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Abstract—Ion-acoustic solitary waves in a plasma with 

nonthermal electrons, thermal positrons and warm ions are 
investigated using Sagdeev’s pseudopotential technique. We study 
the effects of non-thermal electrons and ion temperature on solitons 
and show both negative and positive potential waves are possible. 
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I. INTRODUCTION 
OLITARY waves are nonlinear and localized structures that 
propagate when the nonlinearity and dispersion are 
balanced. They are a subject of continuing interest 

because of their practical importance. Ion-acoustic solitary 
waves and their attributes have been the subject of many 
researches in plasma physics and complex plasma as well. The 
existence of a considerable number of ions in the Earth’s 
ionosphere [1] and cometary comae [2] is well known. 
Electron-positron plasmas are found in early universe, active 
galactive nuclei, magnetosphere of pulsars [3-5]. These waves 
have been studied both theoretically and experimentally [6,7]. 
Theory of nonlinear wave-wave and wave-particle interactions 
in this plasma has been studied by Machabeli et al. [8]. Their 
results can be applied to real astrophysical plasmas, in 
particular, pulsar magnetospheres. They also considered the 
instability resulting from superluminal Langmuir waves 
interacting with two transverse waves and discussed a new 
model for pulsar g-ray emission [9]. However, ions may be 
present in most of plasmas, and the presence of ions leads to 
the existence of several low frequency waves which otherwise 
do not propagate on electron-positron plasmas. Some authors 
have studied different types of linear and nonlinear wave 
structures such as solitons, double layers and vortices in e-p 
plasmas [10-13]. The effect of nonthermal electron 
distribution on ion acoustic solitary waves in e-p plasma has 
been investigated in [14]. Recently, a great deal of attention 
has been devoted to the study of different types of collective 
processes in electron-positron-ion plasmas [15-21]. S. Popel 
et.al [17] have studied e-p-i plasmas with Boltzmann 
distribution for electron. Space plasma observations indicate 
the presence of ion and electron populations which are not in 
thermodynamic [22,23]. The motivation for this came from 
the observations of solitary structures with density depletions 
made by the Freja [22] and Viking satellites [23]. Recently, 
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motivated by the latter class of events, Cairns et al. [24] have 
considered a nonthermal plasma model and shown that the 
presence of a nonthermal distribution of electrons may change 
the nature of ion acoustic solitary structures and allow the 
existence of structures very like those observed in [22,23]. 
Mamun investigated the nonthermal electrons and warm ion 
effects on ion acoustic waves in [25]. We study ion acoustic 
solitary structures in plasma containing nonthermal electrons, 
warm positive ions and thermal positrons with respective 
subscripts e, i and p. The presence of positrons and warm ions 
with nonthermal electron distribution in a e-p-i plasma 
introduces a new aspect of the nonlinear ion-acoustic 
waves.The manuscript is organized as follows: In the next 
section, we present the basic equations of our theoretical 
model and derive the pseudo-potential associated to localized 
ion-acoustic solitary waves. Our results are presented and 
discussed in Sec. 3. A summary of our results and conclusions 
is given in Sec. 4. 

II. BASIC EQUATION  
Let us consider a collisionless unmagnetized plasma 

consisting of positrons, electrons obeying a nonthermal 
distribution and stationary warm ions. The nonlinear dynamics 
of the ion acoustic solitary waves is governed by the following 
set of normalized basic equations 
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normalized by )(
e

kTeff , where k is Boltzmann’s constant and  

m is mass of ion and e is the electron charge. The time t and 
the distance x are normalized by the ion plasma frequency 
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temperature of electron. P is the pressure and electrical 
potential and is normalized by n o kT i . We also take the 

equation of state as 3nP = for adiabatic process. The 
electron number density is given 
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population of energetic nonthermal electrons and characterizes 
the degree of nonthermality. And for positrons with 
Boltzmann distribution 
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unperturbed number densities of electrons and positrons, 
respectively. 
 
In order to find the Sagdeev’s pseudopotential from Eqs. (1)–
(5), we assume that all dependent variables depend on a single 
independent variable Mtx −=ξ , where M being the soliton 

velocity normalized by ic . The variable ξ  is the special 
coordinate in the coordinate system moving with the solitary 
wave velocity, i.e., the wave frame. Equations (1) and (2) in 
the stationary frame can be integrated to give [27] 
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where we have used boundary conditions for localized 
disturbance, viz, 0,1,0 →→→ φnu , P 1→ , 
when ∞→ξ . Substituting n from Eq. (6) in Eq. (3) and 
following Sagdeev’s pseudopotential method along with 
appropriate boundary conditions, we obtain [27] 
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In the absence of positrons (p=0) and for cold plasma 
( 0=σ ), (8) is reduced to [14]. Also, in the absence of 
nonthermal electrons in cold plasma; i.e. for 0,0 == σα  
(8) is reduced to [17].  
 

III.  RESULTS AND DISCUSSION  
Equation (8) can be regarded as an ‘energy integral’ of an 

oscillating particle of unit mass with a velocity ξφ dd /  and 

position φ  in a potential ( )φV . Further it is clear that 

( ) o=φV  and ( ) o=φφ ddV  at 0=φ  [28]. Solitary wave 

solution for exists if 022 <φdVd  at 0=φ , so that the 

zero as a fixed point is unstable. All the specified conditions 
are satisfied. Besides that ( )φV  should be negative between 

0=φ  and mφ where mφ is some maximum or minimum 
potential for compressive or refractive solitons respectively. 
To find the range of compressive and rarefactive solitons, one 
has to study the nature of the function ( )φV . Clearly the 

functional dependence of ( )φV  is very sensitive to the 
variation in parametersσ ,α , p, δ  and M. Since temperature 
of the ion and nonthermal electron distribution are the main 
parameters considered here, it is useful to investigate the 
dynamics of solitons as function of variation of these 
parameters. Figures 1 and 2 show ( )φV  as a function of φ  
for different values of α . These figures show the comparison 
of the Sagdeev pseudo-potential profiles for different values 
of α  by choosing the values of σ =0.03 and 0.01, 
respectively. It is observed there is a shift in the value of oφ  
as α   is decreased. So it is found that the nonthermal 
parameter (α ) has a significant role on the formation 
compressive and rarefactive solitons.  
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Fig. 1 The Sagdeev potential ( )φV  with respect to φ  for fixed 

value of σ =0.03, p=0.1, δ =0.1, M=1.45 and different values of 
α  

 
Fig. 2 The Sagdeev potential ( )φV  with respect to φ  for fixed 

value of M, σ =0.01, p=0.1, δ =1, M=3.2 and different values of 
α  

 
 

To see the effect of the ion temperatureσ , in Figures 3 and 
4, ( )φV  are plotted against φ  by choosing the values of 
α =0.25 and 0.78 but varying the value of ion temperature. It 
is seen that both rarefactive and compressive solitons exist. It 
is obvious from these figures that the increase in the ion 
temperature has significantly effect on both the compressive 
and rarefactive solitons. It is also observed when the value of 
σ  is increased, both compressive and rarefactive solitons are 
disappeared. Thus, there are critical values of σ ( cσ ) for 
both region of rarefactive and compressive solitons, so that for 
σ > cσ the soliton is not formed. It is obvious the critical 

temperatures in the Figs. (3) and (4) are cσ =0.085 and 

cσ =0.8, respectively. It can be concluded from the 
investigation that there are critical values of σ  and α  for 
each of solitons (rarefactive and compressive solitons). 
 

 
Fig. 3 The Sagdeev potential ( )φV  with respect to φ  for fixed 

value of α =0.25, p=0.1, δ =1, M=1.4 and different values of σ  
 

 
Fig. 4 The Sagdeev potential ( )φV  with respect to φ  for fixed 

value of α =0.78, p=0.1,δ =0.1, M=3.8 and different values of σ  
 
 

Now let us examine the existence of rarefactive and 
compressive solitons, numerically. As apparent from Table 1 
and 2, the range of existence of compressive and rarefactive 
solitons shift. It is seen from Table 1, for low values of M, 
neither compressive nor rarefactive solitons exist. 
Nevertheless, there is a range of α  and M where co-existence 
of rarefactive as well as compressive solitons is possible. 
Table II shows the range of rarefactive and compressive 
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solitons for fixed values of α =0.2, p=0.1 and δ =0.1 and 
different values of σ  and M. It is obvious that the both 
rarefactive and compressive solitons exist in the specific range 
of Mach number (1.33<M<1.5).  

 
TABLE I 

EFFECT OF α , THE NONTHERMAL PARAMETER, ON THE RANGE OF 
RAREFACTIVE AND COMPRESSIVE SOLITONS. THE OTHER PARAMETERS HAVE 

BEEN FIXED AS σ =0.0001, P=0.1 AND δ =0.1 

α\M  0.15 0.2 0.25 0.3 
1.23 - - - -
1.25 C - - - 
1.32 R,C - - - 
1.33 R,C C  - - 
1.36 R,C R,C - - 
1.42 R,C R,C C - 
1.54 R,C R,C R,C C 
1.6 R,C R,C R,C R,C 

 
TABLE II 

EFFECT OFσ , THE ION TEMPERATURE, ON THE RANGE OF RAREFACTIVE AND 
COMPRESSIVE SOLITONS. THE OTHER PARAMETERS HAVE BEEN FIXED AS 

α =0.2, P=0.1 AND δ =0.1 

M\σ  1.3
2 

1.3
3 

1.3
4 

1.3
7 

1.3
8 

1.4 1.4
5 

1.5 1.6 

0 - C R,C R,C C C C C - 
0.0001 - C R,C R,C C C C C - 

0.001 - C R,C R,C C C C - - 
0.01 - - C R,C R,C C C - - 
0.1 - - - - - - - C - 

0.3 - - - - - - - - - 
0.5 - - - - - - - - - 
0.8 - - - - - - - - - 

 
 

There is only an important note in the Table II, when σ  
and M are 0.1 and 1.5, respectively. For low temperature of 
ions and M=1.5, only rarefactive solitons exist. Then, when 
the values of σ  is increased, the rarefactive solitons 
disappeared.But, the rarefactive soliton appears for σ =0.1, 
again.The limitation of the present analysis is that the 
rarefactive and compressive solitary waves have been studied 
as separately. In the same way, one can easily show (after a 
more numerical analysis with different values ofσ , α and 
M) there is a region in parameter space where both rarefactive 
and compressive solitons can coexist. It is clear that it is 
possible to investigate more nonlinear wave structures over a 
wider range of parameters space. It can be also shown that 
there is double layer solitons in our model for specific values 
of α andσ . This case might be studied in a new work. 

IV.  CONCLUSION  
In this paper, we have studied the effect of non-thermal 

electrons and ion temperature on solitary waves in a plasma 
consisting warm ions, positrons and nonthermal electron 

distribution. The pseudo-potential approach has been used. 
Our results show that in such a plasma spatially localized ion-
acoustic structures, the height and nature of which depend 
sensitively on the plasma parameters, can exist. The spatial 
patterns of the ion acoustic solitary waves are significantly 
modified by the effects of electron nonthermal and ion 
temperature. It was shown that the rarefactive and 
compressive solitons can be appeared in our model. The 
particular regions of space parameter where the compressive 
and/or rarefactive solitary waves exist were cleared. We found 
that the amplitude of both rarefactive and compressive 
solitons decreases with an increasing in the nonthermal 
parameterα  and ion temperatureσ . On the other hand, we 
also found that there are the critical values 
ofα andσ ( cα , cσ ), in which Sagdeev potential don't 

behavior well when α → cα  (orσ → cσ ), that is for α  ≥ 

cα  (σ ≥ cσ )  there is no soliton. The critical value depends 

on the plasma parameters ( p,, δσ , M and different values 
ofα ). When we choose other values of the parameters, which 
a changing nature occurs, the critical value for α  corresponds 
to an other different value. Considering the wide relevance of 
nonlinear oscillations, we stress that the results of the present 
investigation should be useful in understanding the nonlinear 
features of localized ion-acoustic structures in different 
regions of the astrophysical and space invironments as well as 
other physical phenomena like condensation of double layers 
[29,30]. 
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