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Abstract—Large-scale systems such as Grids offer 

infrastructures for both data distribution and parallel processing. The 
use of Grid infrastructures is a more recent issue that is already 
impacting the Distributed Database Management System industry. In 
DBMS, distributed query processing has emerged as a fundamental 
technique for ensuring high performance in distributed databases. 
Database placement is particularly important in large-scale systems 
because it reduces communication costs and improves resource 
usage. In this paper, we propose a dynamic database placement 
policy that depends on query patterns and Grid sites capabilities. We 
evaluate the performance of the proposed database placement policy 
using simulations. The obtained results show that dynamic database 
placement can significantly improve the performance of distributed 
query processing. 
 

Keywords—Large-scale systems, Grid environment, Distributed 
Databases, Distributed query processing, Database placement 

I. INTRODUCTION 
ISTRIBUTED query processing has attracted a lot of 
research attention in the last two decades. These efforts 

essentially concentrate on proposing strategies and algorithms 
to minimize response time while minimizing resource 
consumption [1]. In new Internet-based environments, like 
Grids, such strategies have to be re-evaluated to fit for the 
large-scale context [2]. In this new context, conventional 
query processing strategies with the homogeneous assumption 
on resources will not work well, because they are unable to 
adapt to unexpected changes in the performance of the 
communication networks and computing resources. 

In large-scale systems, we have to answer the fundamental 
question traditionally addressed by the database community: 
“How to efficiently manage and query large volumes of 
widely distributed data?” The problem is still the same, but the 
situations become more complex: data access over wide-area 
networks involves a large number of remote data sources, 
intermediate sites and communication links, all of which are 
vulnerable to congestion and failures [3]. Query processing is 
now placed in the context of wide-area and dynamic 
environments instead of local and static environments. Thus, it 
becomes problematic due to the changes coming from both 
underlying system and user requirements [4]. 

In Grid context, a user submits database queries from his 
workstation, which is located at a particular site on the Grid, 
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and requires that the queries be executed as fast as possible. 
To execute a query, three kinds of resources are needed: 
computational resources, data resources and network 
resources. Ideally, the query processing should be able to 
optimize the usage of these three kinds of resources. 
Optimization should be carried out based on the status of Grid 
resources (workload of computing elements, location of data, 
network load). 

In distributed query processing, query operators can be 
placed at sites in a way that minimizes expected 
communication costs, execution time or other metrics [5]. 
These decisions are based in large part on knowledge of 
which data is located at which sites. This circular dependency 
between data placement and query optimization has 
significant performance implications for distributed database 
systems. The challenge then is to integrate a database 
placement policy and the query optimization in an efficient 
and effective manner in dynamic and large-scale systems. 

In this paper, we study the technique for combining 
database placement and query optimization in Grid 
environments. We propose a dynamic database placement 
policy and we describe how it can be integrated into a query 
optimizer. 

The remainder of this paper is organized as follows. 
Section 2 discusses the new challenges that arise when we 
integrate database placement policies with query optimization 
in large-scale and dynamic systems. Section 3 overviews 
briefly the Grid environment. Section 4 presents our database 
placement policy. Section 5 gives and discusses our 
experiment results. Section 6 concludes the paper and gives 
some suggestions for future works. 

II. DATABASE PLACEMENT AND QUERY OPTIMIZATION 
A query optimizer decides which methods to use to 

execute query operations, in which order, and at which site 
[6]. To make these decisions, the optimizer enumerates 
alternative plans and chooses the best one using a cost 
estimation model [1]. Indeed, the query optimizer have to 
answer the following question: “Given a query and the current 
location of data and other parameters, how can this query be 
executed in the cheapest or the faster possible way?” 

The database placement addresses the problem of 
determining where to place a fragmented database on a 
network of storage elements. Database placement policies are 
important because appropriate placement of database 
fragments reduces bandwidth consumption and improves 
response time [7]. While database placement is important, a 
novel aspect of database placement is his integration with a 
query optimizer. Rather than having a distinct process to 
perform the database placement, it is preferable that database 
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placement leads the query optimizer to generate query plans 
that result in fragment re-allocation or fragment replication in 
order to enhance the performance of a DBMS. Database 
placement can be implemented as a module outside of the 
query optimizer. This module influences the optimizer to 
sometimes make operator site selection decisions for some 
queries in order to perform a database placement that will be 
beneficial for later queries. As a result, we integrate database 
placement with a query optimizer as shown in Fig. 1. 
 

 
Fig. 1 Integrating database placement with query optimizer 

 
When the optimizer requests the current data locations, the 

database placement policy enhances the answer with new 
fragment locations that can be proposed. Note that the 
database placement do not changes the optimizer's search 
strategy and cost model. 

In a large-scale and dynamic environment such as the 
Grid, the database placement must also considers changes 
coming from underlying environment (e.g., resources stability, 
network bandwidth and workload). A number of Grid 
characteristics distinguish the Grid database placement 
problem from database placement strategies suggested in 
traditional distributed environments [8]: 

• Heterogeneity of resources; 
• Multiple administrative domains; 
• Large-scale; 
• Dynamic characteristics of resources. 

III. GRID ENVIRONMENT 
We suppose a Grid environment in which users submit 

database queries from any one of a large number of sites. We 
adopt the same view of a data grid as that proposed by the 
European Data Grid [7]. The main resources of a Data Grid 
are: 

• The computing elements provide the Grid users with 
CPU cycle for query execution. Each computing 
element is located at a particular site on the Grid. 

• The storage elements provide the Grid users with 
storage capacity. Each computing element is located at 
a particular site on the Grid. 

• The Network provides Grid users with bandwidth for 
data transfer. 

We model a Grid as a set of sites, each comprising a 
number of computing and storage elements, a set of users and 
a set of database fragments. Each site can have a different 
number of computing and storage elements. Sites are 
connected together by WAN's limited bandwidth and 
computing elements within a site are joined together over a 
local area network. 

IV. DATABASE PLACEMENT POLICY 
This section presents our proposed database placement 

policy. First, we enumerate the placement parameters. Second, 
we present our database placement algorithms. Finally, we 
discuss what and when the database placement policy is 
triggered. 

A. Placement parameters 
The parameters considered in our database placement policy 
are: 

1. Site parameters: Each Grid site is denoted by GSa and 
for each site GSa, LANBW(GSa) represents the LAN 
bandwidth of GSa; 

2.  Storage element parameters: Each storage element is 
denoted by SEi and for each storage element SEi, 
Site(SEi) represents the site where SEi is located, SR(SEi) 
represents the space reserved to store database 
fragments, STAB(SEi) represents the stability of SEi 
which encompasses storage element failures, 
communication failures and the disconnection of the 
storage element from the grid, DISKBW(SEi) represents 
the disk bandwidth of SEi; 

3. Network parameters: The communication cost 
C(GSa,GSb) between two sites GSa and GSb represents 
the average delay of sending one unit of data (1KB) from 
one site to another;  

4. Database parameters: We consider a relational database 
DB as a collection of m replicated fragments 
{F1,F2,...,Fm}. The database is vertically partitioned into 
fragments (attribute-based partitioning). For each 
fragment Fk, Size(Fk) represents the size of fragment Fk. 
Fk

l represents the replica l of fragment Fk. SE(Fk
l) defines 

the identity of the storage element  where the replica Fk
l 

is actually located; 
5. Fragment parameters: For each fragment Fk, let rGSa,Fk 

be the number of Fk replicas in site GSa and rFk be the 
total number of Fk replicas in the Grid; 

6. Query type: Let Q = QR ∪ QW be a set of n queries, 
Q={q1,...,qn} where QR is the set of read queries and QW 
is the set of write queries. We use the following 
notations and assumptions: 
• For each query qr, Site(qr) represents the site where qr 

is submitted; 
• Freq(qr) defines the frequency execution of query qr; 
• Let QFk be the set of queries which access to 

fragment Fk; 
• The selectivity parameter, Sel(qr, Fk), is defined as 

the percentage of Fk to be accessed by qr; 
• Let Upd(qr, Fk) be the size of message sent by qr to 
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update fragment Fk. 

B. Database placement algorithms 
To reduce the access latency for the query processing, it is 

beneficial to place the fragments accessed in a query close to 
each other on the same site. Also, some frequently accessed 
fragments must be replicated to reduce the access time. In this 
subsection, we propose two algorithms to dynamically re-
allocate and to replicate a number of database fragments while 
meeting the query access patterns and Grid sites capabilities. 
Since we deal with a high-scale environment, the database 
placement algorithms are just responsible for its own site. 
Each site uses a set of tools to obtain information about the 
state of the system [9] and takes database placement decisions. 
1) Fragment replication algorithm 

The main task of a database placement policy is to 
determine which fragment must be replicated at the query site. 
A fully replicated database is not optimal since the update 
propagation to each fragment replica takes overtime and hence 
decreases the response time for write queries. However, 
partially replicated database do not provide optimal read 
response times since only parts of the database fragments are 
replicated. So, the access frequency of read and write queries 
has to be taken into account. We suppose that the 
communication over the Grid WAN network is very 
expensive. Thus, we try to perform a database fragment 
replication due to their individual access frequency. The 
decision of whether or not the fragment should be replicated 
in a Grid site depends on: 

(i) the fragment read cost ReadCost(Fk) defined as: 
ReadCost(Fk) = 

)().().,().)(),((
1

rkkr
n

r
kr qFreqFSizeFqSelFSiteqSiteC∑

=  
Where qr ∈ QR ∩ QFk 
 
(ii) the fragment write cost WriteCost(Fk), defined as: 
WriteCost(Fk) =  

∑∑
= =

n

r

r

l
rkrkr
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Where qr ∈ QW ∩ QFk 
 
(iii) the fragment external read cost Ext

FGS kaAC , , defined as: 
Ext

FGS kaAC , = 

)().().,().)(),((
1

rkkr
n

r
kr qFreqFSizeFqSelFSiteqSiteC∑

=  
Where qr ∈ QR ∩ QFk , Site(qr) = GSa and Site(Fk) ≠ GSa 
 
Clearly, if Ext

FGS kaAC , > 0, many queries have to be served 

from other sites. This creates higher WAN network 
communication costs. To minimize the communication cost 
generated by read queries we would try to reduce the cost of 
external read accesses. A way to reduce the cost of external 
read accesses is to create and store a Fk replica in site GSa. A 
database fragment Fk is considered as candidate to be 

replicated in a site GSa if: (i) rGSa,Fk = 0; (ii) ReadCost(Fk) >> 
WriteCost(Fk); and (iii) Ext

FGS kaAC ,  > 0. 

The fragment replication algorithm takes as input a Grid 
site GSa and a set of candidate fragments {Fk} to be replicated 
and placed in the site and returns a placement P. Due to the 
fact that stability of storage elements STAB(SEi) can vary 
dynamically, storage elements with a high stability are 
advantaged. If there are many storage elements with the same 
stability, we choose storage elements that have a large disk 
bandwidth and a large available space disk. The fragment 
replication algorithm is given by algorithm 1. 
 
Algorithm 1 FRAGMENT REPLICATION ALGORITHM 
Require: GSa: Grid site,  

{Fk}: Set of fragments to be replicated 
Ensure: Placement P 

1. P = ∅ 
2. Let F = {Fk} /* set of fragments sorted in a decreasing 

order of Size(Fk) */ 
3. Generate a set SEGSa = {SEi} of candidate storage 

elements of site GSa sorted in a decreasing order of 
〈STAB(SEi) , DISKBW(SEi), SR(SEi)〉 

4. For all Fk in F do 
5. SEi = GetFirstItem(SEGSa ) 
6. While (Fk is not placed ) do 
7. If SR(SEi) >= Size(Fk) then 
8. P = P ∪ {( Fk , SEi)} 
9. SR(SEi) = SR(SEi) - Size(Fk) 

10. End If 
11. SEi = GetNextItem(SEGSa) 
12. End While 
13. End For 

Output: P 
 

The time complexity of the fragment replication algorithm 
is O(nm), where n is the average number of storage elements 
per site and m is the number of fragments to be replicated. 
2) Fragment re-allocation algorithm 

The Grid environment keeps changing all time. Sites which 
contain database fragment replicas can leave the Grid and new 
sites with computing and storage capabilities can be added. 
Due to this specific characteristic, the database fragments 
must be re-allocated to ensure efficient resource usage. The 
decision of whether or not the fragment should be re-allocated 
in a Grid site depends on the stability of its storage element 
and the storage capabilities of the new storage elements added 
to the site. First, we generate a set SEGSa = {SEi} of candidate 
storage elements SEi in a decreasing order of 〈STAB(SEi), 
DISKBW(SEi), SR(SEi)〉. Then, the set of candidate fragments 
to be re-allocated is defined as: {Fk} where SE(Fk) ∉ SEGsa. 

Fragment re-allocation algorithm gets as input (GSa,{Fk}, 
P) describing, resp., the Grid site, a set of fragments to be re-
allocated and the current placement and returns a new 
placement Pnew. The fragment re-allocation algorithm is given 
by algorithm 2. 
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Algorithm 2 FRAGMENT RE-ALLOCATION ALGORITHM 
Require: GSa: Grid site, {Fk}: Set of fragments 

to be re-allocated, P: Current placement 
Ensure: New Placement Pnew 

1. Pnew = P 
2. Let F = {Fk} /* set of candidate fragments sorted in a 

decreasing order of Size(Fk) */ 
3. Generate a set SEGSa = {SEi} of candidate storage 

elements of site GSa sorted in a decreasing order of 
〈STAB(SEi) , DISKBW(SEi), SR(SEi)〉 

4. For all Fk in F do 
5. SEi = GetFirstItem(SEGSa ) 
6. While (Fk is not placed ) do 
7. If SR(SEi) >= Size(Fk) then 
8. Pnew = Pnew - {( Fk , SE(Fk))} 
9. Pnew = Pnew ∪ {( Fk , SEi)} 

10. SR(SEi) = SR(SEi) - Size(Fk) 
11. SR(SE(Fk)) = SR(SE(Fk)) + Size(Fk) 
12. End If 
13. SEi = GetNextItem(SEGSa) 
14. End While 
15. End For 
Output: Pnew 

 
The time complexity of the fragment re-allocation 

algorithm is O(nm), where n is the average number of storage 
elements per site and m is the number of fragments to be re-
allocated. 

C. When to trigger database placement? 
The database placement policy presented above includes 

checking if more fragment replicas are needed and if their 
locations are optimal. In the Grid environment, two 
parameters can trigger the database placement: (i) access 
frequency, and (ii) underlying environment. The placement 
policy then uses these parameters to schedule and execute the 
placement activities. A possible solution is to monitor 
periodically the database fragment access frequency and the 
Grid environment. The monitoring periodicity can be 
modified according to the change levels of the two 
parameters. If, for example, during the last placement 
activities there was no action needed, we can decrease the 
monitoring periodicity. On the other hand, if the last 
placement activities show that more replicas are needed or the 
replicas must be re-allocated, we can increase  the monitoring 
periodicity. 

In order to reduce the overhead generated by frequently 
using the monitoring mechanisms, we can monitor only 
fragments that their access frequencies change and we can 
monitor only sites that their resources change. 

V. EXPERIMENTAL ANALYSIS 
In this section, we evaluate the performance of our 

proposed database placement policy with simulation 
experiments using OptorSim simulator [10]. First, we describe 
the simulation framework, and then we give the experiment 
results. 

A. Simulation framework 
To evaluate the performance of our database placement 

policy, we have developed an extension of the OptorSim 
simulator [10]. OptorSim is a data grid simulator package 
written in Java used to allow experimentations of both file 
access optimisation and data replication strategies. We have 
implemented a round robin database placement algorithm and 
our database placement policy. We assumed a given number 
of sites, database fragments and join queries. Queries are 
submitted across Grid sites. Each join query requires two or 
many database fragments. The transfer of data from one site to 
another incurs a cost corresponding to the size of the data 
divided by the bandwidth of the network link. The simulation 
parameters are defined in table I. 

 
TABLE  I 

SIMULATION PARAMETERS 
 

Parameter Explanation Value 
|GS| Number of sites 10 
|CE| Number of computing elements / site 100 .. 500 
|SE| Number of storage elements / site 100 .. 500 
SR(SEi) Storage capacity / storage element 0 ..50 GB 
STAB(SEi) Stability / storage element 0 .. 1 
NB Network Bandwidth 100 MB .. 1GB/s
NS Network Start-up delay 6 .. 10µs 
|F| Number of fragments 100 .. 1000 
Size(Fk) Size of fragment 2 .. 500 MB 
irFk Initial number of Fk replicas 1 
|Q| Number of queries 10 .. 80 
Nj Number of join operations 1 .. 5 

 
The objective of simulation experiments is to evaluate the 

quality of data distribution and the effect of our database 
placement policy on the query processing in Grid 
environment. For each experiment, we computed: 

• The average query communication cost including the 
fragment transfer cost and the join result transfer cost 
(bandwidth consumed); 

• Average query response time including data transfer 
time, compute time, I/O time, and queue time. 

The query communication cost represented by the amount 
of data transferred is important from the perspective of overall 
resource utilization. 

B. Experiment results 
We have performed three set of experiments to evaluate 

the performance of our database placement policy. The first 
set of experimentations evaluates the effects of the database 
placement on the query communication cost. We have 
conducted a series of experiments with different number of 
join operations (ranging from 1 to 5). For each experiment we 
fix the number of the storage elements (400 elements), the 
number of fragments (600 fragments) and the number of 
queries (80 queries). Table II shows the communication cost, 
in terms of fragment transfer cost over the network and join 
result transfer cost, induced by an execution of 80 queries 
using two data placement alternatives (round robin and our 
placement policy). 
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TABLE II 
COMMUNICATION COST FOR DIFFERENT NUMBER OF JOIN OPERATIONS 

 
Number of join operations 1 2 3 4 5 
       

Communication cost 101 204 367 626 871 
Placement transfer cost 0 0 0 0 0 
Placement search cost 0 0 0 0 0 

 
Round 

robin placement 
C1 Total cost (sec) 101 204 367 626 871 

       

Communication cost 27 38 67 119 174 
Placement transfer cost 22 59 88 145 178 
Placement search cost 9 9 10 11 12 

 
Our placement 

policy 
C2 Total cost (sec) 58 106 165 275 364 

      

C1 - C2 +43 +98 +202 +351 +507 
 

 
When the round robin placement is used, the distribution 

of fragments across the Grid generates higher communication 
costs. When we introduce our database placement policy, 
query processing performs lower communication cost. 
Clearly, dynamic fragment replication and re-allocation 
decided by our database placement policy helps to reduce 
significatively the communication cost, but it causes 
additional costs (placement transfer and search costs). Note 
that the fragment replication performed will also reduce 
communication cost of future queries. We remark that our 
approach outperforms the round robin data placement. This is 
clearly pointed by table II. Since in spite of the two added 
costs, the total cost of our policy is lower than that of the 
round robin data placement. Moreover, we can still improve 
our total cost by decreasing the size of transferred fragments 
by using techniques of local reducing like semi-join 
operations [6]. 

Figure 2 shows the variation of the communication cost 
induced by the execution of 80 queries with different number 
of join operations. The results are the average over the series 
of experimentations performed for the two alternatives (round 
robin and our placement policy). 
 

 
Fig. 2 Communication cost generated by the round robin and our 
placement policy 

 
The second set of experiments studies the variation of the 

query communication cost for different number of join 
operations. Through these experimentations, we want to know 

how our database placement policy reacts when we execute 
queries containing a combination of join operations. We have 
conducted a series of experimentations with various number 
of join operations (ranging from 1 to 5). For each experiment, 
we compute the query communication cost induced by an 
execution of a number of queries (ranging from 10 to 80). To 
focus on network resource usage, Figure 3 shows the variation 
of query communication cost (total amount of data 
transferred) for different number of queries. 

 
 

 
Fig. 3 Communication cost for different number of queries 

 
We remark that when we increase the number of queries 

and the number of join operations, the difference in 
communication cost is very small. We justify this by the 
ability of our database placement policy to dynamically place 
fragments over the Grid. As seen in Figure 3, our database 
placement policy performs a good network resource 
utilization. 

 
The third set of experimentations studies the variation of 

the query response time for different number of queries. 
Figure 4 shows the average response time for the system 
parameters of Table I. Clearly, dynamic database placement 
helps to enable load sharing and to reduce query response 
time. This figure shows that dynamic database placement 
represents a “best possible” choice of database placement. 
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Fig. 4 Query response time for different number of queries 

 
Hence, we can conclude that dynamic database placement 

integrated with a query optimizer leads to reduce the 
communication cost and the response time. 

VI. CONCLUSION 
We addressed the problem of query processing and 

database placement in a Grid environment. This paper showed 
how a query optimizer can be extended with a database 
placement policy so that it produces good query execution 
plan and implicitly makes long-term placement decisions. We 
have proposed a dynamic database placement policy which 
can be integrated into a query optimizer. We have used a Data 
Grid simulator, OptorSim, to evaluate the proposed database 
placement policy. Our experimental results show that dynamic 
database placement leads to accurate performances. 

For future works, we plan to implement the proposed 
database placement policy on real Grid environment and to 
use some techniques, like parallel semi-join operations, to 
reduce  the size of transferred fragments. 
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