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Abstract—The Automatic Speech Recognition (ASR) applied to 

Arabic language is a challenging task. This is mainly related to the 
language specificities which make the researchers facing multiple 
difficulties such as the insufficient linguistic resources and the very 
limited number of available transcribed Arabic speech corpora.  In 
this paper, we are interested in the development of a HMM-based 
ASR system for Standard Arabic (SA) language. Our fundamental 
research goal is to select the most appropriate acoustic parameters 
describing each audio frame, acoustic models and speech recognition 
unit. To achieve this purpose, we analyze the effect of varying frame 
windowing (size and period), acoustic parameter number resulting 
from features extraction methods traditionally used in ASR, speech 
recognition unit, Gaussian number per HMM state and number of 
embedded re-estimations of the Baum-Welch Algorithm. To evaluate 
the proposed ASR system, a multi-speaker SA connected-digits 
corpus is collected, transcribed and used throughout all experiments. 
A further evaluation is conducted on a speaker-independent continue 
SA speech corpus. The phonemes recognition rate is 94.02% which is 
relatively high when comparing it with another ASR system 
evaluated on the same corpus. 
 

Keywords—ASR, HMM, acoustical analysis, acoustic modeling, 
Standard Arabic language 

I. INTRODUCTION 

HE most simple, faster and natural manner widely used by 
human societies to communicate has always been the 

spoken language rather than the writing one. Thus, researchers 
and industrialists are interested in developing applications that 
use speech as a mean of human-machine interaction. The ASR 
is considered as an important branch of this interaction. 
Despite the very important recent advances in the ASR field, 
current systems have not yet achieved the human speech 
precision and delicacy which makes the ASR an active 
research topic. 

In fact, an ASR system is generally intended for a given 
language. Unfortunately, and unlike other languages such as 
English and French, Arabic language still remains very little 
approached in ASR field despite it is the fourth most widely 
spoken language in the world. Furthermore, researches are 
mainly concentrated on SA which is a formal linguistic 
standard used throughout the Arabic-speaking world, 
employed in the media, taught in schools, and spoken in the 
formal framework. During the past few years, some recent 
research works on Arabic ASR have been dedicated to single 
phonemes [1, 2], and others to single words [3, 4].  
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Ejbali et al. [5] have worked on continue SA speech. 
However, recognition rates of these systems are still far from 
the perfection.  

Our main contributions in this study are twofold. In the first 
instance, we develop and study an ASR system. The second 
contribution is to collect a transcribed multi-speaker 
connected-digits corpus dedicated for SA. 

This paper is organized as follows. Section II summarizes 
the main characteristics of the SA language. Section III and 
Section IV describe respectively the proposed system and the 
corpora used in this study. Section V presents and discusses 
experimental results. Section VI concludes and gives some 
perspectives of this work. 

II. STANDARD ARABIC LANGUAGE   

SA language is a Semitic language composed of 34 
phonemes, of which 6 are basic vowels and 28 are consonants. 
Among these consonants, 3 (و  ,ا  are either consonants or (ي,
long vowels according to their appearance context in the word. 
The Arabic phonetics originality is mainly based on the 
lengthening relevance in the vocalic system and on the 
presence of emphatic and geminated consonants. 

Arabic vowels have not the same temporal duration. The 
vocalic system has 3 short vowels (/a/, /i/, and /u/) and 3 long 
vowels (/a:/, /i:/, and /u:/). Their phonetic realization is highly 
variable and depends on the consonant environment and the 
place of vowel in the word.  

Emphatic consonants are achieved in the rear part of the 
oral cavity. During their production, the root of the tongue is 
carried against the pharynx. Arabic language has 4 emphatic 
consonants: 2 plosives: /ţ/, /ɖ/, and 2 fricatives: /ð /, /ş/. In the 
example of the two words /naşaba/ (imputed) and /nasaba/ 
(erected), an emphatic versus nonemphatic opposition is 
observed on /s/ [6]. 

All consonants of the Arabic language can be geminated. 
Arabic grammarians consider that the termination feature is 
a duplication of the consonant. It is caused by the extension 
and strengthening of the consonant articulation without 
changing the position of phonation organs. 

The allowed syllable structures in Arabic are CV, CVC, and 
CVCC where V indicates a (long or short) vowel while C 
indicates a consonant. Arabic utterances can only start with a 
consonant [7]. 

III. SYSTEM DESCRIPTION 

The proposed ASR system is based on a statistical approach 
introduced by F. Jelinek [8]. It includes five modules: 
acoustical analysis module, modeling module, transcription 
module, training module and decoding module. Fig. 1 
illustrates an overview of the proposed system. 
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Fig. 1 Overview of the proposed ASR system 

A. Acoustical analysis module 

Acoustical analysis module includes pre-treatments such as 
recording, digitalization, pre-emphasis, blocking into frames, 
and frame windowing by using Hamming window. It includes 
also the extraction of features; performed to give an 
observation vector of the acoustic parameters for each frame.  

This module is one of the most complex steps in the 
development of an ASR system. Thus, the acoustic parameters 
choice conditions the system performances. In order to 
guarantee enough informative observation vectors, we made 
experiments related to frame windowing (size and period) and 
feature extraction methods traditionally used in ASR such as 
MFCC (Mel-scale Frequency Cepstral Coefficients) and PLP 
(Perceptual Linear Prediction). A detailed discussion of these 
experiments is given later in section V. 

B. Modeling module  

This module includes both of linguistic and acoustic 
modeling modules.  

For the first modeling process, we used a simple word 
grammar to describe the sequence of words successfully 
recognized by the system. This grammar can be depicted 
through network transitions as it is illustrated in Fig.2. 

 

 
Fig. 2 Description of the grammar by network transitions 

 
Concerning the acoustic modeling module, the choice of the 

speech recognition unit is very important.  

In a first time, we used the phoneme as an acoustic unit (34 
phonemes allow to describe a standard spoken Arabic). 
According to their performances and popularity [9], acoustic 
units are modeled by continuous-density HMM. To model 
phoneme, we choose a simple topology ‘left-right’ having 
three active states authorizing the looping to the current state 
and the passage to the following state. Indeed, the proposed 
topology is well-adapted in automatic continuous speech 
recognition [10]. 

In a second time, we developed a new acoustic modeling 
for Arabic language based on phoneme and diphoneme used to 
take into account the coarticulation’s effects. We didn’t use 
diphonemes as they are used by classic ASR systems. Indeed, 
they consider the diphoneme model as a phoneme that can be 
a consonant or a vowel followed by a single neighbor 
phoneme representing a consonant or a vowel. Based on the 
Arabic language specificities, the proposed diphoneme model 
is used to represent a consonant followed by a vowel (short or 
long) and the phoneme model is used to represent consonant 
located at the end of closed syllable. The proposed acoustic 
modeling for standard Arabic language generates 196 models.  

To model diphoneme, we choose the same topology of 
phoneme model but with four active states. As it is defined, 
this model can be interpreted as the fusion result of two 
successive phoneme models; the state modeling the creation of 
the second phoneme coincides with the state modeling the 
realization of the first phoneme. 

A comparative study between these two acoustic modeling 
is given later in section V. A silence model was also used to 
model non-speech acoustic artifacts. 

C. Transcription module 

For the transcription module, the speech recognition word 
vocabulary and the audio corpus are specified in terms of the 
basic recognition units. The first output of this module is an 
audio corpus which is orthographically and phonetically 
transcribed. The second output is a pronunciation dictionary 
containing phonetic models. The phonetic transcription is a 
work of interpretation which requires a scrupulous attention. 
As an Arabic word may be pronounced by various manners, 
according to its position in the sentence, its morphological 
variability, or simply according to the habits of speakers, we 
can integrate phonetic variants to relax the pronunciation and 
take into account the speech variations. Thus, every Arabic 
word could have several phonetic transcriptions in the 
pronunciation dictionary. 

D.  Training module 

The training of acoustic models is realized under HTK 
toolkit by using embedded training method based on the 
Baum-Welch algorithm [11]. Several experiments were 
designed to evaluate the effect of varying the number of 
embedded re-estimations of the Baum-Welch algorithm and 
the effect of varying the number of Gaussian Mixtures.  

E. Decoding module 

Decoding module is also realized under HTK toolkit [11]. 
Decoding is controlled by a recognition network deduced from 
the grammar, the pronunciation dictionary and the acoustic 
models.  
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This network can model a set of linguistic constraints 
by which the recognition will be guided. It is composed by a 
set of nodes, which represent words, connected by arcs. Each 
node is itself a network denoting the phonetic model which 
is composed by the phonetic units modeled by HMMs. Thus, 
once fully compiled, recognition network ultimately consists 
of HMM states connected by transitions. This hierarchy 
is illustrated in Fig. 3 which exposes three different levels: 
word, model and state. 

 

 
Fig. 3 Recognition network levels [11] 

 
For an unknown input utterance with T frames, every path 

from the start node to the exit node of the network which 
passes through exactly T emitting HMM states is a potential 
recognition hypothesis. The role of the decoder is to assign a 
probability for each of these paths and to find, through the 
network, paths that have highest probabilities. This process is 
provided by the Viterbi algorithm. 

IV. CORPORA 

We have evaluated the performances of the proposed ASR 
system on two SA corpora.  

The first corpus, collected by ourselves, is a multi-speaker 
(i.e., the same set of speakers was used in both of the training 
and testing phases) connected-digits (sequence of 1 to 10 
digits) database. It comprised a small vocabulary of ten digits 
(from zero to nine). The training data, spoken by 41 speakers 
(18 males and 23 females), contains 513 connected-digits 
utterances. The test data was spoken by 24 speakers (8 males 
and 9 females) including 17 speakers having participated in 
the training data construction and 7 speakers not involved in 
the training data construction. The 105 connected-digits 
utterances formed the test data. Our corpus was recorded in a 
normal office environment and sampled at 16 kHz sampling 
rate and digitized to 16 bit resolution. The phonetic 
transcriptions associated to the audio data were realized on the 
basis of Arabic phonemes and well checked to be reflected in 
best the acoustic context. 

The second corpus, already defined by R. Ejbali et al. [5], is 
a speaker-independent (i.e., speakers used for the training 
phase are different from those used for the testing phase) 
continue speech database. It contains the pronunciation of 20 
lists. Each list consists of 10 phonetically balanced Arabic 
sentences [12]. Training data which is about 1 hour and 10 
minutes was spoken by 13 speakers (7 males and 6 females). 
The test data which is about 7 minutes was spoken by 2 
speakers (1 male and 1 female) not involved in the training 

data construction. All data are sampled at 16 kHz sampling 
rate and digitized to 16 bit resolution. Each audio file 
is associated with a transcription text file. 

V. EXPERIMENTS AND RESULTS 

A. Evaluation Criteria 

The proposed system performances are evaluated by the 
recognition percentage defined by the following formula: 

 
% Recognition � �N � O � S � I� N⁄ � 100               (1) 

 
where O, S, I, N are respectively deletions, insertions, 
substitutions and the total number of speech units of the 
reference transcription.  

B. Acoustic Analysis experiments 

The acoustic analysis module is evaluated against various 
points such as the choice of the acoustic analysis method, the 
number of acoustic parameters describing each frame, the size 
and the period of frame windowing.  

In these first series of experiments, the test was performed 
by training continuous-density single Gaussian Mixture (GM) 
phoneme models using the connected-digits corpus collected 
for SA language. 

Training acoustic models is a key step in any ASR system. 
That’s why, results were observed according to the number of 
embedded re-estimations of the Baum-Welch Algorithm (up to 
20 embedded re-estimations). 

 
1. Effect of varying frame windowing 
The first experiment has been conducted to examine the 

effect of varying the size and period of frame windowing on 
phoneme recognition performance. Each frame was 
represented by 12 acoustic parameters augmented by the 
corresponding delta and delta-delta coefficients.  

According to the MFCC (respectively PLP) coefficients, we 
expose in Table I (respectively Table II), the number of 
embedded re-estimations of the Baum-Welch Algorithm 
for which the phonemes recognition rate is maximum for each 
test. 

 
Using either MFCC or PLP features extraction method, 

Table I and Table II show that the best phonemes recognition 
rate is reached by applying 38 ms window size every 18 ms. 

TABLE I 
VARIATION EFFECT OF THE FRAME WINDOWING ON PHONEMES RECOGNITION 

BY USING MFCC COEFFICIENTS 

Frame Windowing 
% Phoneme 
recognition 

Number of embedded re-
estimations 

20 ms every 10 ms 90.23 20 

25 ms every 10 ms 91.51 18 

30 ms every 15 ms 92.61 20 

34 ms every 16 ms 93.01 20 

38 ms every 18 ms 93.68 14 

42 ms every 20 ms 93.32 16 
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2. Effect of varying the number of acoustic parameters 

The second experiment has been conducted to examine the 
effect of varying the number of acoustic parameters on 
phoneme recognition performance. Based on the previous 
experimental results, frame windowing was characterized by 
38 ms window size every 18 ms in this experiment and each 
frame was represented by acoustic parameters augmented by 
the corresponding delta and delta-delta coefficients.  

Fig. 4 (respectively Fig. 5) shows the phoneme recognition 
rate against the embedded re-estimation number of the Baum 
Welch algorithm according to MFCC (respectively PLP) 
coefficients. Fig. 4 illustrates a clear superiority of the curve 
representing the test using 16 MFCC coefficients achieving 
96.5% phonemes recognition for the 18 embedded re-
estimations of the Baum-Welch Algorithm. Fig. 5 shows that 
the maximal phoneme recognition rate is reached by using 16 
PLP coefficients and 16 embedded re-estimations. 

 

 
Fig. 4 Variation of phoneme recognition rate according to MFCC 

coefficient number and embedded re-estimation number 
 

  
Fig. 5 Variation of phoneme recognition rate according to PLP 

coefficient number and embedded re-estimation number 
 

3. Combination of MFCC and PLP coefficients with energy 

In this experiment, we examined the effect of combining the 
MFCC and the PLP coefficients with the normalized energy. 
The combination was made by a simple concatenation of 
acoustic parameters. Results presented in Table III show that 
the maximal phoneme recognition rate is obtained by 
combining 16 PLP coefficients with energy and their 
corresponding delta and delta-delta coefficients and by using 
only 12 embedded re-estimations.  

Based on the previous acoustic analysis experimental 
results, we used in the following experiments, as the best 
features representing every frame of the speech signal, 16 PLP 
coefficients and even the normalized energy coefficient 
augmented by the corresponding delta and delta-delta 
coefficients. 

C. Acoustic Modeling experiments 

In these second series of experiments, the test was 
performed by training acoustic models using the connected-
digits corpus collected for SA language.  

1. Effect of varying speech recognition unit 

In this experiment, we compared between two acoustic 
modeling which are described in section III. Let’s remind that, 
the first acoustic modeling is based on phoneme as speech 
recognition unit. The second acoustic modeling is based on 
two speech recognition unit: phoneme and diphoneme. 
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TABLE III 
COMBINATION EFFECT OF ACOUSTIC PARAMETERS WITH ENERGY ON 

PHONEME RECOGNITION  

Acoustic parameters 
% Phoneme 
recognition 

Number of embedded 
re-estimations 

16 PLP+Energy+∆'+ ∆''  96.5 12 

16 MFCC+Energy+∆'+ ∆''  92.15 14 

 

TABLE II 
VARIATION EFFECT OF THE FRAME WINDOWING ON PHONEMES RECOGNITION 

BY USING PLP COEFFICIENTS 

Frame Windowing 
% Phoneme 
recognition 

Number of embedded re-
estimations 

20 ms every 10 ms 89.78 18 

25 ms every 10 ms 89.42 20 

30 ms every 15 ms 93.18 18 

34 ms every 16 ms 93.58 18 

38 ms every 18 ms 96.34 10 

42 ms every 20 ms 96.27 8 
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The test was performed by training continuous-density 
single GM acoustic models using up to 20 embedded re-
estimations of the Baum-Welch Algorithm. The following 
table presents the best recognition rate and the number of 
embedded re-estimations made for each choice of speech 
recognition unit. 

Results, given in Table IV, show that the choice of 
phoneme as speech recognition unit is better than the choice of 
a combined phoneme and diphoneme unit. These results could 
be interpreted by the insufficient speech data available for 
training acoustic models in the second choice of speech 
recognition unit.   

2. Effect of varying Gaussian number per HMM state   

Based on all the previous experiments, the overall 
recognition performance does not exceed 96.5%. This is due 
to the fact that the single GM HMMs were not able to provide 
a good parametric modeling of the acoustic space. Therefore, 
this experiment examined the effect of varying Gaussian 
number per HMM state. For each test, Gaussian number were 
split by a factor of 2 and HMMs parameters were estimated 
using up to 20 embedded re-estimations of the Baum-Welch 
algorithm. 
 

 
Fig. 6 Variation of phoneme recognition rate according to Gaussian 

number and embedded re-estimation number 
 

Fig. 6 shows that the phoneme recognition performance 
increases with Gaussian number per state. We observed that 
the computational complexity increase exponentially with the 
Gaussian number.  

Since the increase in performance from 8 to 32 Gaussians 
per HMM state did not compensate for the computational 
complexity, a decision was taken to use only 8 Gaussians. 
Hence, we concluded that by using 8 Gaussians and 10 
embedded re-estimations of the Baum-Welch algorithm, 
satisfactory performance (98.62% phonemes recognition) can 
be achieved with reasonable computational complexity. 

D. Experiment for continue SA speech recognition 

In this section, we evaluated our phoneme-based ASR 
system on continue SA speech recognition. The test was 
performed by training acoustic models using the speaker-
independent continue SA speech corpus collected by Ejbali et 
al. [5] and described in section IV. As we noted in section I, 
Ejbali et al. had developed a phoneme-based ASR system 
which was evaluated on the same corpus.  

Table V compares the characteristics and the performances 
of these two systems. It shows that the phoneme recognition 
rate reached by our system is about 94% which is higher than 
that obtained with the Ejbali et al.system. 

VI.  CONCLUSION AND PERSPECTIVES 

The main contribution of this work is the proposition of a 
HMM-based ASR system suited for the SA language. The 
performance of this system has been evaluated using a 
speaker-dependent SA connected-digits corpus and a speaker-
independent continue SA speech corpus. A well-established 
study was conducted to define the best parameters of a 
performant ASR system for SA language. For instance, the 
utilization of 16 PLP coefficients, combined with energy and 
their corresponding delta and delta-delta coefficients and 
extracted from each 38 ms frame size every 18 ms frame 
period, achieve the best informative acoustic parameters 
representing an audio frame. Moreover, the utilization of 8 
Gaussians per HMM state and the application of 10 embedded 
re-estimations of the Baum-Welch algorithm improved the 
system’s performance. Under these parameter definition, the 
phoneme recognition rate is about 98.62% using the SA 
connected-digits corpus and 94.02% using the continue SA 
speech corpus. 

In a future work, we intend improving the proposed system 
by using a large vocabulary linguistic model which will be 
automatically generated from SA textual corpus. We will 
furthermore evaluate our system on a large vocabulary SA 
speech corpus. 
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TABLE IV 
EFFECT OF VARYING SPEECH RECOGNITION UNIT ON PHONEME RECOGNITION  

Speech recognition unit % Recognition 
Number of embedded 

re-estimations 

Phoneme 96.5 12 

Phoneme and diphoneme 96 14 

 

TABLE V 
COMPARISON OF OUR SYSTEM WITH THE SYSTEM OF EJBALI ET AL 

ASR 
system 

Acoustic 
parameters 

Number of 
Gaussian 
per HMM 

state 

Number of 
embedded 

re-
estimations 

% 
Phoneme 

recognition 

System of 
Ejbali et al. 

12 PLP+ 
Energie+ 

∆'+ ∆'' 
 

64 10 80.36 

Our 
system 

16 PLP+ 
Energie+ 

∆'+ ∆'' 

8 10 94.02 
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