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Abstract—In this note, the robust static output feedback 

stabilisation of an induction machine is addressed. The machine is 
described by a non homogenous bilinear model with structural 
uncertainties, and the feedback gain is computed via an iterative LMI 
(ILMI) algorithm.  
 

Keywords—Induction machine, Static output feedback, robust 
stabilisation. 

I. INTRODUCTION 
NDUCTION machine has received particular interest 
through many researches in industry application systems, 
since it's intensively used in applications requiring high 

dynamic performances.     
Controllers for such machines must have some 

characteristics as limiting both currents and flux in their 
respective nominal ranges, while driving the motor torque 
along a giving profile. 

On other hand, the controller synthesis for drives using an 
induction machine is a rather difficult problem that must deal 
with nonlinear dynamics, multivariable inner structure of the 
system and no availability of flux sensors. Moreover, the most 
applications must be sensorless to insure required safety, high 
level availability of devices and low costs implementation, 
which increase problems difficulty. So, sensorless control for 
both synchronous and asynchronous machine was the one of 
the most attractive problems trough the last two decades.  

In the last years, the most effective approaches to this 
problem were based on linearising and decoupling between 
stator parameters leading to the so called field oriented control 
(FOC). In such control problem, the knowledge of stator 
resistance and self induction coefficient is necessary. Those 
parameters are not constants due to the large heat domain of 
work and variable saturation level of the machine. 
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In this paper, the robust static output feedback stabilisation 
of an induction machine described by a non homogenous 
bilinear model is focus on. The static output feedback problem 
is one of the most important open questions in control 
engineering [10]. Many analytical and numerical methods 
were proposed in Schumacher 1980 [8]; Barmish 1985[2]; 
Bernstein 1992[1] Iwasaki and Skelton 1995[5], Kucera and 
de Souza 1995[6], Oliveira and Geromel 1997[7]; Syrmos et 
al. 1997 [10] and the references therein.  

In Cao et al. 1998 [3], an iterative linear matrix inequality 
(ILMI) approach is proposed to design a Static Output 
Feedback Stabilisation of a linear time invariant system. 
Zheng et al. 2002 [11] study the design of multivariable PID 
controllers via LMI approach that Lin et al. 2004 improve by 
transforming the problem to that of SOF controller design for 
a system in descriptor form.    

II. INDUCTION MACHINE MODEL 
In this section, the classical structure of induction machine 

is considered. Such machines are driven by variable frequency 
voltage to provide suitable torque which is a combination of 
flux and current components.   

Then, the considered equations are a two axes 
representation of induction machine under appropriates 
simplifying hypothesis. It’s a set of a non linear differential 
equations with current and flux components as variables. The 
state vector is build with measured variables (currents) and 
estimated ones (flux).  
 

[ ]Tqsdsqsds iix ϕϕ ,,,=   
 
Where: 

dsi  and qsi  are projections of the components current stator 
on a (d,q) axes. 

dsϕ  and  qsϕ  are projections of the components flux stator on 

a (d,q) axes. 
and the control [ ]Tsqsds vvu ω,,=  applied by the inverter to 
achieve a variable speed control. 
 
The dynamic equations describing the motor behaviour in the 
general form can be written as : 

.
( ) ( )x f x g x u

y Dx
= +
=

(1) 
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where ( )rs LLM 21−=σ   
 
and Rs, Rr, Ls, Lr and M stand for nominal machine 
electromagnetic parameters. 
 
Such system can be written in the homogenous bilinear form: 
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In the following section, the uncertain system (2) is 
considered with A=A0 + ΔA and C=C0 + ΔC,  
where A0 and B0 are nominal matrices build by nominal 
parameters.  

ΔA and ΔC are bounded uncertainties with a known 
maximum values. Those uncertainties arise from variations in 

limited ranges of stator resistance and/or inductance. Thus the 
following inequalities hold: 
 

aA <Δ    and  cC <Δ  
  
The maximum values a and c can be easily determined from 
classical identifying tests. 
 
Therefore the closed loop system is: 

III. ROBUST OUTPUT FEEDBACK STABILISATION 
Consider a linear time-invariant system described by: 

 

  
Cxy

BuAxx
=

+= ,
                         (4) 

 
where nx ℜ∈ is the state vector, ru ℜ∈ is the control vector 
and my ℜ∈ is the output vector.  
 
Definition: system (4) is said to be stabilizable via static 
output feedback if there exists K such that the closed loop 
systems: 

 
( )xBKCAx +=  

 
is stable. And it’s said to be α-stabilizable via static output 
feedback if K places the closed-loop poles to the left of a 
vertical line Re(s) = - α (for some real α) in the complex 
plane.  
 
Theorem: 
Under the next hypothesis: 
 

i. The system (1) linear part is α-stabilizable via static 
output   feedback for some known real number α. 

ii. The state initial conditions are in  some ball of radius 
R. 

 
the output feedback u(t) =Ky(t) exponentially stabilise the 
system (2). 
 
Proof: 
First, we will focus on the linear part of the system.  
The nominal closed-loop matrix is defined as: 

KDCAA 00
~

+=  
Where a static gain feedback K is chosen so that allows the 

matrix A~  to have all its eigenvalues with negative real part.    
Then the matrix A~  is called stable. And the linear part of the 
system is output feedback stabilizable.  

)3(
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Cao et al [3] give a theorem on the necessary and sufficient 
condition for static output feedback stabilizability of a linear 
system as follows: 
 

0)(][ <+++−+ KCPBKCPBPPBBPAPA TTTTT  (5) 
 
Which is a quadratic matrix inequality (QMI) derived from the 
Lyapunov’s stability theorem. 

To compute the gain K, one can apply the iterative LMI 
algorithm developed by Cao et al. [3]. 
 

In the following, the robust output feedback stabilisation of 
the considered system is investigated. 
 
The solution of system (2) is: 
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From the Hill-Yosida theorem, There exist M>0   and  ω<0 
that verify: 

ttA Mee ω≤
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This can be written in the compact form as: 
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The application of the Gronwall-Bellman lemma in its 

general form [4] leads to the second hypothesis, which arises 
from the following ones (see the theorem in the Appendix). 
The same result can be obtained from the classical form of 
Gronwall-Bellman lemma. 
 
We define R as: 
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the second hypothesis of the theorem is : 
 

( ) 0)(1 2 >−⇒ ∫
∞

à
dttMgH  

))(exp()()(
0

122 ∫=
t

dssftftg  

 ( )tDKcaMt

i
ii eexBKM )(

0
⋅+⋅= ∑ ω  

 

( )

∞+

∞
+

⎥
⎦

⎤
⎢
⎣

⎡
+

−=

⋅⋅−⇒

∑

∫∑

0

)(

0
2

0

)(
0

2

1

1

βω

βω

βω

t

i
ii

tM

i
ii

exBKM

dtexBKMH

 

 
The hypothesis H is written as: 
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Hence the initial conditions must satisfy: 
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It follows: 
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Then the system is exponentially stable.             

IV. ITERATIVE LMI 

It can be noted that the hypothesis of α-stabilizability of the 
linear part system arises from the condition that the 
uncertainties and the closed-loop system must verify: 
ω+Mβ<0.  
Where ω stand for the maximum eigenvalues of the closed-
loop matrix (A-CKD). 
 
Corollary.  

The linear system (2) is α/2-stabilizable via static output 
feedback if and only if there exist two matrices P > 0 and K 
satisfying the following matrix inequality: 
 

02)(][ <−+++−+ PKCPBKCPBPPBBPAPA TTTTT α
 
Cao et al. propose an iterative algorithm to solve the above 
QMI as an ILMI. In the next, we use the same algorithm 
where we verify the α-stabilizability according to the 
hypothesis (ii) of our theorem. 
 
Then the algorithm can be written as : 
 
Step1.  Select Q > 0, and solve P from the following 

algebraic Riccati equation 
 

ATP + PA – PCCTP + Q = 0 
 Set i = 1 and X1 = P. 
Step2. Solve the following optimization problem for Pi, K 

and αi. 
OP1 : Minimize αi subject to the following LMI constraints 
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0>= T
ii PP                              (7) 

 
 Denote *

iα as the minimized value of αi. 

 

Step3. If βα Mi <* , K is a stabilizing static output feedback 
gain. Stop. 

Step4. Solve the following optimisation problem for Pi and 
K. 

OP2 : Minimize trace(Pi) subject to the above LMI 
constraints (6) and (7) with  *

ii αα = . Denote *
iP as 

the iα that minimized trace(Pi). 

Step5. If δ<− *
ii PX , a prescribed tolerance, go to Step6.  

Step6. The system may not be stabilizable via static output 
feedback. Stop. 

V. CONCLUSION 
In this paper, the problem of the robust static output 

feedback stabilization of an induction machine is studied. We 
improve the results available on the SOF for the linear 
systems to the case of non homogenous bilinear model of the 
induction machine by using a generalization of the Bellman-
Gronwall lemma. Then we proposed to follow the same 
iterative LMI algorithm developed in Cao et al. to compute the 
gain feedback.   

APPENDIX 
A generalization of Bellman-Gronwall lemma: 
 
If a, b, n, k∈ℜ,  where a<b, n>1 and k>0 
And 

[ ] nibaf i ..1,,: =ℜ→ +  
 
a set of integrable functions that verify : 
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Then under the following hypothesis: 
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