The Diophantine Equation $y^{2}-2 y x-3=0$ and Corresponding Curves over \mathbf{F}_{p}

Ahmet Tekcan, Arzu Özkoç and Hatice Alkan

Abstract

In this work, we consider the number of integer solutions of Diophantine equation $D: y^{2}-2 y x-3=0$ over \mathbf{Z} and also over finite fields \mathbf{F}_{p} for primes $p \geq 5$. Later we determine the number of rational points on curves $E_{p}: y^{2}=P_{p}(x)=y_{1}^{p}+y_{2}^{p}$ over \mathbf{F}_{p}, where y_{1} and y_{2} are the roots of D. Also we give a formula for the sum of x - and y-coordinates of all rational points (x, y) on E_{p} over \mathbf{F}_{p}.

Keywords-Diophantine equation, Pell equation, quadratic form.

I. Preliminaries.

A Diophantine equation is an indeterminate polynomial equation that allows the variables to be integers only. Diophantine problems have fewer equations than unknown variables and involve finding integers that work correctly for all equations. In more technical language, they define an algebraic curve, algebraic surface or more general object, and ask about the lattice points on it. The word Diophantine refers to the Hellenistic mathematician of the 3rd century, Diophantus of Alexandria, who made a study of such equations and was one of the first mathematicians to introduce symbolism into algebra. The mathematical study of Diophantine problems Diophantus initiated is now called Diophantine analysis. A linear Diophantine equation is an equation between two sums of monomials of degree zero or one. While individual equations present a kind of puzzle and have been considered throughout history, the formulation of general theories of Diophantine equations (further to the theory of binary quadratic forms $f(x, y)=a x^{2}+b x y+c y^{2}$ see [2], [3], [5]) was an achievement of the twentieth century. For example, the equation $a x+b y=1$ is known the linear Diophantine equation. In general the Diophantine equation is the equation given by

$$
\begin{equation*}
a x^{2}+b x y+c y^{2}+d x+e y+f=0 \tag{1}
\end{equation*}
$$

Also for $n=2$, there are infinitely many solutions (x, y, z) of the Diophantine equation $x^{n}+y^{n}=z^{n}$. For larger values of n, Fermat's last theorem (see [4]) states that no positive integer solutions x, y, z satisfying the equation exist. The Diophantine equation $x^{2}-d y^{2}=1$ (or in general case $x^{2}-d y^{2}=N$) is known the Pell equation (see [1], [4], [6], [7], [8], [9], [10], [11], [13]) which is named after the English mathematician John Pell a mathematician who searched for integer solutions to equations of this type in the seventeenth century.

Ahmet Tekcan, Arzu Özkoç and Hatice Alkan are with the Uludag University, Department of Mathematics, Faculty of Science, Bursa-TURKEY, emails: tekcan@uludag.edu.tr, aozkoc@uludag.edu.tr, halkan@uludag.edu.tr, http://matematik.uludag.edu.tr/AhmetTekcan.htm.
II. The Diophantine Equation $y^{2}-2 y x-3=0$.

In [7], [8], [9], [10], [11], [13], we considered some specific Pell equations and their integer solutions. In the present paper, we will consider the integer solutions of Diophantine equation

$$
\begin{equation*}
D: y^{2}-2 y x-3=0 \tag{2}
\end{equation*}
$$

over \mathbf{Z} and over finite fields \mathbf{F}_{p} for primes $p \geq 5$. Now one can wonder why we consider this Diophantine equation among thousands of such Diophantine equations. Let us explain: We consider this equation since in later section we use the roots of this equation according to y, that is, $y_{1,2}=x \pm \sqrt{x^{2}+3}$, and hence we consider the curves $E_{p}: y^{2}=P_{p}(x)=y_{1}^{p}+y_{2}^{p}$ over \mathbf{F}_{p}. First, we consider the integer solutions of D over \mathbf{Z}.

Theorem 2.1: The Diophantine equation D in (2) has four integer solutions (x, y) in $\mathbf{Z} \times \mathbf{Z}$.

Proof: For the Diophantine equation in (2), we get

$$
y^{2}-2 y x-3=0 \Leftrightarrow y(y-2 x)=3
$$

Hence we have the following possibilities:

$\frac{y}{1}$	$\frac{y-2 x}{3}$
3	1
-1	-3
-3	-1

So we get four integer solutions $(x, y)= \pm(1,3)$ and $\pm(1,-1)$ of D.

Now we consider the integer solutions of D over finite fields \mathbf{F}_{p} for primes $p \geq 5$. If we consider D over \mathbf{F}_{p}, then (2) becomes

$$
\begin{equation*}
D_{p}: y^{2}-2 y x-3 \equiv 0(\bmod p) \tag{3}
\end{equation*}
$$

Let $D_{p}\left(\mathbf{F}_{p}\right)$ denote the set of integer solutions (x, y) of D_{p} over \mathbf{F}_{p}, that is,
$D_{p}\left(\mathbf{F}_{p}\right)=\left\{(x, y) \in \mathbf{F}_{p} \times \mathbf{F}_{p}: y^{2}-2 y x-3 \equiv 0(\bmod p)\right\}$.
Then we can give the following theorem.
Theorem 2.2: Let D_{p} be the Diophantine equation in (3). Then

$$
\# D_{p}\left(\mathbf{F}_{p}\right)=p-1
$$

for every prime $p \geq 5$.

International Journal of Engineering, Mathematical and Physical Sciences
 ISSN: 2517-9934

Vol:3, No:11, 2009

Proof: Let $\left(\frac{x}{p}\right)$ denote the Legendre symbol. We proved in [12] that

$$
\left(\frac{-3}{p}\right)=\left\{\begin{array}{cl}
1 & \text { if } p \equiv 1,7(\bmod 12) \tag{5}\\
-1 & \text { if } p \equiv 5,11(\bmod 12) .
\end{array}\right.
$$

Similarly it can be shown that

$$
\left(\frac{3}{p}\right)=\left\{\begin{array}{cl}
1 & \text { if } p \equiv 1,11(\bmod 12) \tag{6}\\
-1 & \text { if } p \equiv 5,7(\bmod 12) .
\end{array}\right.
$$

Now let $x \in \mathbf{F}_{p}$ be given. We want to solve D_{p} to y. The discriminant of (3) is

$$
\Delta \equiv(-2 x)^{2}-4(-3) \equiv 4\left(x^{2}+3\right)(\bmod p)
$$

and hence the solutions are

$$
\begin{equation*}
y_{1,2} \equiv \frac{2 x \pm \sqrt{\Delta}}{2} \equiv x \pm \sqrt{x^{2}+3}(\bmod p) . \tag{7}
\end{equation*}
$$

Then we have two cases:
Case 1) Let $p \equiv 1,7(\bmod 12)$. Then by (5) we get $\left(\frac{-3}{p}\right)=$ 1 , that is,

$$
\begin{equation*}
x^{2} \equiv-3(\bmod p) \Leftrightarrow x^{2}+3 \equiv 0(\bmod p) \tag{8}
\end{equation*}
$$

has two solutions x_{1} and x_{2}. So for these values of x_{1} and x_{2}, we have two values of y_{1} and y_{2} from (7). Therefore there are two integer solutions $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ of D_{p}.
i) Let $p \equiv 1(\bmod 12)$. If $x=0$, then the quadratic congruence $y^{2}-3 \equiv 0(\bmod p)$ has two solutions y_{3} and y_{4} since $\left(\frac{3}{p}\right)=1$ by (6). So the Diophantine equation D_{p} has two integer solutions $\left(0, y_{3}\right)$ and $\left(0, y_{4}\right)$. Now let $H_{p}=\mathbf{F}_{p}-\left\{0, x_{1}, x_{2}\right\}$. Note that $\# H_{p}=p-3$. Now we consider the quadratic congruence $x^{2}+3 \equiv t^{2}(\bmod p)$. Then it is easily seen that there are $\frac{p-5}{2}$ integers $x \in H_{p}$ such that the congruence $x^{2}+3 \equiv t^{2}(\bmod p)$ has a solution. So from (7), we have $y_{1,2} \equiv x \pm t(\bmod p)$, that is, there are two solutions y_{5} and y_{6}, that is, for each element x in H_{p}, there are two solutions. We say as above that there are $\frac{p-5}{2}$ elements x in H_{p} such that the congruence $y_{1,2} \equiv x \pm t(\bmod p)$ has a solution. So there are $2\left(\frac{p-5}{2}\right)=p-5$ integer solutions of (3). We know that there are four solutions $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(0, y_{3}\right)$ and $\left(0, y_{4}\right)$ of (3). So there are total $p-5+4=p-1$ integer solutions of D_{p}.
ii) Let $p \equiv 7(\bmod 12)$. If $x=0$, then the quadratic congruence $y^{2}-3 \equiv 0(\bmod p)$ has no solutions since $\left(\frac{3}{p}\right)=-1$ by (6). So the Diophantine equation D_{p} has no integer solutions $(0, y)$. Let $G_{p}=\mathbf{F}_{p}-\left\{x_{1}, x_{2}\right\}$. Note that $\# G_{p}=p-2$. Then it is easily seen that the there are $\frac{p-3}{2}$ elements x in G_{p} such that the quadratic congruence $x^{2}+3 \equiv t^{2}(\bmod p)$ has a solution x. So we have $y_{1,2} \equiv x \pm t(\bmod p)$, that is, there are two solutions y_{3} and y_{4}, that is, for each element x in G_{p}, there are two solutions. We know that there are $\frac{p-3}{2}$ elements x in G_{p} such that the congruence $x^{2}+3 \equiv t^{2}(\bmod p)$ has a solution. So there are $2\left(\frac{p-3}{2}\right)=p-3$ integer solutions. We said as above that there are also two integer solutions $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ of D_{p}. So there are total $p-3+2=p-1$ integer solutions of D_{p}.

Case 2) Let $p \equiv 5,11(\bmod 12)$. Then by (5) we get $\left(\frac{-3}{p}\right)=$ -1 , that is, $x^{2} \equiv-3(\bmod p)$ has no solution x. Hence the quadratic congruence

$$
\begin{equation*}
x^{2} \equiv-3(\bmod p) \Leftrightarrow x^{2}+3 \equiv 0(\bmod p) \tag{9}
\end{equation*}
$$

has no solution x. So there exist no integer $x \in \mathbf{F}_{p}$ such that $x^{2}+3 \equiv 0(\bmod p)$ has a solution.
i) Let $p \equiv 5(\bmod 12)$. If $x=0$, then the quadratic congruence $y^{2}-3 \equiv 0(\bmod p)$ has no solutions y since $\left(\frac{3}{p}\right)=-1$ by (6). So the Diophantine equation D_{p} has no integer solutions $(0, y)$. Let $S_{p}=\mathbf{F}_{p}-\{0\}$. Then there are $\frac{p-1}{2}$ integers x in S_{p} such that the quadratic congruence $x^{2}+3 \equiv t^{2}(\bmod p)$ has a solution x. So we have $y_{1,2} \equiv x \pm t(\bmod p)$, that is, there are two solutions y_{1} and y_{2}, that is, for each element x in S_{p}, there are two solutions. Therefore there are $2\left(\frac{p-1}{2}\right)=p-1$ integer solutions of D_{p}.
ii) Let $p \equiv 11(\bmod 12)$. If $x=0$, then the quadratic congruence $y^{2}-3 \equiv 0(\bmod p)$ has two solutions y_{1} and y_{2} since $\left(\frac{3}{p}\right)=1$. So the Diophantine equation D_{p} has two integer solutions $\left(0, y_{1}\right)$ and $\left(0, y_{2}\right)$. Now let $L_{p}=\mathbf{F}_{p}-\{0\}$. Then there are $\frac{p-3}{2}$ elements x in L_{p} such that the quadratic congruence $x^{2}+3 \equiv t^{2}(\bmod p)$ has a solution. So we have $y_{1,2} \equiv x \pm t(\bmod p)$, that is, there are two solutions y_{3} and y_{4}, that is, for each element x in L_{p}, there are two solutions. So there are $2\left(\frac{p-3}{2}\right)=p-3$ integer solutions of D_{p}. We know that there are two integer solutions $\left(0, y_{1}\right)$ and $\left(0, y_{2}\right)$. Therefore there are total $p-3+2=p-1$ integer solutions of D_{p}.

Example 2.1: For $p=13,19,17$ and 23, the set of integer solutions of D_{p} over \mathbf{F}_{p} is

$$
\left.\begin{array}{rl}
D_{13}\left(\mathbf{F}_{13}\right)= & \left\{\begin{array}{c}
(\mathbf{0}, \mathbf{4}),(\mathbf{0}, \mathbf{9}),(1,3),(1,12),(3,8), \\
(3,11),(6,6),(7,7),(10,2),(10,5), \\
(12,1),(12,10)
\end{array}\right\} \\
D_{19}\left(\mathbf{F}_{19}\right)= & \left\{\begin{array}{c}
(1,3),(1,18),(2,10),(2,13),(\mathbf{4}, \mathbf{4}), \\
(5,2),(5,8),(6,5),(6,7),(13,12), \\
(13,14),(14,11),(14,17),(\mathbf{1 5}, \mathbf{1 5}), \\
(17,6),(17,9),(18,1),(18,16)
\end{array}\right\} \\
D_{17}\left(\mathbf{F}_{17}\right)= & \left\{\begin{array}{c}
(1,3),(1,16),(4,10),(4,15),(7,6), \\
(7,8),(8,4),(8,12),(9,5),(9,13), \\
(10,9),(10,11),(13,2),(13,7), \\
(16,1),(16,14)
\end{array}\right\}
\end{array}\right\}
$$

III. The Number of Rational Points on Curves OVER \mathbf{F}_{p}.

In this section, we consider the number of rational points on curves related to D_{p}. Recall that the integer solutions of D_{p} are $y_{1}=x+\sqrt{x^{2}+3}$ and $y_{2}=x-\sqrt{x^{2}+3}$. Define

$$
\begin{equation*}
P_{n}(x)=y_{1}^{n}+y_{2}^{n} \tag{10}
\end{equation*}
$$

for a positive integer n. Then we can give the following theorem.

ISSN: 2517-9934
Vol:3, No:11, 2009

Theorem 3.1: $P_{n}(x) \in \mathbf{Z}[x]$ for every positive integer n.
Proof: Let n be even. Then by binomial formula we have

$$
\begin{aligned}
& P_{n}(x) \\
= & y_{1}^{n}+y_{2}^{n} \\
= & \left(x+\sqrt{x^{2}+3}\right)^{n}+\left(x+\sqrt{x^{2}+3}\right)^{n} \\
= & \sum_{k=0}^{n}\left(\frac{n}{k}\right)(x)^{n-k}\left(\sqrt{x^{2}+3}\right)^{k} \\
& +\sum_{k=0}^{n}\left(\frac{n}{k}\right)(x)^{n-k}\left(-\sqrt{x^{2}+1}\right)^{k} \\
= & {\left[\begin{array}{c}
\left(\frac{n}{0}\right) x^{n}+\left(\frac{n}{1}\right) x^{n-1}\left(\sqrt{x^{2}+3}\right)^{1} \\
+\left(\frac{n}{2}\right) x^{n-2}\left(\sqrt{x^{2}+3}\right)^{2}+\cdots \\
+\left(\frac{n}{n-1}\right) x^{1}\left(\sqrt{x^{2}+3}\right)^{n-1} \\
+\left(\frac{n}{n}\right)\left(\sqrt{x^{2}+3}\right)^{n}
\end{array}\right] } \\
& -\left[\begin{array}{c}
\left(\frac{n}{0}\right) x^{n}-\left(\frac{n}{1}\right) x^{n-1}\left(\sqrt{x^{2}+3}\right)^{1} \\
+\left(\frac{n}{2}\right) x^{n-2}\left(\sqrt{x^{2}+3}\right)^{2}+\cdots \\
-\left(\frac{n}{n-1}\right) x^{1}\left(\sqrt{x^{2}+3}\right)^{n-1} \\
+\left(\frac{n}{n}\right)\left(\sqrt{x^{2}+3}\right)^{n}
\end{array}\right] \\
= & 2\left[\begin{array}{c}
\left(\frac{n}{0}\right) x^{n}+\left(\frac{n}{2}\right) x^{n-2}\left(\sqrt{x^{2}+3}\right)^{2} \\
+\cdots+\left(\frac{n}{n}\right)\left(\sqrt{x^{2}+3}\right)^{n}
\end{array}\right] \\
= & 2 \sum_{i=0}^{2 i}\left(\frac{n}{2 i}\right) x^{n-2 i}\left(\sqrt{x^{2}+3}\right)^{2 i} \\
= & 2 \sum_{i=0}^{\frac{n}{2}}\left(\frac{n}{2 i}\right) x^{n-2 i}\left(x^{2}+3\right)^{i} .
\end{aligned}
$$

Similarly it can be shown that if n is odd, then

$$
P_{n}(x)=2 \sum_{i=0}^{\frac{n-1}{2}}\left(\frac{n}{2 i}\right) x^{n-2 i}\left(x^{2}+3\right)^{i}
$$

Therefore $P_{n}(x) \in \mathbf{Z}[x]$.
From above theorem we can give the following result.
Corollary 3.2: $P_{n}(x)$ is a polynomial with integer coefficients of degree n with leading coefficients 2^{n} and has $\left\lfloor\frac{n}{2}\right\rfloor$ terms for every $n \geq 1$.

Now we can consider the number of rational points on curves

$$
\begin{equation*}
E_{p}: y^{2}=P_{p}(x) \tag{11}
\end{equation*}
$$

over \mathbf{F}_{p} for primes $p \geq 5$. Let

$$
E_{p}\left(\mathbf{F}_{p}\right)=\left\{(x, y) \in \mathbf{F}_{p} \times \mathbf{F}_{p}: y^{2}=P_{p}(x)\right\} .
$$

Then we have the following theorem.
Theorem 3.3: Let E_{p} be the curve in (11). Then

$$
\# E_{p}\left(\mathbf{F}_{p}\right)=p
$$

for every prime $p \geq 5$.

Proof: Recall that by Fermat's little theorem $a^{p-1} \equiv 1$ $(\bmod p)$. Also it is known that

$$
\left(\frac{2}{p}\right)=\left\{\begin{align*}
1 & \text { if } p \equiv 1,7(\bmod 8) \tag{12}\\
-1 & \text { if } p \equiv 3,5(\bmod 8) .
\end{align*}\right.
$$

Applying Theorem 3.1, it is clear that
$P_{p}(x)=c_{2} x^{p}+c_{4} x^{p-2}+c_{6} x^{p-4}+\cdots+c_{p-1} x^{3}+c_{p+1} x$.
Recall that $c_{2}=2^{p}$ by Corollary 3.2 and also p is a divisor of $c_{4}, c_{6}, \cdots, c_{p-1}$ and c_{p+1}. So $c_{4}, c_{6}, \cdots, c_{p-1}, c_{p+1} \equiv 0$ $(\bmod p)$ and also $c_{2}=2^{p} \equiv 2(\bmod p)$ by Fermat's little theorem. So (11) becomes $E_{p}: y^{2}=P_{p}(x) \equiv 2 x^{p}(\bmod p)$. Again by Fermat's little theorem we get $x^{p} \equiv x(\bmod p)$. So we have

$$
E_{p}: y^{2}=P_{p}(x) \equiv 2 x(\bmod p)
$$

Then we have two cases:
Case 1) Let $p \equiv 1,7(\bmod 8)$. Then by (12), we have $\left(\frac{2}{p}\right)=$ 1.
i) Let $x \in \mathbf{F}_{p}^{*}$ be a quadratic residue, that is $\left(\frac{x}{p}\right)=1$. Then $\left(\frac{2 x}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{x}{p}\right)=1.1=1$. So $2 x$ is a quadratic residue, that is, $2 x \in Q_{p}$. Let $2 x=t^{2}$ for some $t \in \mathbf{F}_{p}^{*}$. Then $y^{2} \equiv$ $2 x(\bmod p) \Leftrightarrow y^{2} \equiv t^{2}(\bmod p) \Leftrightarrow y \equiv \pm t(\bmod p)$, that is, the quadratic congruence $y^{2} \equiv 2 x(\bmod p)$ has two solutions $y=t$ and $y=p-t$. So for every $x \in Q_{p}$, there are two rational points on E_{p}. Recall that $\# Q_{p}=\frac{p-1}{2}$. So there are $2\left(\frac{p-1}{2}\right)=p-1$ rational points on E_{p}. The point $(0,0)$ is also on E_{p}. Therefore $\# E_{p}\left(\mathbf{F}_{p}\right)=p$.
ii) Let $\left(\frac{x}{p}\right)=-1$. Then $\left(\frac{2 x}{p}\right)=-1$. So $2 x$ is not a quadratic residue, that is, $2 x \notin Q_{p}$. So quadratic congruence $y^{2} \equiv 2 x(\bmod p)$ has no integer solutions. Therefore there is no rational point on E_{p}.

Case 2) Let $p \equiv 3,5(\bmod 8)$. Then by (12), we have $\left(\frac{2}{p}\right)=$ -1 .
i) Let $\left(\frac{x}{p}\right)=1$. Then $\left(\frac{2 x}{p}\right)=-1$. So $2 x$ is not a quadratic residue, that is, $2 x \notin Q_{p}$. Therefore the quadratic congruence $y^{2} \equiv 2 x(\bmod p)$ has no integer solutions and hence there is no rational point on E_{p}.
ii) Let $\left(\frac{x}{p}\right)=-1$. Then $\left(\frac{2 x}{p}\right)=1$. So $2 x \in Q_{p}$. Then as in i) of Case 1), we have total p rational points on E_{p}.

Example 3.1: For $p=17$ and $p=19$, the set of rational points on E_{p} over \mathbf{F}_{p} is
$E_{17}\left(\mathbf{F}_{17}\right)=\left\{\begin{array}{c}(0,0),(1, \pm 6),(2, \pm 2),(4, \pm 5),(8, \pm 4), \\ (9, \pm 1),(13, \pm 3),(15, \pm 8),(16, \pm 7)\end{array}\right\}$
$E_{19}\left(\mathbf{F}_{19}\right)=\left\{\begin{array}{c}(0,0),(2, \pm 2),(3, \pm 5),(8, \pm 4),(10, \pm 1), \\ (12, \pm 9),(13, \pm 8),(14, \pm 3),(15, \pm 7), \\ (18, \pm 6)\end{array}\right\}$.
Now we consider the sum of $x-$ and y-coordinates of all rational points (x, y) on E_{p}. For this reason, set

$$
E_{p}^{x}\left(\mathbf{F}_{p}\right)=\left\{x \in \mathbf{F}_{p}:(x, y) \in E_{p}\left(\mathbf{F}_{p}\right)\right\}
$$

and

$$
E_{p}^{y}\left(\mathbf{F}_{p}\right)=\left\{y \in \mathbf{F}_{p}:(x, y) \in E_{p}\left(\mathbf{F}_{p}\right)\right\}
$$

Let $\sum_{[x]} E_{p}^{x}\left(\mathbf{F}_{p}\right)$ and $\sum_{y} E_{p}^{y}\left(\mathbf{F}_{p}\right)$ denote the sum of $x-$ and y-coordinates of all rational points (x, y) on E_{p}, respectively. Then we have the following theorem.

Theorem 3.4:
$\sum_{[x]} E_{p}^{x}\left(\mathbf{F}_{p}\right)=\frac{1}{12}\left\{\begin{array}{cc}p^{3}-p & \text { if } p \equiv 1,7(\bmod 8) \\ -p^{3}+12 p^{2}-11 p & \text { if } p \equiv 3,5(\bmod 8)\end{array}\right.$
and
$\sum_{[x]} E_{p}^{y}\left(\mathbf{F}_{p}\right)=\frac{1}{2}\left\{\begin{array}{cl}p^{2}-p & \text { if } p \equiv 1,7(\bmod 8), x \in Q_{p} \\ 0 & \text { if } p \equiv 1,7(\bmod 8), x \notin Q_{p} \\ 0 & \text { if } p \equiv 3,5(\bmod 8), x \in Q_{p} \\ p^{2}-p & \text { if } p \equiv 3,5(\bmod 8), x \notin Q_{p}\end{array}\right.$
for every prime $p \geq 5$.
Proof: Let $U_{p}=\{1,2, \cdots, p-1\}$ be the set of units in \mathbf{F}_{p}. Then then taking squares of elements in U_{p}, we would obtain the set of quadratic residues Q_{p}. Then it is easily seen that

$$
\sum_{x \in Q_{p}} x=\frac{p^{3}-p}{24} \text { and } \sum_{x \in U_{p}} x=\frac{p^{2}-p}{2} .
$$

Let $p \equiv 1,7(\bmod 8)$. Then we know from Theorem 3.3 that $2 x$ is a quadratic residue for every $x \in Q_{p}$, that is, there are two rational points (x, t) and $(x, p-t)$ on E_{p}. The sum of x-coordinates of these two points is $2 x$. Therefore the sum of x-coordinates of all points (x, y) on E_{p} is

$$
\sum_{[x]} E_{p}^{x}\left(\mathbf{F}_{p}\right)=2 \sum_{x \in Q_{p}} x=\frac{p^{3}-p}{12} .
$$

Now let $p \equiv 3,5(\bmod 8)$. Then $2 x$ is a quadratic residue for every $x \notin Q_{p}=U_{p}-Q_{p}$, that is, there are two rational points (x, t) and $(x, p-t)$ on E_{p}. The sum of $x-$ coordinates of these two points is $2 x$. Therefore the sum of all points (x, y) on E_{p} is

$$
\begin{aligned}
\sum_{[x]} E_{p}^{x}\left(\mathbf{F}_{p}\right) & =2\left(\sum_{x \in U_{p}} x-\sum_{x \in Q_{p}} x\right) \\
& =\frac{-p^{3}+12 p^{2}-11 p}{12}
\end{aligned}
$$

Now we consider the sum $\sum_{[y]} E_{p}^{y}\left(\mathbf{F}_{p}\right)$. Let $p \equiv 1,7$ $(\bmod 8)$ and let $x \in Q_{p}$. We proved that in this case $2 x$ is a quadratic residue and therefore the quadratic congruence $y^{2} \equiv 2 x(\bmod p)$ has two solutions $y=t$ and $y=p-t$, that is, there are two rational points (x, t) and $(x, p-t)$ on E_{p}. The sum of y-coordinates of these points is p. Recall that there are $\frac{p-1}{2}$ elements x in Q_{p} such that the quadratic congruence $y^{2} \equiv 2 x(\bmod p)$ has a solution. So the sum of y-coordinates of all points (x, y) on E_{p} is $p\left(\frac{p-1}{2}\right)=\frac{p^{2}-p}{2}$. Now let $x \notin Q_{p}$. Then $2 x$ is not a quadratic residue. So $y^{2} \equiv 2 x(\bmod p)$ has no solution. Therefore there is no rational point on E_{p}. So $\sum_{[y]} E_{p}^{y}\left(\mathbf{F}_{p}\right)=0$. The other cases are similar.

References

[1] E. Barbeau. Pell's Equation. Springer Verlag, 2003.
[2] J. Buchmann and U. Vollmer. Binary Quadratic Forms: An Algorithmic Approach. Springer-Verlag, Berlin, Heidelberg, 2007.
[3] D.A. Buell. Binary Quadratic Forms, Clasical Theory and Modern Computations. Springer-Verlag, New York, 1989.
[4] H.M. Edwards. Fermat's Last Theorem. A Genetic Introduction to Algebraic Number Theory. Corrected reprint of the 1977 original. Graduate Texts in Mathematics, 50. Springer-Verlag, New York, 1996.
[5] D.E. Flath. Introduction to Number Theory. Wiley, 1989.
[6] I. Niven, H.S. Zuckerman and H.L. Montgomery. An Introduction to the Theory of Numbers. Fifth Edition, John Wiley\&Sons, Inc., New York, 1991.
[7] A. Tekcan. Pell Equation $x^{2}-D y^{2}=2$, II. Bulletin of the Irish Math. Soc. 54(2004), 73-89.
[8] A. Tekcan, O. Bizim and M. Bayraktar. Solving the Pell Equation using the Fundamental Element of the Field $\mathbf{Q}(\sqrt{\Delta})$. South East Asian Bulletin of Maths 30(2)(2006), 355-366.
[9] A. Tekcan. On the Pell Equation $x^{2}-\left(k^{2}-2\right) y^{2}=2^{t}$. Crux Math.with Mathematical Mayhem 33(6)(2007), 361-365.
[10] A. Tekcan. The Pell Equation $x^{2}-D y^{2}= \pm 4$. App. Math. Sci. 1(8) (2007), 363-369.
[11] A. Tekcan, B. Gezer, and O. Bizim. On the Integer Solutions of the Pell Equation $x^{2}-d y^{2}=2^{t}$. Int. Jour. of Math. Sci. 1(3)(2007), 204-208.
[12] A. Tekcan. The Cubic Congruence $x^{3}+a x^{2}+b x+c \equiv 0(\bmod p)$ and Binary Quadratic Forms $F(x, y)=a x^{2}+b x y+c y^{2}$. Ars Combinatoria 85(2007), 257-269.
[13] A. Tekcan. The Pell Equation $x^{2}-\left(k^{2}-k\right) y^{2}=2^{t}$. Int.Journal of Comp. and Mathematical Sciences 2(1)(2008), 5-9.

