
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1635

Abstract—Large-scale systems such as Grids offer

infrastructures for both data distribution and parallel processing. The
use of Grid infrastructures is a more recent issue that is already
impacting the Distributed Database Management System industry. In
DBMS, distributed query processing has emerged as a fundamental
technique for ensuring high performance in distributed databases.
Database placement is particularly important in large-scale systems
because it reduces communication costs and improves resource
usage. In this paper, we propose a dynamic database placement
policy that depends on query patterns and Grid sites capabilities. We
evaluate the performance of the proposed database placement policy
using simulations. The obtained results show that dynamic database
placement can significantly improve the performance of distributed
query processing.

Keywords—Large-scale systems, Grid environment, Distributed
Databases, Distributed query processing, Database placement

I. INTRODUCTION
ISTRIBUTED query processing has attracted a lot of
research attention in the last two decades. These efforts

essentially concentrate on proposing strategies and algorithms
to minimize response time while minimizing resource
consumption [1]. In new Internet-based environments, like
Grids, such strategies have to be re-evaluated to fit for the
large-scale context [2]. In this new context, conventional
query processing strategies with the homogeneous assumption
on resources will not work well, because they are unable to
adapt to unexpected changes in the performance of the
communication networks and computing resources.

In large-scale systems, we have to answer the fundamental
question traditionally addressed by the database community:
“How to efficiently manage and query large volumes of
widely distributed data?” The problem is still the same, but the
situations become more complex: data access over wide-area
networks involves a large number of remote data sources,
intermediate sites and communication links, all of which are
vulnerable to congestion and failures [3]. Query processing is
now placed in the context of wide-area and dynamic
environments instead of local and static environments. Thus, it
becomes problematic due to the changes coming from both
underlying system and user requirements [4].

In Grid context, a user submits database queries from his
workstation, which is located at a particular site on the Grid,

Manuscript received January 16, 2006.
Ch. Haddad is with the Department of Computer Science, Faculty of

Sciences of Tunis, 1060 Tunis, Tunisia (corresponding author phone:
+21698830513; e-mail: cherif.haddad@gmail.com).

F. B. Charrada is with the Department of Computer Science, Faculty of
Sciences of Tunis, 1060 Tunis, Tunisia (e-mail: f.charrada@gnet.tn).

and requires that the queries be executed as fast as possible.
To execute a query, three kinds of resources are needed:
computational resources, data resources and network
resources. Ideally, the query processing should be able to
optimize the usage of these three kinds of resources.
Optimization should be carried out based on the status of Grid
resources (workload of computing elements, location of data,
network load).

In distributed query processing, query operators can be
placed at sites in a way that minimizes expected
communication costs, execution time or other metrics [5].
These decisions are based in large part on knowledge of
which data is located at which sites. This circular dependency
between data placement and query optimization has
significant performance implications for distributed database
systems. The challenge then is to integrate a database
placement policy and the query optimization in an efficient
and effective manner in dynamic and large-scale systems.

In this paper, we study the technique for combining
database placement and query optimization in Grid
environments. We propose a dynamic database placement
policy and we describe how it can be integrated into a query
optimizer.

The remainder of this paper is organized as follows.
Section 2 discusses the new challenges that arise when we
integrate database placement policies with query optimization
in large-scale and dynamic systems. Section 3 overviews
briefly the Grid environment. Section 4 presents our database
placement policy. Section 5 gives and discusses our
experiment results. Section 6 concludes the paper and gives
some suggestions for future works.

II. DATABASE PLACEMENT AND QUERY OPTIMIZATION
A query optimizer decides which methods to use to

execute query operations, in which order, and at which site
[6]. To make these decisions, the optimizer enumerates
alternative plans and chooses the best one using a cost
estimation model [1]. Indeed, the query optimizer have to
answer the following question: “Given a query and the current
location of data and other parameters, how can this query be
executed in the cheapest or the faster possible way?”

The database placement addresses the problem of
determining where to place a fragmented database on a
network of storage elements. Database placement policies are
important because appropriate placement of database
fragments reduces bandwidth consumption and improves
response time [7]. While database placement is important, a
novel aspect of database placement is his integration with a
query optimizer. Rather than having a distinct process to
perform the database placement, it is preferable that database

Database Placement on Large-Scale Systems
Cherif Haddad and Faouzi Ben Charrada

D

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1636

placement leads the query optimizer to generate query plans
that result in fragment re-allocation or fragment replication in
order to enhance the performance of a DBMS. Database
placement can be implemented as a module outside of the
query optimizer. This module influences the optimizer to
sometimes make operator site selection decisions for some
queries in order to perform a database placement that will be
beneficial for later queries. As a result, we integrate database
placement with a query optimizer as shown in Fig. 1.

Fig. 1 Integrating database placement with query optimizer

When the optimizer requests the current data locations, the

database placement policy enhances the answer with new
fragment locations that can be proposed. Note that the
database placement do not changes the optimizer's search
strategy and cost model.

In a large-scale and dynamic environment such as the
Grid, the database placement must also considers changes
coming from underlying environment (e.g., resources stability,
network bandwidth and workload). A number of Grid
characteristics distinguish the Grid database placement
problem from database placement strategies suggested in
traditional distributed environments [8]:

• Heterogeneity of resources;
• Multiple administrative domains;
• Large-scale;
• Dynamic characteristics of resources.

III. GRID ENVIRONMENT
We suppose a Grid environment in which users submit

database queries from any one of a large number of sites. We
adopt the same view of a data grid as that proposed by the
European Data Grid [7]. The main resources of a Data Grid
are:

• The computing elements provide the Grid users with
CPU cycle for query execution. Each computing
element is located at a particular site on the Grid.

• The storage elements provide the Grid users with
storage capacity. Each computing element is located at
a particular site on the Grid.

• The Network provides Grid users with bandwidth for
data transfer.

We model a Grid as a set of sites, each comprising a
number of computing and storage elements, a set of users and
a set of database fragments. Each site can have a different
number of computing and storage elements. Sites are
connected together by WAN's limited bandwidth and
computing elements within a site are joined together over a
local area network.

IV. DATABASE PLACEMENT POLICY
This section presents our proposed database placement

policy. First, we enumerate the placement parameters. Second,
we present our database placement algorithms. Finally, we
discuss what and when the database placement policy is
triggered.

A. Placement parameters
The parameters considered in our database placement policy
are:

1. Site parameters: Each Grid site is denoted by GSa and
for each site GSa, LANBW(GSa) represents the LAN
bandwidth of GSa;

2. Storage element parameters: Each storage element is
denoted by SEi and for each storage element SEi,
Site(SEi) represents the site where SEi is located, SR(SEi)
represents the space reserved to store database
fragments, STAB(SEi) represents the stability of SEi
which encompasses storage element failures,
communication failures and the disconnection of the
storage element from the grid, DISKBW(SEi) represents
the disk bandwidth of SEi;

3. Network parameters: The communication cost
C(GSa,GSb) between two sites GSa and GSb represents
the average delay of sending one unit of data (1KB) from
one site to another;

4. Database parameters: We consider a relational database
DB as a collection of m replicated fragments
{F1,F2,...,Fm}. The database is vertically partitioned into
fragments (attribute-based partitioning). For each
fragment Fk, Size(Fk) represents the size of fragment Fk.
Fk

l represents the replica l of fragment Fk. SE(Fk
l) defines

the identity of the storage element where the replica Fk
l

is actually located;
5. Fragment parameters: For each fragment Fk, let rGSa,Fk

be the number of Fk replicas in site GSa and rFk be the
total number of Fk replicas in the Grid;

6. Query type: Let Q = QR ∪ QW be a set of n queries,
Q={q1,...,qn} where QR is the set of read queries and QW
is the set of write queries. We use the following
notations and assumptions:
• For each query qr, Site(qr) represents the site where qr

is submitted;
• Freq(qr) defines the frequency execution of query qr;
• Let QFk be the set of queries which access to

fragment Fk;
• The selectivity parameter, Sel(qr, Fk), is defined as

the percentage of Fk to be accessed by qr;
• Let Upd(qr, Fk) be the size of message sent by qr to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1637

update fragment Fk.

B. Database placement algorithms
To reduce the access latency for the query processing, it is

beneficial to place the fragments accessed in a query close to
each other on the same site. Also, some frequently accessed
fragments must be replicated to reduce the access time. In this
subsection, we propose two algorithms to dynamically re-
allocate and to replicate a number of database fragments while
meeting the query access patterns and Grid sites capabilities.
Since we deal with a high-scale environment, the database
placement algorithms are just responsible for its own site.
Each site uses a set of tools to obtain information about the
state of the system [9] and takes database placement decisions.
1) Fragment replication algorithm

The main task of a database placement policy is to
determine which fragment must be replicated at the query site.
A fully replicated database is not optimal since the update
propagation to each fragment replica takes overtime and hence
decreases the response time for write queries. However,
partially replicated database do not provide optimal read
response times since only parts of the database fragments are
replicated. So, the access frequency of read and write queries
has to be taken into account. We suppose that the
communication over the Grid WAN network is very
expensive. Thus, we try to perform a database fragment
replication due to their individual access frequency. The
decision of whether or not the fragment should be replicated
in a Grid site depends on:

(i) the fragment read cost ReadCost(Fk) defined as:
ReadCost(Fk) =

)().().,().)(),((
1

rkkr
n

r
kr qFreqFSizeFqSelFSiteqSiteC∑

=
Where qr ∈ QR ∩ QFk

(ii) the fragment write cost WriteCost(Fk), defined as:
WriteCost(Fk) =

∑∑
= =

n

r

r

l
rkrkr

kF

qFreqFqUpdFSiteqSiteC
1 1

)().,()).(),((

Where qr ∈ QW ∩ QFk

(iii) the fragment external read cost Ext

FGS kaAC , , defined as:
Ext

FGS kaAC , =

)().().,().)(),((
1

rkkr
n

r
kr qFreqFSizeFqSelFSiteqSiteC∑

=
Where qr ∈ QR ∩ QFk , Site(qr) = GSa and Site(Fk) ≠ GSa

Clearly, if Ext

FGS kaAC , > 0, many queries have to be served

from other sites. This creates higher WAN network
communication costs. To minimize the communication cost
generated by read queries we would try to reduce the cost of
external read accesses. A way to reduce the cost of external
read accesses is to create and store a Fk replica in site GSa. A
database fragment Fk is considered as candidate to be

replicated in a site GSa if: (i) rGSa,Fk = 0; (ii) ReadCost(Fk) >>
WriteCost(Fk); and (iii) Ext

FGS kaAC , > 0.

The fragment replication algorithm takes as input a Grid
site GSa and a set of candidate fragments {Fk} to be replicated
and placed in the site and returns a placement P. Due to the
fact that stability of storage elements STAB(SEi) can vary
dynamically, storage elements with a high stability are
advantaged. If there are many storage elements with the same
stability, we choose storage elements that have a large disk
bandwidth and a large available space disk. The fragment
replication algorithm is given by algorithm 1.

Algorithm 1 FRAGMENT REPLICATION ALGORITHM
Require: GSa: Grid site,

{Fk}: Set of fragments to be replicated
Ensure: Placement P

1. P = ∅
2. Let F = {Fk} /* set of fragments sorted in a decreasing

order of Size(Fk) */
3. Generate a set SEGSa = {SEi} of candidate storage

elements of site GSa sorted in a decreasing order of
〈STAB(SEi) , DISKBW(SEi), SR(SEi)〉

4. For all Fk in F do
5. SEi = GetFirstItem(SEGSa)
6. While (Fk is not placed) do
7. If SR(SEi) >= Size(Fk) then
8. P = P ∪ {(Fk , SEi)}
9. SR(SEi) = SR(SEi) - Size(Fk)

10. End If
11. SEi = GetNextItem(SEGSa)
12. End While
13. End For

Output: P

The time complexity of the fragment replication algorithm
is O(nm), where n is the average number of storage elements
per site and m is the number of fragments to be replicated.
2) Fragment re-allocation algorithm

The Grid environment keeps changing all time. Sites which
contain database fragment replicas can leave the Grid and new
sites with computing and storage capabilities can be added.
Due to this specific characteristic, the database fragments
must be re-allocated to ensure efficient resource usage. The
decision of whether or not the fragment should be re-allocated
in a Grid site depends on the stability of its storage element
and the storage capabilities of the new storage elements added
to the site. First, we generate a set SEGSa = {SEi} of candidate
storage elements SEi in a decreasing order of 〈STAB(SEi),
DISKBW(SEi), SR(SEi)〉. Then, the set of candidate fragments
to be re-allocated is defined as: {Fk} where SE(Fk) ∉ SEGsa.

Fragment re-allocation algorithm gets as input (GSa,{Fk},
P) describing, resp., the Grid site, a set of fragments to be re-
allocated and the current placement and returns a new
placement Pnew. The fragment re-allocation algorithm is given
by algorithm 2.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1638

Algorithm 2 FRAGMENT RE-ALLOCATION ALGORITHM
Require: GSa: Grid site, {Fk}: Set of fragments

to be re-allocated, P: Current placement
Ensure: New Placement Pnew

1. Pnew = P
2. Let F = {Fk} /* set of candidate fragments sorted in a

decreasing order of Size(Fk) */
3. Generate a set SEGSa = {SEi} of candidate storage

elements of site GSa sorted in a decreasing order of
〈STAB(SEi) , DISKBW(SEi), SR(SEi)〉

4. For all Fk in F do
5. SEi = GetFirstItem(SEGSa)
6. While (Fk is not placed) do
7. If SR(SEi) >= Size(Fk) then
8. Pnew = Pnew - {(Fk , SE(Fk))}
9. Pnew = Pnew ∪ {(Fk , SEi)}

10. SR(SEi) = SR(SEi) - Size(Fk)
11. SR(SE(Fk)) = SR(SE(Fk)) + Size(Fk)
12. End If
13. SEi = GetNextItem(SEGSa)
14. End While
15. End For
Output: Pnew

The time complexity of the fragment re-allocation

algorithm is O(nm), where n is the average number of storage
elements per site and m is the number of fragments to be re-
allocated.

C. When to trigger database placement?
The database placement policy presented above includes

checking if more fragment replicas are needed and if their
locations are optimal. In the Grid environment, two
parameters can trigger the database placement: (i) access
frequency, and (ii) underlying environment. The placement
policy then uses these parameters to schedule and execute the
placement activities. A possible solution is to monitor
periodically the database fragment access frequency and the
Grid environment. The monitoring periodicity can be
modified according to the change levels of the two
parameters. If, for example, during the last placement
activities there was no action needed, we can decrease the
monitoring periodicity. On the other hand, if the last
placement activities show that more replicas are needed or the
replicas must be re-allocated, we can increase the monitoring
periodicity.

In order to reduce the overhead generated by frequently
using the monitoring mechanisms, we can monitor only
fragments that their access frequencies change and we can
monitor only sites that their resources change.

V. EXPERIMENTAL ANALYSIS
In this section, we evaluate the performance of our

proposed database placement policy with simulation
experiments using OptorSim simulator [10]. First, we describe
the simulation framework, and then we give the experiment
results.

A. Simulation framework
To evaluate the performance of our database placement

policy, we have developed an extension of the OptorSim
simulator [10]. OptorSim is a data grid simulator package
written in Java used to allow experimentations of both file
access optimisation and data replication strategies. We have
implemented a round robin database placement algorithm and
our database placement policy. We assumed a given number
of sites, database fragments and join queries. Queries are
submitted across Grid sites. Each join query requires two or
many database fragments. The transfer of data from one site to
another incurs a cost corresponding to the size of the data
divided by the bandwidth of the network link. The simulation
parameters are defined in table I.

TABLE I

SIMULATION PARAMETERS

Parameter Explanation Value
|GS| Number of sites 10
|CE| Number of computing elements / site 100 .. 500
|SE| Number of storage elements / site 100 .. 500
SR(SEi) Storage capacity / storage element 0 ..50 GB
STAB(SEi) Stability / storage element 0 .. 1
NB Network Bandwidth 100 MB .. 1GB/s
NS Network Start-up delay 6 .. 10µs
|F| Number of fragments 100 .. 1000
Size(Fk) Size of fragment 2 .. 500 MB
irFk Initial number of Fk replicas 1
|Q| Number of queries 10 .. 80
Nj Number of join operations 1 .. 5

The objective of simulation experiments is to evaluate the

quality of data distribution and the effect of our database
placement policy on the query processing in Grid
environment. For each experiment, we computed:

• The average query communication cost including the
fragment transfer cost and the join result transfer cost
(bandwidth consumed);

• Average query response time including data transfer
time, compute time, I/O time, and queue time.

The query communication cost represented by the amount
of data transferred is important from the perspective of overall
resource utilization.

B. Experiment results
We have performed three set of experiments to evaluate

the performance of our database placement policy. The first
set of experimentations evaluates the effects of the database
placement on the query communication cost. We have
conducted a series of experiments with different number of
join operations (ranging from 1 to 5). For each experiment we
fix the number of the storage elements (400 elements), the
number of fragments (600 fragments) and the number of
queries (80 queries). Table II shows the communication cost,
in terms of fragment transfer cost over the network and join
result transfer cost, induced by an execution of 80 queries
using two data placement alternatives (round robin and our
placement policy).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1639

TABLE II
COMMUNICATION COST FOR DIFFERENT NUMBER OF JOIN OPERATIONS

Number of join operations 1 2 3 4 5

Communication cost 101 204 367 626 871
Placement transfer cost 0 0 0 0 0
Placement search cost 0 0 0 0 0

Round

robin placement
C1 Total cost (sec) 101 204 367 626 871

Communication cost 27 38 67 119 174
Placement transfer cost 22 59 88 145 178
Placement search cost 9 9 10 11 12

Our placement

policy
C2 Total cost (sec) 58 106 165 275 364

C1 - C2 +43 +98 +202 +351 +507

When the round robin placement is used, the distribution

of fragments across the Grid generates higher communication
costs. When we introduce our database placement policy,
query processing performs lower communication cost.
Clearly, dynamic fragment replication and re-allocation
decided by our database placement policy helps to reduce
significatively the communication cost, but it causes
additional costs (placement transfer and search costs). Note
that the fragment replication performed will also reduce
communication cost of future queries. We remark that our
approach outperforms the round robin data placement. This is
clearly pointed by table II. Since in spite of the two added
costs, the total cost of our policy is lower than that of the
round robin data placement. Moreover, we can still improve
our total cost by decreasing the size of transferred fragments
by using techniques of local reducing like semi-join
operations [6].

Figure 2 shows the variation of the communication cost
induced by the execution of 80 queries with different number
of join operations. The results are the average over the series
of experimentations performed for the two alternatives (round
robin and our placement policy).

Fig. 2 Communication cost generated by the round robin and our
placement policy

The second set of experiments studies the variation of the

query communication cost for different number of join
operations. Through these experimentations, we want to know

how our database placement policy reacts when we execute
queries containing a combination of join operations. We have
conducted a series of experimentations with various number
of join operations (ranging from 1 to 5). For each experiment,
we compute the query communication cost induced by an
execution of a number of queries (ranging from 10 to 80). To
focus on network resource usage, Figure 3 shows the variation
of query communication cost (total amount of data
transferred) for different number of queries.

Fig. 3 Communication cost for different number of queries

We remark that when we increase the number of queries

and the number of join operations, the difference in
communication cost is very small. We justify this by the
ability of our database placement policy to dynamically place
fragments over the Grid. As seen in Figure 3, our database
placement policy performs a good network resource
utilization.

The third set of experimentations studies the variation of

the query response time for different number of queries.
Figure 4 shows the average response time for the system
parameters of Table I. Clearly, dynamic database placement
helps to enable load sharing and to reduce query response
time. This figure shows that dynamic database placement
represents a “best possible” choice of database placement.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1640

Fig. 4 Query response time for different number of queries

Hence, we can conclude that dynamic database placement

integrated with a query optimizer leads to reduce the
communication cost and the response time.

VI. CONCLUSION
We addressed the problem of query processing and

database placement in a Grid environment. This paper showed
how a query optimizer can be extended with a database
placement policy so that it produces good query execution
plan and implicitly makes long-term placement decisions. We
have proposed a dynamic database placement policy which
can be integrated into a query optimizer. We have used a Data
Grid simulator, OptorSim, to evaluate the proposed database
placement policy. Our experimental results show that dynamic
database placement leads to accurate performances.

For future works, we plan to implement the proposed
database placement policy on real Grid environment and to
use some techniques, like parallel semi-join operations, to
reduce the size of transferred fragments.

REFERENCES
[1] M. T. Ozsu and P. Valduriez, Principles of Distributed Database

Systems, 2nd ed. Prentice-Hall, 1999.
[2] J. Smith, A. Gounaris, P. Watson, N. W. Paton, A. Fernandes and R.

Sakellariou, “Distributed Query Processing on the Grid,” in Proceedings
of the Third Workshop on Grid Computing, GRID2002, Baltimore, MA,
2002, pp. 380-387.

[3] S. Narayanan, U. Catalyurek, T. Kurc, X. Zhang and J. Saltz, “Applying
Database Support for Large Scale Data Driven Science in Distributed
Environments,” in 4th International Workshop on Grid Computing
(Grid2003), Phoenix, Arizona, November 2003, pp. 141-149.

[4] A. Gounaris, N. W. Paton, R. Sakellariou and A. A. Fernandes,
“Adaptive Query Processing and the Grid: Opportunities and
Challenges,” in DEXA Workshops, Zaragoza, Spain, August-September
2004, pp. 506-510.

[5] H. Ye, B. Kerhervé and G. von Bochmann, “Revisiting Join Site
Selection in Distributed Database Systems,” in Euro-Par 2003, Parallel
Processing, 9th International Euro-Par Conference, ser. Lecture Notes
in Computer Science, vol. 2790. Klagenfurt, Austria: Springer-Verlag,
August 2003, pp. 342-347

[6] C.H. Lee and M.S. Chen, “Distributed Query Processing in the Internet:
Exploring Relation Replication and Network Characteristics,” in ICDCS
'01: Proceedings of the 21st International Conference on Distributed
Computing Systems, Washington, DC, USA, 2001, pp. 439-446.

[7] H. Stockinger, O. F. Rana, R. Moore and A. Merzky, “Data
Management for Grid Environments,” in High-Performance Computing
and Networking, 9th International Conference, HPCN Europe 2001, ser.
Lecture Notes in Computer Science, vol. 2110, Amsterdam, The
Netherlands: Springer-Verlag, June 2001, pp. 151-160.

[8] T. Kosar and M. Livny, “Stork: Making Data Placement a First Class
Citizen in the Grid,” in Proceedings of 24th IEEE Int. Conference on
Distributed Computing Systems, ICDCS 2004, Tokyo, March 2004.

[9] F. Bonnassieux, R. Harakaly and P. Primet, “Automatic Services
Discovery, Monitoring and Visualization of Grid Environments: The
MapCenter Approach,” in First European Across Grids Conference,
Santiago de Compostela, Spain, February 2003, pp. 222-229.

[10] D. G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, C. Nicholson, K.
Stockinger, and F. Zini, “Optorsim: A simulation tool for scheduling and
replica optimisation in data grids,” in Proceedings of Computing in High
Energy Physics, CHEP 2004, Interlaken, Switzerland, 2004.

