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Abstract—The k-nearest neighbors (knn) is a simple but 

effective method of classification. In this paper we present an 
extended version of this technique for chemical compounds used in 
High Throughput Screening, where the distances of the nearest 
neighbors can be taken into account. Our algorithm uses kernel 
weight functions as guidance for the process of defining activity in 
screening data. Proposed kernel weight function aims to combine 
properties of graphical structure and molecule descriptors of 
screening compounds. We apply the modified knn method on several 
experimental data from biological screens. The experimental results 
confirm the effectiveness of the proposed method. 
 

Keywords—biological screening, kernel methods, KNN, QSAR 

I. INTRODUCTION 
OMPLETE HIGH THROUGHPUT SCREENING (HTS) 
process can be divided in two parts: primary screening 
and secondary screening. Primary screening involves the 

testing of large compound libraries against targets to generate 
“hits”: small proportion of the tests that show an effect. 
Secondary screening is the further investigation of hits. The k-
nearest neighbors (knn) is a non-parametric classification 
method, which is simple but effective in many cases [2].  
Many researchers have found that the knn algorithm achieves 
very good performance in their experiments on different data 
sets [21][13][17]. Also in categorization of biological screen 
data is one of the most popular algorithms [7]. In knn 
algorithm data record t to be classified, its k nearest neighbors 
are retrieved, and this forms a neighborhood of t. Majority 
voting among the data records in the neighborhood is usually 
used to decide the classification for t with or without 
consideration of distance-based weighting. The k nearest 
neighbors are selected to make an equal contribution to the 
prediction of a test compound, no matter where they are 
located relative to the test point. In a sparse region, the k-thy 
point may be far away from the test point and be unrelated to 
the test point and have little or no prediction power. However, 
this point must contribute to the prediction the same as the 
other k-1 compounds according to the knn rule. This does not 
sound reasonable. 
A number of locally adaptive methods have recently been 
proposed to address the distance selection issue in knn. 
Friedman [5] describes a flexible metric that recursive on a 
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query along the most (locally) relevant dimension, where local 
relevance is determined from a reduction in error between 
successive predictions. In [8], Hastie and Tibshirani propose a 
discriminant adaptive NN (DANN) method that computes a 
distance metric as a product of properly weighted local within 
and between sum-of-squares matrices. Domeniconi et al. [3] 
describe a locally adaptive NN method by approximating the 
Chi-squared distance (ADAMENN) [8], [14], [20]. The 
technique employs a “patient” averaging process to reduce 
variance. MORF [15] is another adaptive NN method where, 
for a query, a local linear support vector machine (SVM) is 
built and the normal of the SVM is used to determine 
discriminant feature dimensions for classifying the query.  
This extension of knn proposed in this paper is based on the 
idea that such observations (chemical compound) within the 
learning set, which are particularly close to the new 
observation, should get a higher weight in the decision than 
such neighbors that are far away from tested element. This is 
not the case with standard knn: Indeed only the k nearest 
neighbors influence the prediction; however, this influence is 
the same for each of these neighbors, although the individual 
similarity to tested element might be widely different. We 
develop a much more flexible algorithm that extends the basic 
method. We introduce a weighting scheme for the nearest 
neighbors according to their similarity to a new observation 
using kernel function for screening compounds. 
The rest of the paper is organized as follows. In section 2 we 
define the probability for decisions made by the majority rule 
based on a finite number of observations. The details of the 
proposed method are presented in section 3. In section 4 we 
test our method on biological screen datasets.  The conclusion 
will be given in section 5. 

II. CLASSIFICATION 
The final decision in a recognition task is affected by two 
types of “a priori” knowledge: the number of samples 
previously seen of each of the objects to be recognized, and 
the discriminant power provided by the features extracted. 
The prior knowledge is reflected in the a priori probabilities 
that measure how likely we are to find each type in the data 
set. The proportions in which each type (class) is present in 
the sample area may provide such a measure. If we let ωi (i = 
1,...,M) denote the state of nature, i.e. the variable indicating 
the M possible classes, P(ωi) denote the a priori probabilities. 
Generally speaking ωi are called classes and the prior 
knowledge available is used to estimate the a priori 
probabilities.  
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If we let x denote the vector containing a set of 
measurements (parameters), the state-conditional probability 
density p(x|ωi) express the probability density function for x 
given that the state of nature is ωi. The state conditional 
probability densities can also be estimated from the samples 
for each class. The two probabilistic measures derived by the 
samples, the a priori probability for each class p(ωi) and the 
state-conditional probability density (scpd) p(x|ωi), can be 
used to estimate the a posteriori probability P(ωi|x) by means 
of Bayes rule: 

∑
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Given the feature vector x of an unclassified pattern, 
classification is carried out estimating the posterior 
probabilities for each class and, deciding for the class with the 
higher posterior probability value. The effect of such a 
decision rule is to divide the feature space into M decision 
regions. 
According to Bayes rule, the class with the largest posterior 
probability is selected as the label of x. Ties are broken 
randome. Bayes rule guarantees the minimum 
misclassification rate. Sometimes the misclassifications rate 
differently for different classes. Then we can use a loss matrix 
Λ=[λij], where λij is a measure of the loss incurred if we assign 
class label ωi  when the true label is ωj. The minimum risk 
classifier assigns x to the class with the minimum expected 
risk: 

∑
=

=
M

j
jijix xPR

1

).|()( ωλω          (2) 

In general, the classifier output can be interpreted as a set of 
M degrees of support, one for each class (discriminant scores 
obtained through discriminant functions). We label x in the 
class with the largest support. In practice, a priori probabilities 
and the scpd are not known. The scpd can be estimated from 
the data using either a parametric or nonparametric approach.  
When we look at the classification problem in a supervised 
classifier, we observe a labeled (training) set of n observations 
On = {(x1, ω1), . . . , (xi, ωi)}, where xi are the feature vectors, 
ωi are scalar labels of the d-dimensional real vectors Xi and 
(xi, ωi) are assumed to be from some unknown distribution Q 
of (x, ω) on n dimensional space R with M number of classes 
ω, Rd×{ω1, . . . , ωM}. Here we assume simply that the training 
vectors are random vectors in d-dimensional Euclidean space 
with well-behaved distributions and a well-defined density 
function f. 
The goal in supervised learning is to design a function Φn : Rd 
-> { ω1, . . . , ωM} that maps a new feature vector x drawn 
from Q to its desired class from {ω1, . . . , ωM}. K-nearest 
neighbor (knn) belongs to one nonparametric approach in 
supervised learning strategies. 

A. Probability in the k-nearest neighbors method 
 
Given n samples we can easily estimate the joint probability 

p(x, ωi), by placing a cell of volume V around observation x. 
Let ki be the number of samples labeled ωi captured by the 
cell, then the joint probability can be estimated as: 
The above measure can be use to provide a reasonable  

V
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estimate of the posterior probability: 
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where k is the total number of samples captured by the cell. 
Calculation of probability in this case is based on density 
estimation via Bayes theorem. Generally the knn rule suggests 
classifying x by assigning it to the class that appears most 
frequently among its k nearest neighbors. Let ki denote the 
number of observations from the group of the nearest 
neighbors that belong to class i: 

∑
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Then a new observation is predicted into the class ω with: 
 

kω= maxi (ki),         (6) 
 

As we know, selecting ideal k neighbors in practical data is 
quite difficult, because only a finite amount of training data is 
available. The way that knn takes an average of the k nearest 
points is a discrete process. The k nearest compounds is 
selected to make an equal contribution to the prediction of a 
test compound, no matter where they are located relative to 
the test point. In a sparse region, the k-thy compound may be 
far away from the test compound and be unrelated to the test 
compound and have little or no prediction power. However, 
this compound must contribute to the prediction the same as 
the other k-1 compounds according to the knn rule. This does 
not sound reasonable. Here, we propose method to avoid the 
problem by combining knn with kernel weights. We can 
automatically give the points close to the test compound more 
weight and the points far away less weight. A kernel-weighted 
knn was already proposed and implemented by Hchenbichler 
and Schliep (2004) [23]. The difference in our algorithm is a 
kernel function: we combine in kernel properties of graphical 
structure and molecule descriptors of screening compound 
together. The use of such kernels allows comparison of 
compounds, not only on graphs but also on molecular 
descriptors which play important role in classification of 
molecules according to their biological activity. 

III. WEIGHTED K-NEAREST-NEIGHBORS 
 
The classification version of weighted knn is concieved to 
predict nominal classes and works with a weighted majority 
vote of the nearest neighbors: 
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where w is a function of the distance between the ith nearest 
neighbor and the test point. The distances on which the search 
for the nearest neighbors is based in the first step, have to be 
transformed into similarity measures which can be used as 
weights. 

A. Kernel function as weight. 
The transition from distances to weights then follows in the 
second step according to any arbitrary kernel function. There 
are several kernel weight functions, and we introduced new 
kernel for chemical compounds used in screening process. 
Because chemical compounds are often represented by the 
graph of their covalent bonds, machine learning methods in 
this domain must be capable of processing graphical structures 
with variable size.  The topology of chemical compounds can 
be represented as labeled graphs, where edge labels 
correspond to bond properties like bond order, length of a 
bond, and node labels to atom properties, like partial charge, 
membership to a ring, and so on. This representation opens up 
the opportunity to use graph mining methods to deal with 
molecular structures. Selecting optimal similarity features of a 
molecule based on molecular graph or descriptors is a critical 
and important step, especially if one is interested in 
quantifying structure-activity relationship (QSAR) studies. It 
has been shown [24, 11, 16] that the quality of the inferred 
model strongly depends on the selected molecular properties 
(graph or descriptors).  
Optimal Assignment (OA) kernel [9] is one graph kernel used 
for chemical molecules. Let us assume now we have two 
molecules m and m’, which have atoms a1,…,a|m| and  a’1,…, 
a’|m’|. Let us further assume we have a kernel knei, which 
compares a pair of atoms (ah, a’h’) from both molecules, 
including information on their neighborhoods, membership to 
certain structural elements and other characteristics. Then a 
valid kernel between m, m’ is the optimal assignment kernel: 
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where knei is calculated based on two kernels katom and kbond 
which compare the atom and bond features, respectively. 
These feature vectors should include various information, for 
instance, whether an atom belongs to a ring, if it is in a donor 
or acceptor, what partial charge it has and so on. A natural 
choice for katom and kbond would be the RBF-kernel, which 
computes the similarity of the feature vectors associated to a 
pair of atoms or bonds. Let us denote by a → ni(a) the bond 
connecting atom a with its ith neighbor ni(a). Let us further 
denote by |N(a)| the number of neighbors of atom a. We now 
define a kernel Ro, which compares all direct neighbors of 
atoms (a, a’) as the optimal assignment kernel between all 
neighbors of a and a0 and the bonds leading to them, i.e. 
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were we assumed |N(a’)| ≥ |N(a)| for the sake of simplicity of 
notation.  
Each atom of the smaller of both molecules is assigned to 
exactly one atom of the larger molecule such that the overall 
similarity score is maximized. To prevent larger molecules 
automatically achieving a higher kernel value than smaller 
ones, kernel is normalized (e.g. Schoelkopf & Smola, 200221), 
i.e. 
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Nevertheless, after our examination of different molecules 
used in screening experiments, where the structure of the 
molecule is very complex, grouping of atoms, bonds 
proposed, based on OA kernel is not always relevant. In such 
cases we needed additional criteria to extend OA kernel also 
including molecule descriptors. As far as we know there is no 
extension of OA kernel where we should also consider 
molecule descriptors. Descriptors play an important role in the 
prediction of activity in screening data. One of the newest 
additions to this class of whole-molecule descriptors is the set 
of Burden metrics of Pearlman and Smith 1998 [18].  
Let us assume now we have two molecules m and m’, which 
have atoms a1,…,a|m| and  a’1,…, a’|m’|. Let us further assume 
we have a kernel Knei, which compares a pair of atoms (ah, 
a’h’) from both molecules, including information on their 
neighborhoods, membership to certain structural elements and 
other characteristics. Then a valid kernel between m, m’ is the 
optimal assignment kernel [9]: 
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where Knei is calculated based on two kernels Katom and Kbond 
which compare the atom and bond features, respectively. OA 
graph kernel, is of general use for QSAR problems, but is 
more focused on screening data.  In developing a good quality 
QSAR model for these data we combined OA graph kernel 
and kernel where we considered Burden descriptors [18]. 
Now we will describe how to compute the kernel efficiently 
using Burden descriptors. Again, given two molecules m and 
m’, the basic idea of our method is to construct a kernel k(m, 
m’) which measures the similarity between m and m’. 
Gausian kernel was chosen because it readily produces a 
closed decision boundary, which is consistent with the method 
used to select the molecular descriptors. 

|)'|exp()',( mmmmkGaus −−= γ ,   (12) 
Calculating the OA graph kernel and at same time the Gausian 
kernel with eight Burden features give us two ways of 
comparing molecules: looking at the chemical structure and 
looking for molecule activity. Having two values from these 
two kernels and making, at the same time an average, gives us 
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more precise molecule similarity information. 
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If weights are considered, the estimated probability of tested 
point can be easily calculated by: Transform the kernel 
function Kscr(m,m’) into weights w. 

w=Kscr(m,m’),       (14) 
If weights are considered, the estimated probability of tested 
point can be easily calculated by: 
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where Kscr is the kernel function between the compound x and 
its ith neighbor. 
Choosing a single value of k for all data points may not be 
optimal as we claimed in previously. For example, if the 
density of points varies across the predictor space, a constant 
value of k implies neighborhoods of differing sizes. In the 
case of distances, which are defined as strictly positive values, 
of course only the positive domain of kernel K has to be used. 
In this sense the choice of the kernel is other parameter in our 

proposed technique. 

In [12], the probability estimate 
^
P (mi |ωM; k) at a test 

compound with descriptor values xi takes a weighted average 
among the selected k nearest points. In this respect, we can 
automatically give the points close to the test compound more 
weight and the points far away less weight. This, in some 

sense, alleviates the bias drawn by including the points far 
away.  

IV. EXPERIMENTAL EVALUATION 
We experimentally evaluated the performance of weighted 
knn in a classification algorithm and compared it against that 
achieved by earlier approaches on a variety of chemical 
compound datasets.  

A. Datasets  
We used two different public available datasets to derive a 
total of eight different classification problems.  The first 
dataset was obtained from the National Cancer Institute’s DTP 
AIDS Anti-viral Screen program [4] [19]. Each compound in 
the dataset is evaluated for evidence of anti-HIV activity. The 
screen utilizes a soluble formazan assay to measure protection 
of human CEM cells from HIV-1 infection. Compounds able 
to provide at least 50% protection to the CEM cells were re-
tested. Compounds that provided at least 50% protection on 
retest were listed as moderately active (CM, confirmed 
moderately active). Compounds that reproducibly provided 
100% protection were listed as confirmed active (CA). 
Compounds neither active nor moderately active were listed 
as confirmed inactive (CI). We have formulated binary 
classification problems on this dataset, we consider only 
confirmed active (CA) and confirmed inactive (I) compounds 
and then build a classifier to separate these two compounds. 
The second dataset was obtained from the Center of 

Computational Drug Discovery’s anthrax project at the 
University of Oxford [10]. The goal of this project was to 
discover small molecules that would bind with the heptameric  
protective antigen component of the anthrax toxin, and 
prevent it from spreading its toxic effects. A library of small 
sized chemical compounds was screened to identify a set of 
chemical compounds that could bind to the anthrax toxin. The 

screening was done by computing the binding free energy for 
each compound using numerical simulations. The screen 
identified a set of 2,593 compounds that could potentially bind 

TABLE I 
 RECOGNITION PERFORMANCE OF WEIGHTED KNN WITH GRAPH KERNEL BY VARYING THE NUMBER OF TRAINING SAMPLES (100, 200, 400) AND  

NEAREST NEIGHBORS K. NUMBERS REPRESENT CORRECT CLASSIFICATION RATE [%]. 
100 200 400 k 

 DTP AIDS Toxic DTP AIDS Toxic DTP AIDS toxic 

1 83.6%±1.05 81.5%±4.82 84.2%±2.05 83.1%±2.01 82.6%±3.02 82.5%±3.23 

3 78.8%±5.68 73.8%±10.01 79.8%±2.12 74.9%±3.82 79.6%±3.12 73.9%±4.32 

5 82.0%±7.01 81.3%±2.56 83.6%±0.98 81.5%±2.45 82.8%±1.52 81.0%±3.67 

7 79.3%±4.81 73.9%±8.12 80.1%±2.43 75.6%±1.54 79.9%±2.78 74.1%±3.45 

TABLE II 
 RECOGNITION PERFORMANCE COMPARISON OF WEIGHTED KNN WITH TRADITIONAL KNN, DANN AND ADAMENN FOR DIFFERENT VALUES OF K. NUMBERS 

 REPRESENT CORRECT CLASSIFICATION RATE [%]. 
weighted knn DANN ADAMENN 

DTP AIDS Toxic DTP AIDS Toxic DTP AIDS toxic 

1 79.8%±2.54 74.9%±2.22 79.6%±4.04 73.9%±3.87 78.8%±5.34 73.8%±0.65 

3 82.5%±3.67 80.3%±4.12 81.3%±2.54 79.8%±0.56 82.1%±3.87 79.2%±3.23 

5 83.2%±3.54 81.5%±3.42 82.5%±2.75 81.3%±1.23 82.9%±3.98 80.3%±3.88 

7 79.3%±4.81 73.9%±8.12 80.1%±2.43 75.6%±1.54 79.9%±2.78 74.1%±3.45 
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to the anthrax toxin and a set of 14,837 compounds that were 
unlikely to bind to the chemical compound. The average 
number of vertices in this dataset is 25 and the average 
number of edges is also 25.  For these datasets we generated 8 
features, called Burden descriptors [1]. In the case of 8 data 
properties, we can construct, and check our classifier in a 
maximum eight dimensional spaces.  

B. Results 
We tested a proposed extension of knn with molecule graph 
kernel in two benchmark experiments of chemical compound 
classification. In order to see the effect of generalization 
performance on the size of training data set and model 
complexity, experiments were carried out by varying the 
number of training samples (100, 200, 400) according to a 5-
fold cross validation evaluation of the generalization error 
(Table 1). 
The experimental results show that weighted knn has a better 
classification performance when the number of training 
samples is 200, while there is comparable performance when 
the number of samples is 400. Next we compared the 
classification accuracy of the proposed algorithm 
corresponding to the 1st- and 2nd datasets with other 
modifications of knn for different values of k neighbors. 

Weighted knn shows performance improvements over the 
DANN and ADAMENN, for both of the (noisy) real 
screening data sets. Moreover it is worth mentioning that 
weighted knn does slightly better than DANN in general. 
Finally, weighted knn is significantly better than ADAMENN 
and k = 5 at a classification rate of 83% (Table 2). This is a very 
satisfying result as the definition of activity plays a very 
important role in modern biostatistics. We would like now to 

determine if a new weighted knn has an effect in classification 
in comparison to DANN and ADAMENN. A permutation test 
was selected as  an alternative way to test for differences in 
compared algorithms in a nonparametric fashion (so we do not 
assume that the population has a normal distribution, or any 
particular distribution and, therefore, do not make 
distributional assumptions about the sampling distribution of 
the test statistics). The R package “exactRankTests” [11] was 
used for permutation test calculation. Table 3 lists the 2 
calculation of accuracy with different k and results from the 
test. This Table shows four columns for each pair of compared 
different nearest neighbors methods (both data sets), the first 
and second giving the classification accuracy, while the last 
two columns have the raw (i.e., unadjusted) t-statistic result 
and p-values computed by the resampling algorithm already 
described [22]. The permutation test based on 2000 sample 
replacements estimated a p-value to decide whether or not to 
reject the null hypothesis. The null hypotheses for this test 
were H01: weighted knn =DANN, H02: weighted knn = 
ADAMENN and alternative hypothesis HA1: weighted knn > 
DANN, HA2: weighted knn > ADAMENN, additionally let’s 
assume at a significance level α = 0.05. The permutation test 
will reject the null hypothesis if the estimated P-value is less 
than α. More specifically, for any value of α < p-value, fail to 

reject H0, and for any value of α ≥ P-value, reject H0. The P-
values (Table 3) on average for DTS AIDS and toxic data sets 
of 0.0527, 0.0025, 0.0426, 0.0020 indicates that the 
classification with weighted knn is probably not equal to 
DANN and ADAMENN.  The P-value 0.0527 between 
weighted knn and DANN for DTS AIDS data sets, indicates 
weak evidence against the null hypothesis. There is strong 
evidence that all other tests null hypothesis can be rejected. 

TABLE  III 
STATISTICAL TEST BETWEEN WEIGHTED KNN, DANN AND ADAMENN FOR DIFFERENT VALUES OF K NEAREST NEIGHBORS. NUMBERS REPRESENT CORRECT 

CLASSIFICATION RATE [%], T-STATISTIC (WITHOUT PERMUTATION) AND CALCULATED P-VALUE FROM PERMUTATION TEST. CALCULATED T*-STATISTIC TO THE NEW 
DATA SET WITH REPLACEMENT 2000 TIMES GAVE RESULT IN AVERAGE T*MIN = 0.852, T*MAX = 1.254 

DTP AIDS DTP AIDS K 

Weighted knn DANN t-stat p-value Weighted knn ADAMENN t-stat P-value 

1 79.8%±2.54 79.6%±4.04 3.78 0.0231 79.8%±2.54 78.8%±5.34 4.11 0.0012 

3 82.5%±3.67 81.3%±2.54 3.22 0.0541 82.5%±3.67 82.1%±3.87 3.82 0.0012 

5 84.2%±1.34 82.6%±1.06 -3.12 0.0773 84.2%±1.34 83.6%±2.04 2.77 0.0032 

7 84.8%±0.92 83.9%±1.77 -2.89 0.0561 84.8%±0.92 82.1%±0.65 -.4.01 0.0044 

   Average: 0.0527   Average 0.0025 

 
DTP AIDS DTP AIDS 

K 
weighted knn DANN t-stat p-value Weighted knn ADAMENN t-stat P-value 

1 74.9%±2.22 73.9%±3.87 4.02 0.0231 74.9%±2.22 73.8%±0.65 2.55 0.0002 

3 80.3%±4.12 79.8%±0.56 4.56 0.0541 80.3%±4.12 79.2%±3.23 4.33 0.0023 

5 83.1%±2.65 82.5%±1.88 -4.21 0.0773 83.1%±2.65 81.5%±3.98 3.53 0.0022 

7 82.4%±3.54 81.9%±3.05 3.54 0.0561 82.4%±3.54 82.1%±.4.44 -2.22 0.0034 

   Average 0.0426   Average 0.0020 
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Permutation tests suggest, on average, that weighted knn for 
screening data is statistically significantly larger than DANN 
and ADAMENN. 

V. CONCLUSION 
We have proposed a new modification of knn algorithm that is 
suitable for discriminative classification with unordered sets 
of local features. Our weighted knn with graph kernel 
approximates the optimal partial matching of molecules by 
computing vertex labels, edge labels and burden values. The 
kernel is robust since it does not penalize the presence of extra 
features, respects the co-occurrence statistics inherent in the 
input sets, and is provably positive-definite. We have applied 
weighted knn to different datasets, and demonstrated 
recognition performance with accuracy comparable to current 
methods on screening data. Our experimental evaluation 
showed that our algorithm leads to substantially better results 
than those obtained by existing QSAR- and sub-structure-
based methods. 
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