
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:2, 2012

433

the Earliness-Tardiness No-Wait Flowshop
Scheduling Problem

1
Abstract—In this researcha particle swarm optimization (PSO)

algorithm is proposedfor no-wait flowshopsequence dependent
setuptime scheduling problem with weighted earliness-tardiness
penalties as the criterion (��|���, �	
�| ∑ �
�
 � �
"�
).The
smallestposition value (SPV) rule is applied to convert the continuous
value of position vector of particles in PSO to job permutations.A
timing algorithm is generated to find the optimal schedule and
calculate the objective function value of a given sequence in PSO
algorithm. Twodifferent neighborhood structures are applied to
improve the solution quality of PSO algorithm.The first one is based
on variable neighborhood search (VNS) and the second one is a
simple one with invariable structure. In order to compare the
performance of two neighborhood structures, random test problems
are generated and solved by both neighborhood
approaches.Computational results show that the VNS algorithmhas
better performance than the other one especially for the large sized
problems.

Keywords—minimization of summation of weighed earliness and

tardiness, no-waitflowshop scheduling, particle swarm optimization,
sequence dependent setup times

I. INTRODUCTION

N this research, a no-wait flowshop scheduling

Sriskandarajah[1] mentioned severalapplications of no-
waitscheduling problems in different industries such as steel,
plastic modeling, silverproduction, chemical, and
pharmaceuticalindustry. In a NWFSP, it is assumed that n jobs
areprocessed on a flowshop withm machineswithout
interruption on a machine or between machines.In other
words, when the process of a job starts on the first machine,its
process should not be interrupted until its process on the last
machine is completed without waiting in the line of any
machine.

1SedigheArabameri is with the Department of Industrial Engineering,Sharif
s_arabameri@ie.sharif.edu).

nsalmasi@sharif.edu).

It is assumed that the setup time of each job on each

machine depends on the previous processed job on the
machine. The goal is to find the best sequence of processing
jobs on machines in order to minimize the summation of the
weightedearliness and tardiness. The research problem is
notedas��|���, �	
�| ∑ �
�
 � �
"�
 based on Pinedo[2].
NWFSPwith makespan criterion is proved to be NP-hard by
Rock[3].Thus, our proposed research problem is NP-hard too
since it deals with a more complex objective function as well
as considering sequence dependent setup times for jobs on
each machine.

Therefore, heuristic and metaheuristic algorithm sare
needed to solve industry sized problems. Hall and
Sriskandarajah[1] provide a review of all research performed
in no-waitscheduling problems before 1996. They study the
computational complexity as well as available heuristic
algorithms for no-wait and blocking scheduling problems.
Gangadharan and Rajendran [4] and Rajendran [5] developtwo
heuristic algorithms to solve NWFSP with makespan criterion
and showthat their heuristicsoutperform than existing heuristic
algorithms in the literature.Dileepan [6] consider two-machine
NWFSP with maximum lateness as criterion and present
several theoretical results for the proposed research problem.
Wang and Cheng [7] study the two-machine NWFSPwith
batch setups and develop a heuristic algorithm to minimize
maximum lateness as criterion. Allahverdi and Aldowaisan
[8]consider NWFSP with weighted sum of makespan and
maximum lateness criterion. They propose a hybrid simulated
annealing algorithm and also a hybrid genetic algorithmfor the
proposed research problem. They also develop a lower bound
for the case of the two-machine problem and use that in a
branch and bound algorithm. Wang et al. [9] apply an
accelerated tabu search algorithm with three different
neighborhood strategies to solve NWFSP with maximum
lateness criterion. Pan et al. [10] present a novel discrete
differential evolution(DDE) algorithm for solving NWFSP
with makespan and maximum tardiness criteria. They develop
a local search algorithm to incorporate into the DDE algorithm
to balance global and local exploitation.In recent years a
significant interest has been arisen in applyingparticle swarm
optimization (PSO) algorithm in scheduling problems. Liu et

Sedighe Arabameri, Nasser Salmasi

I

A Particle Swarm Optimization Approach for

problem(NWFSP) has been investigated. Hall and

University of Technology, Tehran, Iran. e-mail:
Nasser Salmasi is an associate professor in the Department of Industrial

Tehran, Iran. e-mail:
Engineering at Sharif University of Technology, P.O. Box 11155-8639,

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:2, 2012

434

al. [11] and Pan et al. [12] examine the performance of PSO in
NWFSP with makespan as objective function.Pan et al. [13]
propose a discrete PSO algorithm to solve the NWFSP with
both makespan and total flow time criteriasimultaneously.
They hybridize discrete PSO with variable neighborhood
descent (VND) algorithm to improve the solution quality.
They also propose several speed-up methods for neighborhood
structures. Pan et al. [14] present a novel multi-objective PSO
algorithm for solving NWFSP with makespan and maximum
tardiness criteria at the same time. Tasgetiren et al. [15]
develop a PSO algorithm for the single machine total weighted
tardiness scheduling problem. They use the smallest position
value (SPV) rule, a non-decreasing order mechanism, to
convert a position vector of a particle to a job permutation.
With the same approach, Tasgetiren et al. [16] solve the
permutation flowshop problem with makespan and maximum
lateness minimization criteria. They hybridize a local search
algorithm based on variable neighborhood search (VNS) with
PSO algorithm and show that VNS improves the performance
of the PSO algorithm for the proposed research problem. To
the best of our knowledge there is no research in NWFSP with
minimization of total weighted earliness and tardiness as
objective function. This is our motivation to apply PSO for no-
wait flowshop scheduling problems with minimization of total
weighted earliness and tardiness as objective function.

In this research we apply SPV method to convert
continuous PSO to discrete PSO. We also develop a VNS
algorithm based on Tasgetiren et al. [16] to improve the results
of PSO algorithm for the proposed research problem.The
notationsused in this research are as the followings:
n: the number of jobs should be processed
m: the number of machines in the flowshop cell �	
: the process time of jobj on machine i �	
�: the setuptimeof job � onmachine�ifjob � is the
immediatelyprecedingjob(sequencedependentsetuptime) �
: the due date of job j �
: the earliness penalty of job j for each time unit of earliness �
": the tardiness penaltyof job j for each time unit of tardiness

The goal is to determine the best sequence of processing the
jobs on machinesto minimize theweighted earliness-tardiness
penalties.

II. PARTICLE SWARM OPTIMIZATION

PSO is a population based optimization algorithmwhich is
based on metaphor of social interaction and communication
such as bird flocking and fish schooling (Pan et al. [12]).
Eberhart and Keneddy[17] introduce
thismetaheuristicalgorithm for the first time to optimize
various continuousnonlinear functions.We apply this
metaheuristic algorithm to solve the proposed research
problem.

PSO is an iterative algorithm starts with a number of initial
solutions, known as particles. The number of initial particles is
called p-size. Each particle is presented by two n dimensional
factors as:position and velocity. Let �	� � ��	�� , �	�� , … �	��
denotes the position of the ithparticle in

thetthiterationwhere�	
� represents the jthdimension of the n-

dimensional position vector and!	� � �"	�� , "	�� , … "	��
denotesthe velocity of the ithparticle at the
tthiterationwhere"	
� represent the jth dimension of the n-
dimensionalvelocityvector.In this research, the dimension of
search space i.e., n, is the number of jobs. Allparticles move
through the n-dimensional searching space by learning from
themovement of swarm population. For this reason, particles
move toward areas with better objective function values.The
position with the best objective function value observed ever
by each particle is presented by p-best. The best position
observed ever by all particles is called g-best. For the
ithparticle in the tthiteration, these parameters are presented by �	� � �#	�� , #	�� , … #	�� and %� � �&	� , &	� , … &	� , respectively.
Since particles move toward better positions during searching
process, the velocity of each particle changes based on the
values of p-best and g-best vectors in each iteration. The range
of variation of the velocity vector members should be in a
predefined range which is determined with a parameter
calledVmax. In this research based on extensive experiments
Vmax is chosen equal to 4 and thus, the range of the velocity
vector membersshould be in �'4, 4 interval. The velocity of
theith particle in the t+1th iterationis updated using the previous
velocity (!	�) and the previous position (�	�) as following: !	�)� � � * !	� � +� * ,� * -�	� ' �	�. � +� * ,� * -%� ' �	�.-1.

Where � is the inertia weight which controls the impact of
the velocity in the tth iteration in calculating the velocity in the
(t+1)th iteration for the ith particle. Moreover +� and +� are
constants called acceleration coefficients. ,�and,� are random
numbers generated uniformly between �0,1 .The position of
the ith particle at the (t+1)th iteration is updated based on (2). �	�)� � �	� � !	�)� -2.

A. Initial population

The number of initial population is presented by p-
size.Several efficient rules to generate the initial population in
PSO algorithm are applied in this research.The first two
particles are generated based on earliest due date (EDD) and
Longest Tardiness/Earliness Rate (LTER) rules. According to
EDD rule, the jobs are ordered in increasing order of �
 and
according to LTER rule, the jobs are ordered in decreasing
order of �
" �
2 . 2+0.1*p-sizeparticles are generated by
assigning jobs with higher tardiness/earliness ratesto the first
slots and the jobs with lower rates to the last slots. The rest of
initial particles are generated randomly.

B. Conversion continuous positions to a sequence of jobs

The SPV rule is appliedto find the sequence of jobs ofa
particle at each iteration. The position vector of each particle
is an n dimensional vector.Each element of the vector is
related to a job.To determine this relation based on SPV rule,
all members of the position vector are sorted from the smallest
to the largest value. For instance, assume that in the tth
iteration the position vector of the ith particle is Xi

t = [0.25,
0.08, 0.92, 0.53, 0.32]. In this case the sequence of processing

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:2, 2012

435

jobs isJ2-J1-J5-J4-J3for this particle by sorting the jobs based
on their position values.

C. Timing algorithm

The objective function value of each particle at each
iteration is used to update the values of p-best and g-best.
Since the objective function of the research is not a regular
one, finding the optimal schedule of processing the jobs even
for a given sequence is not an easy task. Thus, a timing
algorithmis proposed to find the optimal schedule as well as
the objective function value of each sequence generated at
each iteration. The idea is based on Szwarc and
Mukhopadhyay [18]. They propose an exact algorithm to
schedule all jobs in a given sequence for a single machine
scheduling problem to minimize total weighted earliness and
tardiness penalties. We generalize this algorithm to our
proposed research problem. Assume that a sequence of jobs
{1, 2, …,n} is given. As the first step,the jobs are scheduled
with no delay from the beginning of the planning horizon with
respect to no-wait property. This schedule is called as the
initial schedule. It is clearthat this schedule provides the
earliest time that a job can be processed in the given sequence.
In theinitial schedule, there might exist idle timesbetween
processing two adjacent jobs on machines because of the no-
wait property. As the second step, the jobs are grouped as
clusters. The clustering of jobs is based on a rule guarantees
that in the optimal solution among the process time of jobs
belong to a cluster, it does not exist any idle time, except the
idle times needed to satisfy the no-wait property.Then, the
start time of processing of these clusters is shifted forward in
several iterations in order to improve the objective function
value of the sequence. At each iteration, a number of clusters
are selected to shift forward. This shift makes all jobs in these
clusters to be processedlater than the initial schedule. This
shift causesadditional idle timeson all machines. These
imposed idle timesare called extra idle times. Assume that 3
4
is the completion time of the jth job in the initial schedule. The
following lemma which is a generalization of a lemma
proposed by Szwarc and Mukhopadhyay [18] is usedto
describe the timing algorithm.

Lemma (1): If �
)� ' �
 5 3
)�4 ' 3
4, then there is no extra
idle time between processing jobs j and j + 1 on all machines
in the optimal schedule. In other words, job j+1 is processed at
the earliest possible time after job j by considering no-wait
constrainton all machines.

Proof: The right hand side of the inequality, i.e., 3
)�4 '3
4 is theminimum possible difference between the completion
time of two adjacent jobs j and j+1 at the optimal schedule.
We show that in all possible cases, this minimum difference is
kept at the optimal schedule for each two adjacent jobs that the
inequality stated in lemma (1) holds. The validity of the
lemma is discussed in all possible cases. Assume that 3

denotes the completion time of the jth job in the optimal
schedule.

Case 1: job j is completed early (�
 6 3
). Assume that job
j+1 is early too i.e., �
)� 6 3
)�. In this case if job j+1 is

shifted forward to make an extra idle time between processing
the jobs, the objective function is reduced by shifting job j to
the right and eliminate the idle time between processing two
jobs. Assume that job j+1 is tardy i.e., �
)� 8 3
)�, then
shifting either job j or job j+1 backward or forward to make an
extra idle time, increases the objective function value. If �
)� � 3
)�, then shifting job j backward or job j+1 forward
to make an extra idle time increasesthe objective function
value.

Case 2: job j is completed at its due date (�
 � 3
). If �
)� 6 3
)�, the inequality of lemma (1) does not satisfy.
Thus, the only situation that lemma (1) can be used is the case
in which job j+1 is late or on time i.e., �
)� 5 3
)�. If job j+1
is shifted to the right or job j is shifted to the left and make an
extra idle time between processing the two jobs,in both cases
the objective function value is increased.

Case 3: job j is completed after its due date (�
 8 3
). If job
j+1 is early or on time (�
)� 9 3
)�), the inequality of lemma
(1)is not satisfied. The inequality of lemma (1) can be valid
ifjob j+1 is tardy i.e., �
)� 8 3
)�. If job j+1 is shifted to the
right, the objective function is increased by increasing
tardiness of job j+1. If job j is shifted to the left and make an
extra idle time between processing the two jobs, job j+1 can
be shifted to the left to reduce the objective function value.

A sequence of jobs such asu,…,v is called a jobcluster if for
each pair of adjacent jobs j and j+1, lemma (1) holds and for
job j=u-1 and job j=vthe lemma (1) does not hold. Therefore,
according to lemma (1) all jobs in a cluster should be
processed without any extra idle time.

The relation between the earliness of two early jobs orthe
tardiness of two tardy jobs in a cluster isdefined based on a
lemma from Szwarc and Mukhopadhyay [18] as the
following:

Lemma (2):In a job cluster, the early jobs precede the tardy
jobs. Moreover, if jobs j and j+1 both are early �
 9 �
)� and
if both are tardy �
 5 �
)�.

Each sequence of processing jobs can be decomposed into a
set of l clusters such as ,�, ,�, … , ,:. It is clear that the
completion time of all jobs in a cluster increase by shifting the
process of the cluster to the right. The goal is to determine the
length of time that each cluster should be shifted to the right
(compared to the schedule provided in the initial schedule)in
order to find the optimal schedule for a given sequence.
Consider a cluster that consists of a couple of jobs.The jobs
inthe cluster may be early, on time, or tardy. According to
lemma (2), the early jobs precede the tardy jobs.Assume
that�;is the last job that is early in the clusteri.e., the job with
the smallest earliness in the cluster. Thus, all jobs before job �;, if there exist any, are early and the earliness of those
jobsare more than the earliness of job �;; and all jobs after job �;, if there exist any, are on time or tardy. Consider a cluster
that consists of jobs k,…,h. Following notations are needed in
the proposed method:

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:2, 2012

436

∆
� = �:

:>�
' = �:" � � �, … , ? -3.A

:>
)�

Where ∆
 is calculated for every job belonging to a cluster.
It is clear that the value of ∆
 is fixed for each job during all
iterations. According to timing algorithm, at each iteration, a
set of clusters are determined to shift forward. A set of
consecutive clusters such as ,B, ,B)�, … , ,: are called a block if
they are chosen to be shifted to the right with each other inan
iteration. Let: �-C. � �
D � �
D ' 3
D -4.

∆-C. � ∆
D� EF��G
G
D∆
 -5. �-C.presentsthe earliness of the last early job in the
fthcluster. Itrepresents the maximum acceptable shifting unit of
time for the fthcluster belonging toa block that guarantees the
improvement of objective function value.Based on this
definitionE��I�-J., . . . , �-K.L represents the appropriate
shifting unit of time for all clusters of the block since it is
promising for all clusters.∆-C.presents the maximum value of ∆
among the early jobs.∆-C.is used to calculate the value of
decreasing objective function at an iteration. If none of the
jobs in the fth cluster is early then �-C. and ∆-C.are replaced
by ∞ and ' ∑ �:"A:>� , respectively. If at least one early job
exists at each cluster of a block, then a shift of the entire block
by one time unit reduces the total cost by ∑ ∆;.:;>B

The timing algorithm proposed for the research problem is
an iterative algorithm which identifies a block of clusters at
each iteration to be shifted. This block is shifted with the
length of the smallest �-C. of all clusters in the block. The
algorithm is stopped if no such block is found.

The timing algorithm can be summarized as follows:
Step 1.

Schedule all jobs in the earliest possible time. Call this
schedule as the initial schedule. Let 3
4 be the completion time

of job jin the initial schedule. Set 3
 � 3
4 for all jobs. Create
the clusters based on lemma (1) and compute M-C. for each
cluster.
Step 2.
Find the smallest s such that ∑ ∆-C. 5 0B;>� .
Assign3
 for each job j in the first s clusters.
If J � K then STOP, otherwise, go to Step 3.
If no such J exists, then go to Step 4.
Step 3.
Remove the first J clusters from the list.
Reindex all remaining clusters and jobs.
Go to Step 2 to consider the set of remaining clusters.
Step 4.
Find E��-�-1., . . . , �-K...
AddE��-�-1., . . . , �-K.) to all 3

Eliminate all early jobs that are no longer early.
Update �-C.and M-C..
Go to Step 2.

III. NEIGHBORHOOD SEARCH APPROACH

In this research two different neighborhood search
approaches are applied. The first one is based on VNS
algorithmproposed by Tasgetiren et al. [16] and the second
one is based on a simple neighborhood structure called inset
neighborhood. In both neighborhood search approaches, at
each iteration, if the objective function value of the new
position of a particle has a chance to enhance the value of p-
bests or g-best, a neighborhood search is performed around the
new position to find better positions. If the neighborhood
search finds better positions, the better one is considered as the
new position of the particles and p-bests or g-best are updated
based on the new position.After updating all p-bests by
neighborhoodsearch approach and identifying the new g-best,
a neighborhood search is performed around the new g-best to
find a better one.Tasgetiren et al. [16] hybridize PSO with
VNS to enhance the PSO algorithm performance to solve the
permutation flowshopscheduling problem to minimize both
makespan and maximum lateness criteria. Our suggested
neighborhood search methods in VNS algorithm are as
follows:

1) Remove job in thekth position and insert it to the hth
position (insert(k,h)).

2) Swap two jobs between thekth and thehth positions
(swap(k,h)).

3) Interchange two adjacent jobs in thekth and thek+1th
positions.(sub_interchange(k,k+1))

In VNS algorithm all three structures are used. The VNS
algorithm is the customized version of the one proposed by
Tasgetiren et al. [16]. There are two major differences
between our proposed VNS and the one proposed
byTasgetiren et al. [16]. The first difference is applying VNS
for p-bests rather than g-bestat each iteration. The second one
is adding sub_interchange structure to VNS algorithm. In the
proposed method an insert (swap) moveis performed around
the permutation as the first step which is either p-bests or g-
best. Ifthe objective function value of the new generated
solution is better than the original one, the insert (swap)
moveis continued around the new improved
solution.Otherwise,the other neighborhood generated
structure, i.e., swap (insert) moveis performed on the best
found solution so far. Moreover, after each improvement by
insert (swap) move, sub_iterchangeis performed to find better
solutions.

The second neighborhood structure is called insert
neighborhood. In this approach,at each iteration, a job is
randomly selected and is removed from its current position
and then inserted to another place in the sequence
randomly.The details of two proposed neighborhood search
approachesare shown in Appendix A.

The number of iterations for both neighborhood structures
is called max-iter. The value of max-iteris determined based
on extensive experiments.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:2, 2012

437

IV. DESIGN OF EXPERIMENTS FOR PARAMETER SETTING

Thevalues of parameters related to the PSO algorithmare
determined by experimental design techniques. Test problem
instances are generated randomly in different sizes from small,
medium, and large size. The problems with at most 20jobs are
categorized as small sized problems. Medium sizedproblems
are the ones with21 to 60jobs and large sizedproblems are
those with 61to 100 jobs. In this research, problems with two,
three, and six machine are considered. These problems are
generated based on Salmasi et al. [19] suggestions about
generating test problems for flowshop scheduling problems. In
the interest of time, we perform the Taguchi method (Ross
[20])to identify the appropriatefactors levels.InTaguchi
method a set of orthogonal array is developed. These trials are
a subset of full factorial design trials which reflect full
required information. Taguchi defines two major sets of
factors, controllable and uncontrollable noise factors.
Thefactors used to generate test problems i.e., the number of
jobs and the number of machines in a problem instance are
considered as a noise factor with3×3levels(three levelsfor the
number of jobs and three levelsfor the number of
machines).The goal is to find the best levels of controllable
factors in PSO algorithm with both neighborhood search
approaches.For each developed PSO algorithm, i.e.,
PSOVNSand PSOinsertthree controllable factors exist. These
factors are presented in Table I and Table II, respectively. The
goal is to find the best levels for these factors. As shown in
Table I, all controllable factors in PSOVNSare defined in three
levels.

TABLE I
FACTORS AND THEIR LEVELS IN PSOVNS

Level factors

Neighborhood
 Structure(A)

Inertia
Weight(B)

p-size(C)

1 Insert+Swap(0.1) 0.7298 20

2 Insert+Swap(0.5) 0.4-0.9 30

3 Swap+Insert(0.1) 0.4-1.2 50

The first factorwhich is called as Neighborhood

structure(A) represents the order of the first two neighborhood
move and the maximum number of iterationsfor theVNS
algorithm.In the first level of factor A (Insert+Swap(0.1)) as
the first step, the insert (k,h) move is performed. If this move
fails to provide solutions with better objective function value,
the swap (k, h) move is performed. In this level the number of
iterations is set to max-iter=0.1*n.The second level of factor A
is similar to the first one with max-iter= 0.5*n.The structure of
the third level is vice versa. As the first step, theswap
(k,h)move is performed. If this move fails to provide a
solution with better objective function value,theinsert
(k,h)move is performed. In this level the number of iterations
is set to max-iter=0.1*n.

The second factor is calledinertia weight. At the first level,
the value of w is considered as a fixed number i.e., 0.7298 in
all iterations. In other words, thisconstant is the coefficient of
all components in equation (1). This factor is helpful in

convergence of the PSO algorithm according to the following
equations:(Poli et al. [21])

N � 2
3 ' 2 � √3� ' 43 , 3 � +� � +� 6 4 -6.

!	�)� � N * �!	� � +� * ,� * -�	� ' �	�. � +� * ,�* -%� ' �	�. -7.

We set +� and +� to 2.05 to satisfy the condition. -3 � +� � +� � 2.05 � 2.05 � 4.1. R N � 0.7298
The value of inertia weight for the other two levels are set

as ranges presented in Table II. The formula used to generate
the value of wat each iterationin these two levels is presented
by equation (8). In this formula, wmax and wmin are the highest
and the lowest values in the range, respectively. For instance,
in the second level, these parameters get the values 0.9 and
0.4, respectively. Iterationrepresents the number of current
iteration and max_iterationrepresents the maximum number of
iterations.

� � ��UV ' -��UV ' ��	�. * ��W,F��X�max _��W,F��X� -8.

It is clear that by increasing the number of iterations, the
effects of g-best is increased compared to the effect of p-best
in finding new position for each particle since the value of w is
increased by performing more iterations.

The third factor(C)indicatesthe size of the initial
population(p-size) which is defined at three levels 20,30, and
50.

The controllable factors of PSOinsertalgorithm and relevant
levels are presented in Table II. The first factor which is called
thesearch strength represents the number of iterations
ofPSOinsertalgorithm. The number of iterations is set to max-
iter=0.25*n for the first level.The second and the third levels
of factor A are similar to the first one with max-iter= 0.50*n
and max-iter=n, respectively.The last two factors of
PSOinsertalgorithm are similar tothe last two factors of
PSOVNSalgorithm.

TABLE II
FACTORS AND THEIR LEVELS IN PSOINSERT

Level factors

Search

 strength (A)
Inertia

Weight(B)
p-size(C)

1 0.25 0.7298 20

2 0.50 0.4-0.9 30

3 1.00 0.4-1.2 50

The stopping criteria in Taguchi methodisconsidered as the

time spend to solve the problem. In this research, the time
spend to solve each problem instance is set to 20,60, and 180
seconds for small,medium and large sizedproblems
respectively. c�andc� are set to 2 in cases which do not need to
satisfy condition c� � c� 6 4, i.e., when the value ofw is
considered as 0.7298 according to equation (6).There are 3×3
classes (three classes for the number of jobs and three classes
for the number of machines) for all problems.If two
probleminstances are generated for each class randomly; thus,
18 instances should be generated.Since the position and the
velocity vectors are generated randomly at each run and the
solution of the problem may be different at each run, we run

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:2, 2012

438

each of 18 instances two times to gain better result.If we apply
full factorial design we need to perform 27 treatments (three
controllable factors with three levels for each). So
18×2×27=972 instances should be solved totally.Taguchi
suggest orthogonal array ^_ for an experiment with three
factors each of them in three levels. Array^_ is given in Table
III. Taguchi recommends analyzing variation using signal to
noise ratio(S/N).Since the goal is to minimize the objective
function value, the appropriate S/N ratio formula is suggested
as equation (9):

S N⁄ � '10 * log�f g1� = h	�
�

	>�
i -9.

This ratio indicates the amount of variation in the response
variable sincethe signal denotes the desirable value and noise
denotes the undesirable value(standard deviation).

TABLE III
ORTHOGONAL ARRAY L9 DESIGN

Fig.1 and Fig.2 illustrate the results of Taguchi method. As

shown in Fig. 1 and Fig.2, level 1 for all factors in PSOVNSand
level 2 for all factors in PSOinsertidentify the best level. The
result of Taguchi method is summarized in Table IV and
Table V.

Fig. 1The S/N ratio of parameters in PSOVNS

Fig. 2 The S/N ratio of parameters in PSOinsert

TABLE IV
THE BEST LEVEL FOR ALL FACTORS IN PSOVNS

 Factors

Neighborhood
 Structure(A)

Inertia
Weight(B)

p-size(C)

best
level

Insert+Swap(0.1) 0.7298 20

TABLE V
THE BEST LEVEL FOR ALL FACTORS IN PSOINSERT

 Factors

Search

Strength(A)
Inertia

Weight(B)
p-size(C)

best
level

0.50 0.4-0.9 30

V. TEST PROBLEM SPECIFICATION

Based on Salmasi et al. [19] theratioofsetup times of jobs on
consecutive machinesis an important factor in generating test
problems for flowshop scheduling problems.They consider
three different levels for this factor. In a sequential machine
pair if the setup time of jobs in the first machine is less than
the setup time of jobs in the second one, the ratio of setup
times belongs to the first level. If the setup time of jobs in the
first machine is the same as the setup time of jobs in the
second one, the ratio of setup times belongs to the second
level and if the setup time of jobs in the first machine is larger
than the setup time of jobs in the second machine,the ratio of
setup timesbelongs to the third level. These levels are shown
in Table VI-VIII for two, three, and six machine
problems,respectively.Thus,there are three andnine different
levels for two and three-machine problems, respectively. For
six-machine problems since the number of levels is increased,
Salmasi et al. [19] suggest applying one factor for the ratio of
setup times for all consecutive machines in the interest of
time. All setup times in sequential machine pairsare
considered at the same level. Thus, for two-machine problems
there are 3×3 different levels (three levels for the number of
jobs and three levels for the number of setup time ratio). For
three machine problems there are 3×9 different levels(three
levels for the number of jobs and nine levels for the number of
setup time ratio) and3×3 different levelsfor six-machine
problems (three levels for the number of jobs and three levels
for the number of setup ratio). Three problem instances are
generated for each level of two, three, and six-machine
problems.

-105.600

-105.389

-105.178

-104.968

-104.757

-104.546

-104.335

-104.124

1 2 3

S
/N

 R
at

io

Factors levels

Neighborhood
Structure(A)

Inertia Weight(B)

P_Size(C)

-100.966

-100.764

-100.563

-100.361

1 2 3

S
/N

 R
at

io

Factors levels

Search Strength

Inertia Weight

p_size

Factors A B C

trial 1 1 1 1

trial 2 1 2 2

trial 3 1 3 3

trial 4 2 1 3

trial 5 2 2 1

trial 6 2 3 2

trial 7 3 1 2

trial 8 3 2 3

trial 9 3 3 1

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:2, 2012

439

TABLE VI
THE SETUP TIME OF EACH MACHINE ON TWO-MACHINE PROBLEMS

Machine Level 1 Level 2 Level 3

M1 [1,50] [1,50] [17,67]

M2 [17,67] [1,50] [1,50]

TABLE VII
THE SETUP TIME OF EACH MACHINE ON THREE-MACHINE PROBLEMS

Machine Level 1 Level 2 Level 3

M1 [1,50] [1,50] [45,95]

M2 [17,67] [1,50] [17,67]

M3 [45,95] [1,50] [1,50]

TABLE VIII
THE SETUP TIME OF EACH MACHINE ON SIX-MACHINE PROBLEMS

Machine Level 1 Level 2 Level 3

M1 [1,50] [1,50] [300,350]

M2 [17,67] [1,50] [170,220]

M3 [45,95] [1,50] [92,142]

M4 [92,142] [1,50] [45,95]

M5 [170,220] [1,50] [17,67]

M6 [300,350] [1,50] [1,50]

The process time of jobs on machines are generated from

uniform distribution in the interval of [1,20].The earliness
penalties for earliness unit and the tardiness penalties for
tardiness unit are generated from [1,30] uniformly.The due
dates are generated as follows:

�^j k1 ' � ' l
�m , ^j-1 ' � � l

�. ; WhereLB is an

approximation of the earliest possible completion time of the
last job. T and Rare selected from the set{0.2,0.5,0.8}
randomly.Since the combinations of{0.8,0.5} and {0.8,0.8}
provide negative values for due dates, these combinations are
ignored.

The stopping criteria for the problems are defined as
follows:

• The maximum number of iterationsis set to 1000,
2000, and 5000 for small, medium and large sized
problems, respectively.
• The maximum number of iterations without
improvement is set to 0.7*max-iteration for all problems.
• The CPU time is set to 600 seconds for all problems.

VI. EXPERIMENTAL RESULTS
Both proposed PSO algorithms were coded in C++ and run

on an AMD phenom (tm) 9600 Quad-Core Processor 2.31
GHz PC with 2 GB memory. The performances of the two
proposed algorithms are compared as paired t-test for two,
three, and six machine problems, separately. The results of the
experiment with SPSS software are presented in Appendix B
(Table XII-XIII). The p-value for two-machine problems is
equal to 0.358 implying that there is no evidence about
existing any difference between the performance of two
proposed algorithms in two machine problems. But the
performance of these two algorithms is significantly different
in three and six-machine problems since the p-value for these
experiments are almost equal to zero. Since the average
objective function values provided by PSOVNSare lower than

the PSOinsert we can conclude that PSOVNS has a better
performance than PSOinsert for three and six machine problems.
The result of the experiments is shown in Table IX-XI. The
percentage error is calculated according to the following
formula: #W,+W��F&W W,,X, � -�?W ��n FK&X,��?E JXKo��X� ' �?W pWJ� JXKo��X�.�?W pWJ� JXKo��X� * 100

TABLE IX
THE AVERAGE PERCENTAGE ERROR FOR TWO-MACHINE PROBLEMS

 Percentage error(%)
M1/M2
Ratio

size PSOVNS PSOinsert

 Small 0.4 0.0

Level 1 Medium 0.0 0.4

 Large 0.0 0.4

 Small 0.0 1.1

Level 2 Medium 4.4 3.1

 Large 0.0 3.7

 Small 0.0 4.1

Level 3 Medium 1.4 1.6

 Large 0.0 1.0

Average 0.69 1.71

TABLE X

THE AVERAGE PERCENTAGE ERROR FOR THREE-MACHINE PROBLEMS
 Percentage error(%)

M1/M2
Ratio

M2/M3
Ratio

size PSOVNS PSOinsert

 Small 0.9 0.0

 Level 1 Medium 1.1 0.0

 Large 0.0 0.0

 Small 0.0 0.0

Level 1 Level 2 Medium 3.6 2.0

 Large 0.0 6.4

 Small 0.1 9.8

 Level 3 Medium 1.0 7.7

 Large 0.8 3.3

 Small 0.0 0.0

 Level 1 Medium 1.5 0.0

 Large 0.0 0.0

 Small 0.0 0.0

Level 2 Level 2 Medium 1.6 2.2

 Large 2.2 4.7

 Small 0.0 6.4

 Level 3 Medium 1.5 4.2

 Large 0.2 1.7

 Small 0.0 0.0

 Level 1 Medium 0.0 0.2

 Large 0.0 1.1

 Small 0.0 1.1

Level 3 Level 2 Medium 0.0 3.1

 Large 0.0 3.5

 Small 0.0 3.5

 Level 3 Medium 1.9 1.4

 Large 0.0 0.1

Average 0.61 2.31

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:2, 2012

440

TABLE XI
THE AVERAGE PERCENTAGE ERROR FOR SIX-MACHINE PROBLEMS
 Percentage error(%)

M1/M2
Ratio

size PSOVNS PSOinsert

 Small 0.0 0.1

Level 1 Medium 0.0 0.9

 Large 0.0 1.3

 Small 0.0 1.2

Level 2 Medium 1.4 1.2

 Large 1.9 3.0

 Small 0.0 6.0

Level 3 Medium 0.0 5.2

 Large 0.0 3.0

Average 0.37 2.43

VII. CONCLUSIONS

In this research we approach the no-wait flowshopsequence
dependent setup time scheduling problem with minimization
of weighted earliness-tardiness as the objective for the first
time.Since the research problem is NP-hard, a metaheuristic
algorithm based on PSO algorithm is proposed to solve the
research problem. Two different neighborhood approaches
called PSO with variable neighborhood search (PSOVNS) and
PSO with invariable neighborhood search (PSOinsert) are
applied to improve the performance of proposed PSO
algorithm. A timing algorithm is customized to the proposed
research problem to find the optimal schedule for a given
order of jobs in PSO algorithm. Taguchi method is applied to
determine the optimal level of parameters in PSO algorithm.
Experimental results show that the performance of PSOVNS is
better than PSOinsert in the problems with three and six
machine problems.
Appendix A: The pseudo code of Neighborhood search
approach

The pseudo code of VNS algorithm: J � #W,Eo�F��X� �?�+? FJ�W� �X JWF,+? F,Xo�� J � J; ,� � ,F��-1, �.; ,� � ,F��-1, �.; ,� r ,� ^XX# � 0;
do { �+Xo�� � 0; EF�_EW�?X� � 2; �Xs �C-�+Xo�� � � 0. �?W� sJ� � ��JW,�/J�F#-,�, ,�.CX, J;} �C -C-J�. 5 C-J..�?W� s �+Xo�� � 0; J � J�; CX,-C� � 1; C� 5 � ' 1; C� � �.s J� � Jop_���W,+?F�&W-C�, C� � 1.CX, J; �C -C-J�. 5 C-J..�?W� sJ � J�; u u u WKJW s�+Xo�� � �; u �C-�+Xo�� � � 1. �?W� s J� � J�F#/��JW,�-,�, ,�.CX, J;} �C -C-J�. 5 C-J..�?W� s �+Xo�� � 0; J � J�; u WKJW s�+Xo�� � �; u u�?�KW -�+Xo�� 8 EF�_EW�?X�. KXX# � �;

u�?�KW - KXX# 5 EF� ' ��W,.; �C -C-J. 5 C-J..�?W�s J � Ju

The pseudo code of insert neighborhood algorithm: J � #W,Eo�F��X� �?�+? FJ�W� �X JWF,+? F,Xo�� J � J; � � 0; �Xs � � �; ,� � ,F��-1, �.; ,� � ,F��-1, �.; ,� r ,� J� � ��JW,�-,�, ,�.CX, J; �CIC-J�. 5 C-J.Ls J � J�; u u �?�KW-� 5 EF� ' ��W,. �C-C-J. 8 C-J.. J � J
Appendix B: The result of paired t-tests for the two PSO
algorithms comparison

TABLE XII
PAIRED SAMPLES STATISTICS

 Mean N
Std.

Deviation Std. Error Mean
 PSOvns-2machine

7742.04 27 4332.84 833.86

 PSOinsert-2machine
7748.96 27 4325.47 832.44

 PSOvns-3machine
131248.78 81 98413.35 10934.82

 PSOinsert-3machine
134123.23 81 102503.32 11389.26

 PSOvns-6machine
2750204.52 27 3420543.50 658283.90

 PSOinsert-6machine
2767929.52 27 3422960.28 658749.01

TABLE XIII
PAIRED SAMPLES TEST

95% Confidence
Interval

 of the Difference

Mean Std.

Deviation
t df p-

value
Lower Upper

PSOvns2machine -
 PSOinsert2machine

-6 38 -0.94 26 0.358 -22 8.29

PSOvns3machine -
PSOinsert3machine

-2874 6691 -3.87 80 0 -4354 -1394.78

PSOvns6machine-
PSOinsert6machine

-
17725

20692 -4.45 26 0 -25910 -9539

REFERENCES

[1] N.G.Hall, C. Sriskandarajah,A Survey of Machine Scheduling Problems
with Blocking and No-Wait in Process. Operations Research 44 (1996)
510-525.

[2] M. Pinedo,Scheduling theory, algorithms, and systems. 3rd ed.,
Englewood Cliffs, NJ: Prentice-Hall; 2008, pp. 13-78.

[3] H. Rock, The three-machine no-wait flowshop problem is NP-complete.
Journal of the Association for Computing Machinery 31(1984) 336–345.

[4] R. Gangadharan, C. Rajendran, Heuristic algorithms for scheduling in
the no-wait flowshop. International Journal of Production Economics 32
(1993) 285–290.

[5] C. Rajendran, A no-wait flowshop scheduling heuristic to minimize
makespan. Journal of the Operational Research Society 45 (1994) 472–
478.

[6] P. Dileepan, A note on minimizing maximum lateness in a two-machine
no-wait flowshop. Computers & Operations Research 31 (2004) 2111–
2115.

[7] X. Wang, T.C.E. Cheng, Aheuristic approach for two-machine no-wait
flowshopscheduling with due dates and class setups. Computers &
Operations Research 33 (2006) 1326–1344.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:2, 2012

441

[8] A. Allahverdi, T. Aldowaisan, No-wait flowshops with bi-criteria of
makespanand maximum lateness. European Journal of Operational
Research 152 (2004) 132–147.

[9] C. Wang, X. Li and Q. Wang, Acceleratedtabusearchfor no-wait
flowshopschedulingproblem.
EuropeanJournalofOperationalResearch206(2010) 64-72.

[10] Q.K. Pan, L. Wang and B. Qian,
Anoveldifferentialevolutionalgorithmforbi-criteriano-waitflowshop.
Computers&OperationsResearch36 (2009) 2498-2511.

[11] B. Liu, L. Wang and Y.H. Jin,
Aneffectivehybridparticleswarmoptimizationforno-
waitflowshopscheduling. IntJAdvManufTechnol(2007)31:1001–1011.

[12] Q.K. Pan, L. Wang, Tasgetiren, M.F.
Ahybriddiscreteparticleswarmoptimizationalgorithmfortheno-
waitflowshopschedulingproblemwithmakespancriterion.
IntJAdvManufTechnol(2008)38:337–347.

[13] Q.K. Pan, M.F. Tasgetiren, Y.C. Liang, A discrete particle swarm
optimization algorithm for the no-waitflowshop scheduling problem.
Computers & Operations Research 35 (2008) 2807 – 2839.

[14] Q.K. Pan, L. Wang, B.Qian, Anovelmulti-
objectiveparticleswarmoptimizationalgorithmforno-
waitflowshopschedulingproblems. JEM 989-
IMechE2008Proc.IMechEVol.222PartB:J.EngineeringManufacture.

[15] M.F. Tasgetiren, M. Sevkli, Y.C. Liang and G. Cencylmaz,Particle
Swarm Optimization Algorithm forSingle Machine Total Weighted
TardinessProblem. Proceeding of the 2004 congress on evolutionary
computation(CEC2004), Portland, 2004; 1412-9.

[16] M.F. Tasgetiren, Y.C. Liang, M. Sevkli and G. Cencylmaz, Particle
Swarm Optimization Algorithm for Makespan and Maximum
LatenessMinimization in Permutation Flowshop Sequencing Problem.

[17] RC. Eberhart,J. Kennedy, A new optimizer using particle swarm theory.
Proceedings of the sixth international symposium on micro machineand
human science, Nagoya, Japan; 1995. p. 39–43.

[18] W. Szwarc, S.K. Mukhopadhyay, Optimal Timing Schedules in
Earliness-Tardiness Single Machine Sequencing. Naval Research
Logistics (1995) 42:1109–1114.

[19] N. Salmasi, R. Logendran and M.R. Skandari,Total flow time
minimization in a flowshop sequence dependent group scheduling
problem. Computers & Operations Research 37 (2010) 199 -212.

[20] R.J. Ross, Taguchi techniques for quality engineering, McGraw-Hill,
New York;1989

[21] R. Poli, K. Kennedy and T. Blackwell, Particle swarm optimizationAn
overview. Swarm Intell (2007) 1: 33–57.

