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On Problem of Parameters Identification of
Dynamic Object
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Abstract—In this paper, some problem formulations of dynamic
object parameters recovery described by non-autonomous system of
ordinary differential equations with multipoint unshared edge
conditions are investigated. Depending on the number of additional
conditions the problem is reduced to an algebraic equations system or
to a problem of quadratic programming. With this purpose the paper
offers a new scheme of the edge conditions transfer method called by
conditions shift. The method permits to get rid from differential links
and multipoint unshared initially-edge conditions. The advantage of
the proposed approach is concluded by capabilities of reduction of a
parametric identification problem to essential simple problems of the
solution of an algebraic system or quadratic programming.
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I. PROBLEM FORMULATION

ET’s consider a problem of parameters identification of a
linear non-autonomous dynamic system:

X(t) = AOX) + B p+C1), telt.t ) (1)
where x(t)e E"- phase state of system; peE'- required
parameters; A(t), B(t), C(t) - given matrixes with dimensions
(nxn), (nx1),(nx1) respectively, moreover A(t) = const.

There are m initially-edge conditions of a system that can
also depend on unknown parameters:

k A ~
darxt)+ép=4, @

where  f,v=0L..k -times moments from  [t,,t,],

fo =t,, fk =t,, the matrixes a", f, ,B with respective

dimensions (mxn),(mx1),(mx1) are given.

Let's mark a general problem of linear systems of
differential equations with the multipoint unshared edge
conditions. The problem (1), (2), generally speaking, concerns
to this class of problems at fixed values of parameter [J. The

problem is connected to the complexity of obtaining of
constructive necessary and sufficient conditions of the solution
existence of a boundary value problem such as (1), (2), that is
studied by many scientists, starting from activities of
Tamarkin, Valle-Poussin and other scientists ([1], [3]).

Let

rang A(t)=n, rang B(t)=max(n,l), te[t,,t,],

rang[&’.,....6*,&]=rang[d°.....&", & Bl=m.
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Depending on a ratio between values of matrixes ranks,
participating in (1), (2), the following cases, corresponding to
the different problem formulations, are possible.
Case A: m=n+l. Then there is a single vector of
parameters [ and corresponding solution of a boundary
value problem (1), (2) (problem A).
Case B:m<n+Il. Then the system vector of parameters,
satisfying (1), (2), is not unique and there are additional
conditions on system parameters and status in the form of
equality with the number no more than n+l-m and
inequality
koo
2 e'x({)+ g, 3)
=0

the total number which one let will be equal m,. In that case

the choice of optimal parameter values can be performed
according to any criterion. For example, as criterion of
parametrs optimization can be used the minimized functional:

Ky )
I =oiple 2o xE-x|. @)
j=0

Here oy,0,;, j=0,1,...,k, - positive weight coefficients;

matrixes el j= 0,...k, f, g with dimention

(m, xn),(m, xI),(m, x1) respectively; the time moments

telt,.t, ], ) elt,.t,] and desired system status X1 on
moment {; ,
B).

In case m>n+l, i.e. the number of linearly - independent
initially-edge conditions exceeds the number of conditionally
free parameters of a dynamic system, generally, as is known,

boundary value problem (1), (2) will not have the solution at
any value of vector of parameters p.

i=0,L..k, j=0l,..k, are given (problem

II. THE SOLUTION OF PROBLEM A
For a numerical solution of a problem A the following
scheme of the transfer (shift) of multipoint unshared edge
conditions (2), offered in [1,3], will be used.
Let's consider an expression at interval [t,,{, ]:

k
a’ X+ a" Ox(E,)+Ebp= A1), (5)

v=l

where X(t) is required solution of the boundary problem, the

matrix  functions a’(t),£E(t), f(t)  with  dimentions
(mxn),(mxI),(mx1) are still arbitrary satisfying only
conditions:

&t)=¢ Pla)=5 (6)

a’(t)=a", v=0,.,k,
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The expression (5) at t=t, coincides with conditions (2).
The a’ (), v=0,.,k, &), B({),
satisfying a ratio (5) at t [t,,f,], are not unique. Let's speak,
that they do shift of conditions (2) to the right, since the ratio
S)att= fl becomes:

matrix  functions

k
et €+ k) + D@ € xE)+EdHp=BE)

v=2
and after redenotation
a'=a")+a'w), & =a’{),
v=2..k E=&(), B=pd)

we will get condition:
k
daxt)+dp=5. @)
v=1
The condition (7) is equivalent (2), but differs from (2) by

that in (7) values of a required trajectory X(t) in the most left
point t =t, ={, will not be used.

Having repeated a similar procedure with a condition (7) on
the following interval [f,f,] with the help of some matrix
a’(t), v=1..k, &t), B)
receive conditions, equivalent to (7), but not keeping values
required trajectory X(t) at t =f, . Step-by-step continuing shift

functions it is possible to

to the right of edge conditions sequentially on subinterval
[t_,.t;], i=2,..k atthe end we shall receive M ratio:

a*xt)+é =4, ®)
where the dimension of vector of unknowns (X(t,),p) is
n+1. Considering, that for a problem A m=n+l, it is
possible, having solved a system (8) to define x(t,) and the
parameters vector p, then having solved a Cauchy problem
(1), (2) from t, up to t, to determine X(t). By doing this the
solution of a problem A is completed.

It is necessary to solve the problem of selection of matrix
functions a" (1), &(t), F(t) executing step-by-step shift of
edge conditions. As it was already marked, they are not
unique. In particular as such matrix functions it is possible to
use that are adduced in the following theorem.

It is remain to solve the problem of selection of matrix
functions «"(t), £(t), B(t), executing step-by-step shift of
edge conditions. As was noted above, they are not unique. In
particular, as such matrix functions it is possible to use those
given in the following theorem.

Theorem 1. Let functions
a’t), v=0,..k, &),
of following non-linear Cauchy problems:

a’(t)=8" (e’ O -a’ OA),

L(t) are determined by solution

a'(t)=a",

. ©)

MO=S"OMO,  M(t,)=1,
(10)

E0=5"ME0-a" OB,  £t)=4,

(11)

AO=S"MAO+a"OCH), Aty = 4,

(12)
a'®=M®a", v=L..k

(13)
where
S°(t) = (apAag +,BE" —a CA Ny +EET + 8T,
ranga’ =m,

T is the sign of matrix transposition, | is m— dimentional
unit matrix. Then these matrix functions execute shift of

conditions (2) to the right on an interval [f,,,], i.e. for them
the (15), (7) is executed. Moreover, it takes place:

2 2 2 A op
||a°(t)|| +e®| +|B)|" =const, telf,.f1, (14)
whence follows the stability of a Cauchy problem (9) - (12) .
Proof. Let for x(t), being solution of a problem (1), (2), the
ratio takes place:

k
"X+ @ xt,)+EOp= B, telt,.f]

v=l

where a°(t), £(t), A(t) while arbitrary differentiable

functions. Let’s differentiate (15) and take into account (1)
(for short, argument t on functions is omitted):

a’x+a’%x+& =B,
a’x+a"Ax+a’Bp+a’C+&H =4
Let's conduct a grouping:
(@ +a’Ax+(E+a’B)p+(-f+a’C)=0.
Using apparently checked by direct permutation in a
problem conditions:

X(t) _,:é 05 te [t0=t1] >
and arbitrary of functions a°(t), £(t), A(t), we shall demand
fulfilment of equalling to zero the expressions in brackets:

a’=-aA, § =—-a'B, ﬂ =a°C,
provided that
a’(ty)=a", &t)=¢, pBt)=4
Let's multiply (15) by an arbitrary matrix function M (t) of

(15)

p=0

(16)

dimension (mxm) such, that

M(to):|, (17)
k
M (t)e (t)x(t)+;M ta x(tv)+' a18)
+M@OEO P =MOB®M)
Denoting
G, () =M®a’(t), G,(t)=M(®E),
G,(H)=M®AWL.G () =M1b)a", (19)
v=1..Kk,
we obtain:
k
G, (Hx(D)+ Y Gy (tx(E,)+G,(t)p =G, (1),
G(t)=8", G,(t)=¢ Gy(t,)=4 (20)

G/(t)=a", v=1..k
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Let M(t) satisfy the equality:

le.®| +[G, ) +]6;®)| =const.
Then
G,G] +G,G] +G,G] +G,G; +G,G] +G,G] =0.
2]
Differentiating equation (19) and considering (16), we will
receive:

G, =Ma’ +Md" =MM'G, ~Ma’A= MM "'G, -G,A, (22)
G, =M&+ME=MM'G, -Ma’B=MM "G, -G,B,  (23)
G, =MB+MB=MM"'G, +Ma’C=MM "G, +G,C. (24)
Transposing (22) - (24), we’ll receive:

G/ =G/(M)'M"-ATG/, (25)
Gl =G](M")'MT -B"G/, (26)
Gl =G](M )M +C"G/. 27)

Allowing expressions (22) - (27) in (21), after simple
transformations we'll receive:

[MM G,G] —G,AG] +G,G/ (M) MT —G,ATG] |+
[MM 'G,GT —G,BG] +G,GI (M™)" M —G,B"G/ |+
[MMG,GT +G,CGT +G,GI (M) MT +G,C"G =0,
[MM (GG +G,G] +G,GI ) +(-G,AG] -
~G,BG! +G,cG)]
[MM (G,G] +G,GT +G,G])+(-G,AG] —G,BG] +G,CGI)|
=0

From independence and arbitrary of matrixes G,,G,,G, for
fulfilment of this equation it is enough to demand from M (1),
that the expressions in square brackets equals zero. Then
MM ™' = (G,AG, +G,BG] —G,CG] )(G,G, +
+G,G; +G,G] )" =S".

Here the notation of a right part of differential equation by
S° is introduced. Then

M =S"M . (28)

Differentiating equation (19) and considering (28), (16),
we’ll receive:

G, =Ma’+Ma’ =5"Ma’ -~Ma"A=5°G, -G,A, (29)

G, =M&E+ME=S"ME-Ma’B=5"G, -G,B, (30)

G, =MB+MB=S"Mg+Ma’C=S"G, +G,C. @31)
Adding the condition (20), we’ll receive

Gi(t)=dy. G,(t))=¢. Gi(t)=4. (32)
Again having renamed matrix functions G, (t) through a°(t),
G/ (t) through a"(t),v =1,.,k, G,(t) through &(t), and
G, (t) through S(t), we shall receive functions, executing

shift of conditions (2) to the right, about which one there is a
speech in the theorem.

Remark. It is important to note following. As it was
indicated above, matrix functions executing shift of conditions
(2), are not determined uniquely. For example, the functions
defined by linear Cauchy problems (16), formally meet

definition (15) of shifting to the right of initially-edge
conditions (2), but as is known [1] one of linear problems
X=Ax+ (), X(t))=X,,

a’(ty)=a’,
or both simultaneously depending on eigenvalues of a matrix
A are unstable. The fulfillment of a condition (14) provides
that the auxiliary Cauchy problems (9) - (12) will have stable
solution and it is very important at realization of practical
calculations.

The proof method of the theorem can easily be applied to
particular cases of condition (14):

o] < =oons.

a’=-Aa’,

"0! 0(t)"2 +po| = ||o}°||2 + "[3"2 = const ,
e @[+’ =[] +[] = const.

under which the condition of the theorem will differ only by
kind of a function S°(t).

At definite specificity of conditions (2), for example, when
a part m, from conditions (2) (m, <m) have local nature and

are determined on the left-hand end of an interval at t =t,:
x(t,) +Ep =7 33)

where given matrixes of dimension

n, &, y are
(myxn), (m,x1), (m,x1) respectively, more effective is the
implementation of a left-shift of conditions (2), beginning
from an interval [f,_,,, ], the number which one is in this case
equal m=n-m, +1. In this case instead of (5) we’ll consider

a ratio on a section [t,_,,t,]:

k-1
a“ (Ox®)+ Y a" Ox(E) +Ebp = A), (34)

where X(t) is the solution of a boundary value problem;

a’ (t),&(t), B(t) are arbitrary matrixes of dimension

(mxn),(mx1),(mx1), v=0..Kk, obeying:

a'y=a", &to=¢& pd)=p v=0.k (35)
Let's speak, that the matrix functions execute shift of

conditions (2) to the left, since from (34) at t =f, , we’ll

receive:
=
daxt)+d=4, (36)
v=0
here following redesignations are used:
¢ =a"(t )+ E ),

a’ = av(fkfl), v=0,.,k=-2,
éé =< (fk—l) .

The conditions (36) and (2) are equivalent, but in (36) the
value of a required function in the most right point x(f,) does
not participate:. Further, repeating a left-shift of conditions on
series time frames [tﬂsf1 ,fs], s=k-1,k-2,..,1, in the end
we shall receive locally given condition on the left-hand end:
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a’xt)+ép=p (37)
From (n+1) conditions (33), (37) it is possible to define
(n+1) of unknowns X, = x(t,)€E' and peE", then to

solve a Cauchy problem concerning (1) with the obtained
initial conditions X(t,) and already known values of

parameters vector p in a right part of (1).

The template functions a" (t),v = 0,...,k, &(t), B(t)

executing shift of conditions (2) to the left are not unique, the
following theorem takes place.

Theorem 2. Functions o' (t), v=0,...k, &), A(t)

defined by the solution of following non-linear Cauchy

problems:
a“ (O =8" e H-a"OAD,  a't)=d"

Mt)=s*®OM®, ME)=1,

£ =S M) - (DB,

pO =8 OB +a" C),

a’'®)=M@®)a", v=0,.,k-1 ,

SK(t) = (@*Ad* +a*BET —a*CAT ) aka'

+&ET AT
execute shift of conditions (2) to the left on a section [fkf1 ,fk] ,
and takes place

e @] + [0 +|OI =const, tel, £,

[II. THE SOLUTION OF PROBLEM B

For the solution of problem B it is basically used the
procedure of conditions shift (2), described above, permitting
to get rid from differential links (1) and to reduce a problem of
parameters optimization to a problem of quadratic
programming.

Let's introduce new variables:

z, =x{), v=0,..k zj=x({), j=0,..k,

z)=x({), i=0,.,k,,
Z=(z",2,2")eE", N=(k+k +k,+3)n.  (38)

It is clear that executing series shift to the right of
conditions (2) at intervals [ff;), j=1...k, ie. solving
Cauchy problems (9) - (12) and determining values of matrix

functions in time moments fj,fi,j =0,..,k, 1=0,.,k, in

addition to (k +1) m relations of a kind (7):

k
Yat)z +sdpp=A(E). =0,k (39)

v=j

we receive the (k; +1) mand (k, +1) m relations:

k
a" ()2 + Yo" )z, +EE)p=AE), j=0...k.(40)

v=pj+l

a7+ Ya'a v EEIP=pE) i=0. K, (@)

v=yi+l

where 4;, y; are the numbers of subintervals, keeping
instants accordingly fj and f,, i.e.

t j=0,..k,

X Xivl )’

A ~

felf,.t,.). felt i=0,..k,
It is clear, that the number of restrictions as equalities in (34) -
(36) equals M = (k +k, +k, +3)m.

Using notations (38), limitations (3) and target functionals
(4) we’ll write as:

ki
>elz] + fp(=)g, (42)
j=0

(43)

2
EN

ky )
3z =il + Yoz - X
=0

The problem (39) - (43) is a problem of quadratic
programming with optimized vector (Z,p) of dimension
N +1 and the number of limitations as equalities (39) - (41) is
M and mixed type (37) is m,, that generally can be
presented as:

RZ +Fp(]T,

2 2
3@Z.p) =]l + 32 - Qe
where the matrixes R,F and vectors T,Q are formed by
limitations (39) - (42) with considering notation (38).

Thus, for a numerical solution of a problem B it is
necessary to execute following. Using the numerical methods
to solve Cauchy problems (9) - (12), to store values of matrix
functions in all instants, participating in a formulation of
problem B, namely:

t, 6, §,, 1=0..k i=0,.k, v=0,.k,.

Then it's necessary to form matrixes R,F , vector T for the
reference to the standard programs of the solution of a
quadratic programming problem. Having received values of
vector p and x(t,)=z'(f,), it is possible numerically to
decide a Cauchy problem concerning a system (1) and to
receive values X(t) on all interval te[t,,t,] and to complete
the solution of a problem B .

As example, we shall consider outcomes of parameters
recovery in a following problem:

X, =3tx, +t2p, +3tp, +4t, te[0;2]

X, =tX, —2t>x, —tp, —2t*p, — 2t -1,
with multipoint boundary conditions

2x,(0) =%, (0)+ X, (2) -2p, =6,
X0)+%2)-p, +p, =12,
with minimized criteria of quality:
J,(p)=o(p; +p3)+ (D) =D+ x5 (D).
In the table 1 the problem solution results at different values

of parameter o are adduced. Let's mark, that the precise
solution of a problem at o =0, as is simply to verify, is

p’=(=31), at which
X, (t) = 2t> =1, X, (t) =t — 1. The numerical solution of Cauchy

reached at value of parameters
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problems was conducted singleprecise by the fourth order
Runge-Kutta method at number of splittings equal 100.

TABLE I
THE RESULTS OF THE PROBLEM SOLUTION AT DIFFERENT
VALUES OF PARAMETERS o

NN e P/ P, 35 (P%)
L1 “149770 | 050174 | 498484
2 | 01 | -272551 | 0.89845 | 091156
3 [ 001 | -297014 | 098872 | 0.11097
4 | 0 | -300240 | 1.00057 | 0.0001042

In a problem of quadratic programming obtained after series
two shifts in edge conditions to the right, the vector
Z = (x(1),x(2), p) € E® is unknown
limitations as equalling: two of them are obtained after the
first shift:

&'x()+&°x(2) + & = B,
and two after the second shift:

a'x(2)+ & = .

Four problems of quadratic programming with the same
limitations, but different target functions at the expense of
values of o were decided. As a whole on all variants of
calculation on IBM the Pentium-I was required 7 seconds.

and there are four

IV. CONCLUSION

With the application of the approach, offered in paper, the
plenty of numerical experiments concerning solving the
problem A, B is conducted.

With usage of a method of a linearization offered by
Pshenichniy B.N. [4], the stated technique utilised also for a
numerical solution of a non-linear problem of a dynamic
system parameters recovery:

Xt = f(x®), p), teltyt],
g, (x(), x(€),... x®), p)=0, j=L..,n+l

It is necessary to mark convenience of application of the
offered approach. Its programmatic implementation does not
produce problems, as basically the standard procedures,
solving of Cauchy problem, system of algebraic equations and
problems of quadratic programming, available, in particular,
in software package Matlab, will be used.
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