500t =  units 

VII. CONCLUSION 
The paper essays a simple approach for solving the motion 

planning and control problem of car-like mobile robots. A 
target convergence and swarm avoidance scheme is developed 
and the control laws are designed using the Lyapunov-based 
control scheme so that the car-like mobile robots converge to 
their respective targets while avoiding collisions with a swarm 
of boids along their paths. 

The nonlinear control laws presented in this paper 
guarantees practical stability of the system. This has been 
proved using the Lakshmikantham, Leela and Martynyuk 
method [18]. The practical stability of the system has been 

verified numerically via computer simulations. To the author’s 
knowledge, this is the first time the swarm of boids has been 
considered together with the car-like mobile robots. 

Future work will consider the introduction of multi-shaped 
fixed obstacles into the workspace.  
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