
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

962

The Diophantine Equation y2 − 2yx − 3 = 0 and
Corresponding Curves over Fp

Ahmet Tekcan, Arzu Özkoç and Hatice Alkan

Abstract—In this work, we consider the number of integer solu-
tions of Diophantine equation D : y2 − 2yx − 3 = 0 over Z and
also over finite fields Fp for primes p ≥ 5. Later we determine the
number of rational points on curves Ep : y2 = Pp(x) = yp

1 + yp
2

over Fp, where y1 and y2 are the roots of D. Also we give a formula
for the sum of x− and y−coordinates of all rational points (x, y) on
Ep over Fp.
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I. PRELIMINARIES.

A Diophantine equation is an indeterminate polynomial
equation that allows the variables to be integers only. Dio-
phantine problems have fewer equations than unknown vari-
ables and involve finding integers that work correctly for all
equations. In more technical language, they define an algebraic
curve, algebraic surface or more general object, and ask about
the lattice points on it. The word Diophantine refers to the
Hellenistic mathematician of the 3rd century, Diophantus of
Alexandria, who made a study of such equations and was
one of the first mathematicians to introduce symbolism into
algebra. The mathematical study of Diophantine problems
Diophantus initiated is now called Diophantine analysis. A lin-
ear Diophantine equation is an equation between two sums of
monomials of degree zero or one. While individual equations
present a kind of puzzle and have been considered throughout
history, the formulation of general theories of Diophantine
equations (further to the theory of binary quadratic forms
f(x, y) = ax2+bxy+cy2 see [2], [3], [5]) was an achievement
of the twentieth century. For example, the equation ax+by = 1
is known the linear Diophantine equation. In general the
Diophantine equation is the equation given by

ax2 + bxy + cy2 + dx + ey + f = 0. (1)

Also for n = 2, there are infinitely many solutions (x, y, z) of
the Diophantine equation xn+yn = zn. For larger values of n,
Fermat’s last theorem (see [4]) states that no positive integer
solutions x, y, z satisfying the equation exist. The Diophantine
equation x2 − dy2 = 1 (or in general case x2 − dy2 = N ) is
known the Pell equation (see [1], [4], [6], [7], [8], [9], [10],
[11], [13]) which is named after the English mathematician
John Pell a mathematician who searched for integer solutions
to equations of this type in the seventeenth century.

Ahmet Tekcan, Arzu Özkoç and Hatice Alkan are with the Uludag
University, Department of Mathematics, Faculty of Science, Bursa-TURKEY,
emails: tekcan@uludag.edu.tr, aozkoc@uludag.edu.tr, halkan@uludag.edu.tr,
http://matematik.uludag.edu.tr/AhmetTekcan.htm.

II. THE DIOPHANTINE EQUATION y2 − 2yx − 3 = 0.

In [7], [8], [9], [10], [11], [13], we considered some specific
Pell equations and their integer solutions. In the present paper,
we will consider the integer solutions of Diophantine equation

D : y2 − 2yx − 3 = 0 (2)

over Z and over finite fields Fp for primes p ≥ 5. Now one
can wonder why we consider this Diophantine equation among
thousands of such Diophantine equations. Let us explain: We
consider this equation since in later section we use the roots
of this equation according to y, that is, y1,2 = x ±√

x2 + 3,
and hence we consider the curves Ep : y2 = Pp(x) = yp

1 + yp
2

over Fp. First, we consider the integer solutions of D over Z.

Theorem 2.1: The Diophantine equation D in (2) has four
integer solutions (x, y) in Z × Z.

Proof: For the Diophantine equation in (2), we get

y2 − 2yx − 3 = 0 ⇔ y(y − 2x) = 3.

Hence we have the following possibilities:

y y − 2x
1 3
3 1

−1 −3
−3 −1.

So we get four integer solutions (x, y) = ±(1, 3) and ±(1,−1)
of D.

Now we consider the integer solutions of D over finite fields
Fp for primes p ≥ 5. If we consider D over Fp, then (2)
becomes

Dp : y2 − 2yx − 3 ≡ 0(mod p). (3)

Let Dp(Fp) denote the set of integer solutions (x, y) of Dp

over Fp, that is,

Dp(Fp) = {(x, y) ∈ Fp × Fp : y2 − 2yx − 3 ≡ 0(mod p)}. (4)

Then we can give the following theorem.

Theorem 2.2: Let Dp be the Diophantine equation in (3).
Then

#Dp(Fp) = p − 1

for every prime p ≥ 5.
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Proof: Let (x
p ) denote the Legendre symbol. We proved

in [12] that(−3
p

)
=

{
1 if p ≡ 1, 7(mod 12)
−1 if p ≡ 5, 11(mod 12). (5)

Similarly it can be shown that(
3
p

)
=

{
1 if p ≡ 1, 11(mod 12)
−1 if p ≡ 5, 7(mod 12). (6)

Now let x ∈ Fp be given. We want to solve Dp to y. The
discriminant of (3) is

Δ ≡ (−2x)2 − 4(−3) ≡ 4(x2 + 3) (mod p)

and hence the solutions are

y1,2 ≡ 2x ±√
Δ

2
≡ x ±

√
x2 + 3 (mod p). (7)

Then we have two cases:

Case 1) Let p ≡ 1, 7(mod 12). Then by (5) we get (−3
p ) =

1, that is,

x2 ≡ −3(mod p) ⇔ x2 + 3 ≡ 0 (mod p) (8)

has two solutions x1 and x2. So for these values of x1 and
x2, we have two values of y1 and y2 from (7). Therefore there
are two integer solutions (x1, y1) and (x2, y2) of Dp.

i) Let p ≡ 1(mod 12). If x = 0, then the quadratic
congruence y2 − 3 ≡ 0(mod p) has two solutions y3 and
y4 since ( 3

p ) = 1 by (6). So the Diophantine equation
Dp has two integer solutions (0, y3) and (0, y4). Now let
Hp = Fp − {0, x1, x2}. Note that #Hp = p − 3. Now we
consider the quadratic congruence x2 + 3 ≡ t2(mod p). Then
it is easily seen that there are p−5

2 integers x ∈ Hp such that
the congruence x2 + 3 ≡ t2(mod p) has a solution. So from
(7), we have y1,2 ≡ x ± t (mod p), that is, there are two
solutions y5 and y6, that is, for each element x in Hp, there
are two solutions. We say as above that there are p−5

2 elements
x in Hp such that the congruence y1,2 ≡ x± t (mod p) has a
solution. So there are 2(p−5

2 ) = p−5 integer solutions of (3).
We know that there are four solutions (x1, y1), (x2, y2), (0, y3)
and (0, y4) of (3). So there are total p− 5+4 = p− 1 integer
solutions of Dp.

ii) Let p ≡ 7(mod 12). If x = 0, then the quadratic congru-
ence y2 − 3 ≡ 0(mod p) has no solutions since ( 3

p ) = −1 by
(6). So the Diophantine equation Dp has no integer solutions
(0, y). Let Gp = Fp − {x1, x2}. Note that #Gp = p − 2.
Then it is easily seen that the there are p−3

2 elements x in Gp

such that the quadratic congruence x2 + 3 ≡ t2(mod p) has
a solution x. So we have y1,2 ≡ x± t (mod p), that is, there
are two solutions y3 and y4, that is, for each element x in Gp,
there are two solutions. We know that there are p−3

2 elements
x in Gp such that the congruence x2 + 3 ≡ t2(mod p) has a
solution. So there are 2(p−3

2 ) = p − 3 integer solutions. We
said as above that there are also two integer solutions (x1, y1)
and (x2, y2) of Dp. So there are total p−3+2 = p−1 integer
solutions of Dp.

Case 2) Let p ≡ 5, 11(mod 12). Then by (5) we get (−3
p ) =

−1, that is, x2 ≡ −3(mod p) has no solution x. Hence the
quadratic congruence

x2 ≡ −3(mod p) ⇔ x2 + 3 ≡ 0 (mod p) (9)

has no solution x. So there exist no integer x ∈ Fp such that
x2 + 3 ≡ 0(mod p) has a solution.

i) Let p ≡ 5(mod 12). If x = 0, then the quadratic congru-
ence y2−3 ≡ 0(mod p) has no solutions y since ( 3

p ) = −1 by
(6). So the Diophantine equation Dp has no integer solutions
(0, y). Let Sp = Fp − {0}. Then there are p−1

2 integers x in
Sp such that the quadratic congruence x2+3 ≡ t2(mod p) has
a solution x. So we have y1,2 ≡ x± t (mod p), that is, there
are two solutions y1 and y2, that is, for each element x in Sp,
there are two solutions. Therefore there are 2(p−1

2 ) = p − 1
integer solutions of Dp.

ii) Let p ≡ 11(mod 12). If x = 0, then the quadratic
congruence y2 − 3 ≡ 0(mod p) has two solutions y1 and
y2 since ( 3

p ) = 1. So the Diophantine equation Dp has two
integer solutions (0, y1) and (0, y2). Now let Lp = Fp −{0}.
Then there are p−3

2 elements x in Lp such that the quadratic
congruence x2 + 3 ≡ t2(mod p) has a solution. So we have
y1,2 ≡ x ± t (mod p), that is, there are two solutions y3 and
y4, that is, for each element x in Lp, there are two solutions.
So there are 2(p−3

2 ) = p − 3 integer solutions of Dp. We
know that there are two integer solutions (0, y1) and (0, y2).
Therefore there are total p − 3 + 2 = p − 1 integer solutions
of Dp.

Example 2.1: For p = 13, 19, 17 and 23, the set of integer
solutions of Dp over Fp is

D13(F13) =

⎧⎨
⎩

(0,4), (0,9), (1, 3), (1, 12), (3, 8),
(3, 11), (6, 6), (7, 7), (10, 2), (10, 5),

(12, 1), (12, 10)

⎫⎬
⎭

D19(F19) =

⎧⎪⎪⎨
⎪⎪⎩

(1, 3), (1, 18), (2, 10), (2, 13), (4,4),
(5, 2), (5, 8), (6, 5), (6, 7), (13, 12),
(13, 14), (14, 11), (14, 17), (15,15),

(17, 6), (17, 9), (18, 1), (18, 16)

⎫⎪⎪⎬
⎪⎪⎭

D17(F17) =

⎧⎪⎪⎨
⎪⎪⎩

(1, 3), (1, 16), (4, 10), (4, 15), (7, 6),
(7, 8), (8, 4), (8, 12), (9, 5), (9, 13),
(10, 9), (10, 11), (13, 2), (13, 7),

(16, 1), (16, 14)

⎫⎪⎪⎬
⎪⎪⎭

D23(F23) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0,7), (0,16), (1, 3), (1, 22), (3, 12),
(3, 17), (6, 2), (6, 10), (7, 18), (7, 19),

(11, 8), (11, 14), (12, 9), (12, 15),
(16, 4), (16, 5), (17, 13), (17, 21),
(20, 6), (20, 11), (22, 1), (22, 20).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

III. THE NUMBER OF RATIONAL POINTS ON CURVES

OVER Fp.

In this section, we consider the number of rational points
on curves related to Dp. Recall that the integer solutions of
Dp are y1 = x +

√
x2 + 3 and y2 = x −√

x2 + 3. Define

Pn(x) = yn
1 + yn

2 (10)

for a positive integer n. Then we can give the following
theorem.
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Theorem 3.1: Pn(x) ∈ Z[x] for every positive integer n.

Proof: Let n be even. Then by binomial formula we have

Pn(x)
= yn

1 + yn
2

= (x +
√

x2 + 3)n + (x +
√

x2 + 3)n

=
n∑

k=0

(
n

k
)(x)n−k(

√
x2 + 3)k

+
n∑

k=0

(
n

k
)(x)n−k(−

√
x2 + 1)k

=

⎡
⎢⎢⎣

(n
0 )xn + (n

1 )xn−1(
√

x2 + 3)1

+(n
2 )xn−2(

√
x2 + 3)2 + · · ·

+( n
n−1 )x1(

√
x2 + 3)n−1

+(n
n )(

√
x2 + 3)n

⎤
⎥⎥⎦

−

⎡
⎢⎢⎣

(n
0 )xn − (n

1 )xn−1(
√

x2 + 3)1

+(n
2 )xn−2(

√
x2 + 3)2 + · · ·

−( n
n−1 )x1(

√
x2 + 3)n−1

+(n
n )(

√
x2 + 3)n

⎤
⎥⎥⎦

= 2
[

(n
0 )xn + (n

2 )xn−2(
√

x2 + 3)2

+ · · · + (n
n )(

√
x2 + 3)n

]

= 2

n
2∑

i=0

(
n

2i
)xn−2i(

√
x2 + 3)2i

= 2

n
2∑

i=0

(
n

2i
)xn−2i(x2 + 3)i.

Similarly it can be shown that if n is odd, then

Pn(x) = 2

n−1
2∑

i=0

(
n

2i
)xn−2i(x2 + 3)i.

Therefore Pn(x) ∈ Z[x].

From above theorem we can give the following result.

Corollary 3.2: Pn(x) is a polynomial with integer coeffi-
cients of degree n with leading coefficients 2n and has

⌊
n
2

⌋
terms for every n ≥ 1.

Now we can consider the number of rational points on
curves

Ep : y2 = Pp(x) (11)

over Fp for primes p ≥ 5. Let

Ep(Fp) = {(x, y) ∈ Fp × Fp : y2 = Pp(x)}.
Then we have the following theorem.

Theorem 3.3: Let Ep be the curve in (11). Then

#Ep(Fp) = p

for every prime p ≥ 5.

Proof: Recall that by Fermat’s little theorem ap−1 ≡ 1
(mod p). Also it is known that(

2
p

)
=

{
1 if p ≡ 1, 7(mod 8)

−1 if p ≡ 3, 5(mod 8). (12)

Applying Theorem 3.1, it is clear that

Pp(x) = c2x
p + c4x

p−2 + c6x
p−4 + · · · + cp−1x

3 + cp+1x.

Recall that c2 = 2p by Corollary 3.2 and also p is a divisor
of c4, c6, · · · , cp−1 and cp+1. So c4, c6, · · · , cp−1, cp+1 ≡ 0
(mod p) and also c2 = 2p ≡ 2(mod p) by Fermat’s little
theorem. So (11) becomes Ep : y2 = Pp(x) ≡ 2xp(mod p).
Again by Fermat’s little theorem we get xp ≡ x(mod p). So
we have

Ep : y2 = Pp(x) ≡ 2x(mod p).

Then we have two cases:

Case 1) Let p ≡ 1, 7(mod 8). Then by (12), we have ( 2
p ) =

1.
i) Let x ∈ F∗

p be a quadratic residue, that is (x
p ) = 1. Then

( 2x
p ) = ( 2

p )(x
p ) = 1.1 = 1. So 2x is a quadratic residue,

that is, 2x ∈ Qp. Let 2x = t2 for some t ∈ F∗
p. Then y2 ≡

2x(mod p) ⇔ y2 ≡ t2(mod p) ⇔ y ≡ ±t(mod p), that is,
the quadratic congruence y2 ≡ 2x(mod p) has two solutions
y = t and y = p − t. So for every x ∈ Qp, there are two
rational points on Ep. Recall that #Qp = p−1

2 . So there are
2(p−1

2 ) = p−1 rational points on Ep. The point (0, 0) is also
on Ep. Therefore #Ep(Fp) = p.

ii) Let (x
p ) = −1. Then (2x

p ) = −1. So 2x is not a
quadratic residue, that is, 2x /∈ Qp. So quadratic congruence
y2 ≡ 2x(mod p) has no integer solutions. Therefore there is
no rational point on Ep.

Case 2) Let p ≡ 3, 5(mod 8). Then by (12), we have ( 2
p ) =

−1.
i) Let (x

p ) = 1. Then ( 2x
p ) = −1. So 2x is not a quadratic

residue, that is, 2x /∈ Qp. Therefore the quadratic congruence
y2 ≡ 2x(mod p) has no integer solutions and hence there is
no rational point on Ep.

ii) Let (x
p ) = −1. Then ( 2x

p ) = 1. So 2x ∈ Qp. Then as in
i) of Case 1), we have total p rational points on Ep.

Example 3.1: For p = 17 and p = 19, the set of rational
points on Ep over Fp is

E17(F17) =
{

(0, 0), (1,±6), (2,±2), (4,±5), (8,±4),
(9,±1), (13,±3), (15,±8), (16,±7)

}

E19(F19) =

⎧⎨
⎩

(0, 0), (2,±2), (3,±5), (8,±4), (10,±1),
(12,±9), (13,±8), (14,±3), (15,±7),

(18,±6)

⎫⎬
⎭ .

Now we consider the sum of x− and y−coordinates of all
rational points (x, y) on Ep. For this reason, set

Ex
p (Fp) = {x ∈ Fp : (x, y) ∈ Ep(Fp)}
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and

Ey
p (Fp) = {y ∈ Fp : (x, y) ∈ Ep(Fp)}.

Let
∑

[x] E
x
p (Fp) and

∑
y Ey

p (Fp) denote the sum of x− and
y−coordinates of all rational points (x, y) on Ep, respectively.
Then we have the following theorem.

Theorem 3.4:
∑
[x]

Ex
p (Fp) =

1
12

{
p3 − p if p ≡ 1, 7(mod 8)

−p3 + 12p2 − 11p if p ≡ 3, 5(mod 8)

and

∑
[x]

Ey
p (Fp) =

1
2

⎧⎪⎪⎨
⎪⎪⎩

p2 − p if p ≡ 1, 7(mod 8), x ∈ Qp

0 if p ≡ 1, 7(mod 8), x /∈ Qp

0 if p ≡ 3, 5(mod 8), x ∈ Qp

p2 − p if p ≡ 3, 5(mod 8), x /∈ Qp

for every prime p ≥ 5.

Proof: Let Up = {1, 2, · · · , p − 1} be the set of units in
Fp. Then then taking squares of elements in Up, we would
obtain the set of quadratic residues Qp. Then it is easily seen
that

∑
x∈Qp

x =
p3 − p

24
and

∑
x∈Up

x =
p2 − p

2
.

Let p ≡ 1, 7(mod 8). Then we know from Theorem 3.3 that
2x is a quadratic residue for every x ∈ Qp, that is, there are
two rational points (x, t) and (x, p − t) on Ep. The sum of
x−coordinates of these two points is 2x. Therefore the sum
of x−coordinates of all points (x, y) on Ep is

∑
[x]

Ex
p (Fp) = 2

∑
x∈Qp

x =
p3 − p

12
.

Now let p ≡ 3, 5(mod 8). Then 2x is a quadratic residue for
every x /∈ Qp = Up−Qp, that is, there are two rational points
(x, t) and (x, p−t) on Ep. The sum of x−coordinates of these
two points is 2x. Therefore the sum of all points (x, y) on Ep

is

∑
[x]

Ex
p (Fp) = 2

⎛
⎝ ∑

x∈Up

x −
∑

x∈Qp

x

⎞
⎠

=
−p3 + 12p2 − 11p

12
.

Now we consider the sum
∑

[y] E
y
p (Fp). Let p ≡ 1, 7

(mod 8) and let x ∈ Qp. We proved that in this case 2x
is a quadratic residue and therefore the quadratic congruence
y2 ≡ 2x(mod p) has two solutions y = t and y = p − t, that
is, there are two rational points (x, t) and (x, p−t) on Ep. The
sum of y−coordinates of these points is p. Recall that there
are p−1

2 elements x in Qp such that the quadratic congruence
y2 ≡ 2x(mod p) has a solution. So the sum of y−coordinates
of all points (x, y) on Ep is p(p−1

2 ) = p2−p
2 . Now let x /∈ Qp.

Then 2x is not a quadratic residue. So y2 ≡ 2x(mod p) has
no solution. Therefore there is no rational point on Ep. So∑

[y] E
y
p (Fp) = 0. The other cases are similar.
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