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Abstract—Time series analysis often requires data that represents 

the evolution of an observed variable in equidistant time steps. In 
order to collect this data sampling is applied. While continuous 
signals may be sampled, analyzed and reconstructed applying 
Shannon’s sampling theorem, time-discrete signals have to be dealt 
with differently. In this article we consider the discrete-event 
simulation (DES) of job-shop-systems and study the effects of 
different sampling rates on data quality regarding completeness and 
accuracy of reconstructed inventory evolutions. At this we discuss 
deterministic as well as non-deterministic behavior of system 
variables. Error curves are deployed to illustrate and discuss the 
sampling rate’s impact and to derive recommendations for its well-
founded choice. 
 

Keywords—discrete-event simulation, job-shop-system, 
sampling rate. 

I. INTRODUCTION 
YNAMIC systems are often studied by simulations [1]-
[3]. Here, the general approach is to run simulations and 

save the evolution of important variables throughout 
simulation by event-driven information or by sampling [2], 
[4]. Based on sampled data the temporal evolutions of 
variables can be reconstructed and analyzed. However, the 
quality of the reconstructed data depends highly on the 
accuracy of the samples. Here, we have a trade-off. Fixing the 
sampling rate beforehand to simulation at a very high 
frequency allows high quality reconstruction but may cause 
the collection of redundant data. That increases running time, 
memory requirements and the efforts of data analysis. On the 
other hand, too small sampling frequencies may impair data 
quality especially regarding accuracy. This trade-off is to be 
solved by the well-founded choice of the applied sampling 
rate [5]. 
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sampled data is known from different sources and applications 
[5], [6]. As an example, analog data like experimental 
measurements or voices can be sampled, processed and 
reconstructed [7]. In that case errors within the reconstructed 
signals can be approximated by applying the Shannon-Nyquist 
sampling theorem [8]-[10]. Hereby, a sampling frequency of 
twice the highest frequency in the analog signal is needed to 
reconstruct accurately. However, the theorem is only 
applicable to band-limited analog signals. One possible 
solution to consider signals with a non-limited bandwidth is to 
apply a low-pass filter. Although data will be lost by this 
approach, the remaining signal becomes band-limited 
allowing for the sampling theorem to be applied. Thus, the 
signal can be reconstructed without errors. Today the 
application of Shannon’s sampling theorem is common in 
many fields of science [6]. 

However, dealing with non-periodic and time-discrete 
signals the theorem is not suited for application. Therefore, 
simulation studies often document signal-relevant events and 
the time of their occurrences [1], [5]. This procedure allows 
collecting a minimum of necessary data. However, the 
investigation of dynamical properties of such systems requires 
time series analysis [11], [12]. Here, to apply advanced 
analysis methods like Fourier analysis and correlation analysis 
to the temporal evolution of important variables, data is 
required, that is taken in equidistant time increments [13]. 
Therefore, sampling is required to process the recorded event-
driven information into data taken in equally measured time 
steps. Here, the sampling rate has to be chosen appropriately 
to ensure accurate data quality and the exclusion of 
information losses. 

To investigate the impact of sampling frequency on data 
accuracy in discrete systems we consider inventory evolution 
in job-shop-systems. Here, the inventory evolutions are 
outcome of discrete objects, dependent processes and re-
entrant structures resulting in often highly volatile 
developments [14], [15]. The inventory developments are 
discrete in time and value although between two changes of 
inventory the value remains constant forming a quasi time-
continuous curve, fig. 1. In addition to being time-discrete and 
volatile, inventories in job-shop-systems are close to 
investigation, as detailed knowledge about the system’s 
dynamics and the influence of certain system variables may 
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result in improved methods for the design and the production 
control of such systems [16]. 
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Fig. 1 Exemplified inventory evolution in job-shop-systems 

 
In the following findings of a study using DES of job-shop-

systems for the determination of an appropriate sampling rate 
for inventory evolutions are described. At this, deterministic 
as well as non-deterministic behavior of system variables is 
considered. In the next section we explicate about job-shop 
systems and introduce the applied DES-model. Then, we 
introduce the simulation study and present the results for 
deterministic and stochastic system variables. 

II. JOB-SHOP-SYSTEMS AND MODEL DESCRIPTION 
Job-shop-systems are characterized by spatial and 

organizational units each of which incorporates machines or 
work stations of similar function. In this way so-called 
workshops are pooled up which contain concentrated 
knowledge and equipment. Their combined application in 
production is suited for heterogenic production programs with 
typically small and often changing quantities. Production 
orders move through this net of production units from 
workshop to workshop following their work plan. Thus, 
various production and transport processes success each other 
forming a discontinuous and strongly cross-linked material 
flow which can be characterized by complex and often non-
linear inventory behavior [15], [17]. 

To design an appropriate simulation model initially a 
conceptual model was designed, fig. 2. This was followed by 
its implementation in an environment of discrete-event 
simulation within the software Tecnomatix Plant Simulation 
by Siemens, fig. 3. The model comprises various elements 
which can be combined in a generic way to represent any job-
shop-system’s configuration. Basic elements are workshops. 
One workshop comprises one or more similar capacity units. 
Each unit has one up-stream- and one down-stream buffer. 
The material flow is carried out by floor-borne transport 
vehicles connecting the modeled workshops, material entry 
and material exit. The number of workshops, machines and 
vehicles can be chosen arbitrarily, different transport distances 

can be considered by adequate transportation times. 
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Fig. 2 Conceptual model for job-shop-systems [18] 

 

 
 

Fig. 3 DES-Model of job-shop-systems 
 
The order release starting the material flow within the 

system is controlled by the material entry. Here, the material 
input can be realized periodically or at random. The sequence 
of orders can be fixed within the related production program. 
Each order is linked to a work plan and a lot size, offering the 
possibility to generate orders of various processing steps and 
times. Once a production order is released, it makes its way 
through production following its work plan. The stopover time 
in each workshop is determined by the sum of waiting and 
processing times. At this, the sequence of processing at each 
capacity unit is given by the first come first serve principle. 
The allocation of incoming orders to capacity units is realized 
by considering lowest current inventory. Thus, in case a 
capacity unit is already processing an order, subsequent orders 
have to wait in the up-stream buffer. In case all transport 
vehicles are in operation another amount of waiting time may 
result after machining within the down-stream buffer. In this 
way various levels of inventory are queuing within up-stream 
and down-stream buffers quantified by their processing time. 
Once an order has been processed according to its work plan it 
exits the system through the material exit. 
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III. SAMPLING OF INVENTORY EVOLUTIONS 
Previous studies showed that accurate sampling of 

inventory is not influenced by the dimensions of the 
production system but by the material entry time and by the 
durations of all operations within the system [19]. Therefore, 
within this study the applied model was restricted to a 
configuration comprising four workshops each containing 
three machines. The number of transport vehicles was chosen 
not being a bottleneck. 

Initially, simulations with deterministic variables were 
studied. Different work plans were allocated containing 
minimum four up to sixty positions with various processing 
times. Order release was conducted periodically, simulated 
time exceeded 100.000 hours. The sampling was applied to 
the inventory evolution of one selected buffer applying 
varying sampling rates. 

A. Ideal-, Over- and Undersampling 
Within deterministic DES ideal-, over- and undersampling 

can be defined. Striving for no information losses each 
adopted inventory value throughout the simulation has to be 
captured. Therefore, the time increment between two sampled 
values must not exceed the smallest possible duration that an 
inventory value remains constant. Furthermore, to sample 
each change of inventory by the time of occurrence, all times 
within simulation and their sums must be generable by integer 
multiples of the sampling rate. In mathematical terms these 
requirements regarding the sampling rate correspond to the 
greatest common divisor (GCD) of all system times. Given 
that all times within the system (processing, transport, order 
release, …) are well-known beforehand to simulation the 
GCD of all durations GCDt  can be calculated by applying 
basic mathematics [20]. Then, optimal sampling frequency is 
given by 

 
1( )opt GCD GCDf f t −= =              (1) 

 
Following the optimal sampling, which may be described as 

idealsampling, over- and undersampling can be defined 
referring to the applied sampling frequency sf  or the 

corresponding sampling distance sTΔ  [19]. After defining a 

frequency ratio Θ  with 
 

s GCD

GCD s

f t
f T

Θ = =
Δ

              (2) 

 
we obtain 
 

• undersampling: 1Θ < , 
• idealsampling:  1Θ =  and 
• oversampling:  1Θ > . 

 

Applying idealsampling we find that sTΔ  and GCDt  match 
each other. Therefore, the reconstructed inventory evolutions 
represent exactly the original curve. Thus, the reconstructed 
curve can be applied as reference graph. In contrast, 
undersampling as well as oversampling incorporates errors 
due to differences between the occurrence and the recording 
of an event. Exception is the oversampling with a frequency 
which is an integer multiple of the optimal frequency. Here, 
we receive accurate although redundant data. 

B. Error Curves for Over- and Undersampling 
Following over- and undersampling the errors occurring 

due to impaired data accuracy can be calculated applying the 
mean absolute error over time by 

 

( )
0

1 T

abs abse e t dt
T

= ∫             (3) 

 
Here, the absolute error ( )abse t  is determined as the 

difference between reference graph and the reconstructed 
graph. Fig. 4 illustrates the small-scale diagram of the error 
curve abse  which results by sampling a given inventory 
evolution by various sampling rates. The analyzed simulation 
run is based on GCDt = 40 min. 
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Fig. 4 abse  in relation to sampling time (deterministic, small-scale) 

 
Applying idealsampling meaning sampling distances of 

40 min and a frequency ratio of 1Θ =  the resulting error is 
0abse = . Equally, there results no error for oversampling 

with integer multiples of the idealsampling frequency. All 
other oversampling frequencies generate errors although these 
trend for increasing frequencies almost linearly to zero. 

Equally, undersampling appears to develop with increasing 
sampling distances in nearly linear error evolution. However, 
plotted on large-scale for very large distances (very small 
frequencies) it becomes apparent, that the error develops in a 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

37

 

 

declining way, fig. 5. Here, the error is limited by an upper 
bound which is determined by the system’s parameters. 
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Fig. 5 abse  in relation to sampling time (deterministic, large-scale) 

 
An interesting effect within the deterministic scenario is the 

occurrence of outlier values within the error curves. The error 
is here either surprisingly low or high for certain sampling 
rates. The effect of low values appears in case the ratio of the 
greatest common divisor GCDt  and the applied sampling 

distance sTΔ  (and their corresponding frequencies 
accordingly) constitutes a positive rational number: 

 

, ,GCD

s

t n n m
T m

Θ = = ∈
Δ

          (4) 

 
Assuming that the inventory value changes every time step 

given by GCDt , m values are missed opposed to optimal 
sampling, however each n-th value is recorded exactly. 
Although this condition applies especially for small 
processing times with little variety it causes the occurrence 
and influences the intensity of these effects. Referring to fig. 4 
by sampling each 80 minutes ( 1

2Θ = ) each second change of 
inventory is recorded correctly. Thus, temporarily there is no 
information loss. The same effect can be observed for 
oversampling, e.g. for a sampling time of 26,66 min. 
( 3

2Θ = ). Here, every third value is documented within the 
moment of occurrence. Similar value interactions cause the 
outlier values with surprisingly high errors, fig. 5. Here, the 
sampling is executed frequently just before the inventory 
changes its value, thus boosting the overall error. 

Although varying in details, the error curves for simulation 
runs with deterministic system variables and very long and 
highly volatile inventory evolutions resembled each other. 
However, the concrete appearance of an error curve is a result 
of sizes and variety of processing times, both influencing the 
volatility. This is particularly apparent regarding their outlier 

values. These dependences are elaborated in the next section 
for non-deterministic system variables. 

C. Impact of non-deterministic influences 
Following the simulation study on deterministic system 

variables another study was carried out to investigate the 
impact of non-deterministic influences on the previous results. 
Hereby, processing times within the work plans of the 
deterministic scenario were adjusted to incorporate normal 
distributions with varying widths of standard deviations. As a 
consequence, the GCD cannot be calculated beforehand to 
simulation anymore. Therefore, inventory changes have to be 
captured in time and in value throughout simulation to obtain 
data upon the inventory evolution. 

Based on this data the GCD can be calculated after 
simulation. After determining all time-related differences 
between precedent and successive value changes the GCD can 
be computed in the same way as for the deterministic scenario. 
However, the stochastic influence has two main outcomes: 
Firstly, the variety of processing times increases, depending 
on the width of the defined standard deviation and the 
exactness of the saved data. Secondly, the GCD becomes 
smaller in the same amount as the exactness is enhanced. 
Generalizing this relationship we find that the GCD converges 
against zero the more precise the inventory values are 
documented. At the same time the volume of sampled data 

increases hyperbolically with 
1

GCDt
. Therefore, the exactness 

of the documented data has to be restricted. Although 
information is lost by this approach, it limits the data volume 
to suit individual constraints and requirements and allows for 
the GCD to be applied for sampling. In this study the 
exactness was restricted to an accuracy of one second. 

Based on the recorded, event-driven data the inventory 
evolution was reconstructed. The resulting curve was used as 
a reference graph which allows determining the error curve 
for various sampling rates just as in the deterministic scenario. 

Although appearing similar to the deterministic case the 
resulting error curves stand out because of diminished or 
absent outlier values, fig. 6. This is a consequence of the 
increased variety of processing times. While in the 
deterministic case there was less variety, the inventory 
changes and the sampling were much more probable to 
coincide. Within the non-deterministic scenario this effect 
loses its influence causing the error curve to narrow. 
Generalizing this effect we find that the reduction of 
processing times on the one hand and the stochastic-driven 
increase of variety on the other hand cause the error curve to 
trend gradually towards a smooth line. 
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Fig. 6 abse  in relation to sampling time (stochastic, small-scale) 

IV. CONCLUSION 
In this paper we introduced an approach which allows 

choosing a well-founded sampling rate to apply for the 
generation of equidistant data within time-discrete signals. 
Using the example of inventory evolutions in job-shop-
systems it was demonstrated that data accuracy is ensured 
when applying a sampling frequency which corresponds with 
the greatest common divisor (GCD) of all system times. In 
case all times within the system are deterministic and well-
known the GCD can be calculated beforehand to simulation. 
Applying lower or higher sampling rates generates errors 
discussed by error curves. Here, for increasing oversampling 
the error trends against zero while it converges against an 
upper bound for undersampling. In case the system times are 
not known or are subject to stochastic influences the events 
and times impacting the inventory value have to be 
documented. Then, the computation of the GCD is possible 
after simulation. Here, the simulation study showed that the 
error curve narrows for an increasing variety of processing 
times. Although applicable within the non-deterministic case, 
the GCD decreases by rising exactness of the documented 
variable values. This heightens data volume hyperbolically 
while the error declines only linearly. 

Here, one way to deal with high data volume is to reduce 
the exactness of the documented data. Although details within 
the signal are lost by this approach, it allows for the GCD to 
be applied for the accurate sampling and reconstruction of the 
signal with acceptable data volumes. However, efforts and 
benefit of a high exactness have to be balanced individually in 
this case depending on accuracy requirements and capacity 
constraints. The reduction of exactness to allow applying the 
GCD can be seen as an analogy to Shannon’s sampling 
theorem: although the bandwidth of a signal has to be limited, 
e.g. by employing a low-pass filter, it allows for the theorem 
to be applied. 
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