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Analytical Solution of Time-Harmonic
Torsional Vibration of a Cylindrical Cavity in a
Half-Space

M.Eskandar-Ghad, M.Mahmoodiai

Abstract—In this article an isotropic linear elastic halfasp with
a cylindrical cavity of finite length is considered be under the
effect of a ring shape time-harmonic torsion foaggplied at an
arbitrary depth on the surface of the cavity. Thguation of
equilibrium has been written in a cylindrical coo@te system. By
means of Fourier cosine integral transform, the -zeno
displacement component is obtained in the transfdrdomain. With
the aid of the inversion theorem of the Fourierim@sintegral
transform, the displacement is obtained in the deahain. With the
aid of boundary conditions, the involved boundaajue problem for
the fundamental solution is reduced to a genelauchy singular
integral equation. Integral representation of th&ess and
displacement are obtained, and it is shown thair tthegenerated
form to the static problem coincides with existisglutions in the
literature.

Parnes also considered the steady-state problertheof
effect of a torsional line load, with a harmoniomé
dependency, applied on the surface of a bore fi6hid paper,
he compared the degenerated of his dynamic resitlisthe
static case.

The solutions of the generalized problem associafigt a
finite cylindrical cavity in a half-space would b&f even
greater engineering interest and challenge. Itbeen found
that the additional stiffness of the medium beltw bottom
of the hole can apparently lead to a noticeablenghaf the
response in the upper region. [7] investigatedptablem of
torsional shear traction acting on an open finigéndrical
cavity in an isotropic half-space in a rigorous mem and
found the corresponding fundamental solution. Tladso

Keywords—Cosine transform, Half space, Isotropic, Singulamathematically examined the resulting load-induegdvell as

integral equation, Torsion

|. INTRODUCTION

NVESTIGATING half-spaces containing

cavities
researchers. Analytical inspection of the dynamiernaction
of piles with torsion moments and the pile cavitiesa half-
space is very important in many engineering stmestsuch as
wharves and other heavy structures. Pertainimgyablems of
this type, some approximate results were firstiobthby for
the case of hydrostatic pressure acting on anviatesf an
infinite cylindrical cavity extending through anfiimite solid
[1]. Treated the dynamic problem of a suddenly igopl
pressure over a finite interval of the cavity [Bpcause of the
complexities encountered in the problem, the nucaéresults
were presented only at large distance away fromdbation
of pressure. Some interesting problems of detengirthe
distribution of stress due to an exterior craclkamisotropic
infinite elastic medium with a coaxial cylindricehvity was
studied by ([3, 4]). The response due to the appbo of
static radial pressure and torsional ring loadbeen given by
[5].
evaluating of the singular solution for concentdatersional
and radial ring load acting on the wall of an iftfrhole.
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cylindrical
has been one of the great interests tayma

In addition, he proposed a quadrature method f

shape-induced singularities in the response.

In the present paper, which is an extension ofathek done
in [7] for dynamic case, the elastodynamic respoofen
isotropic half-space containing a finite open ogfinal cavity
under a torsional ring load at an arbitrary degtlednsidered.
Owing to the particular topology of the domain, ig
convenient to consider the response of the elastid in two
separate regions, which have some continuity cimmdit By
considering the equation of motion in each regiod with the
aid of Fourier cosine integral transform, the nemnez
displacement component is obtained in the transfdrm
domain. By means of the inversion theorem for Fenucbsine
integral transform and the displacement compaiybili
conditions, the governing equation is reduced ¢ereralized
Cauchy singular integral equation. The equationthien
investigated analytically and solved numericallytebral
representation of the dynamic stress and displaceraee
obtained and shown to be degenerated to knownirxist
solutions in the literature.

[I. BOUNDARY VALUE PROBLEM AND THE SOLUTION

An isotropic homogeneous linear elastic half-spase
considered in cylindrical coordinate systén®,z), with a
depth-wise z-axis. A circular cylindrical cavity twi radius
a>0 and lengthi >0, as shown in Fig. 1, is assumed to be in
the medium. A known time-harmonic shear stress,
1,, = ur' (z,w)e, is considered to be applied on the wall of
the cavity. Because of torsional symmetry, the ldsgment
vector has only one non-vanishing component, whih
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Ug =u(r,zt). We follow the research done by Pak anddu, (r1.w)=0,
0z

Abedzadeh [7]. So that it is convenient to defiwe tifferent
regions as indicated in Fig. 1 and find the respoofseach
region with satisfying the boundary conditions awtinuity
conditions, as well.

Fig. 1 A cylindrical cavity in an isotropic half-ape
These two regions are defined as

Region={ ( #z) r>a, &6< z z> P 1)
Region2={ (fz)r<a, xo< Z‘,z>|} 2)
In the absence of body force, the non-zero timeabaic

equation of motion in terms of displacement is teritin the
form of

0°u, 1ou, u, 0°u, _

+= gy =——u, r>a z>0 3
az ror r? 9z Cs2u1 ®
in Region 1, and
0°u, 10u, u, od%«

24— —2-—24_—2=———u, r<a z>| (4)

a’ rar r2 a2 CP

in Region 2. In the equations (3) and (&, =/u/ p is the
shear wave velocity,o the material densityy the shear

modulus of the material, and is the frequency of torsional
excitation. The stress-displacement relations &re [

u(ﬂ—ﬂ)—u r2®, 5)
rr

= u(g). ®)

The stress and displacement boundary conditiongher
problem may be written as

I.a(azw)=ur (z,w), 0<z<l )
T,5(r,0,w)=0, r>a (8)
Tp(1.1, ) =0, r<a )
%(r,O.wF 0, r>a (10)
0z

r<a (12)

where 17 (z, w)
Moreover, the radiation condition is given as

JEP+Z?) o w. q=1,2

To ensure that the solid is continuous across tmnwon

u,(r,zaw) - 0, (12)

boundary of Region 1 and Region 2, it is suffitiea

stipulate the compatibility conditions as

In(az,w)=1,(20w), z>| (13)

%(a,z,w):%(a,z,w). 2> (14)
z

It is convenient to use an integral transform ttvesdhe
partial differential equations (3) and (4). Witletaid of depth-
wise Fourier cosine transforms defined as [9]

fl(r.{,aJ)=3J‘ mfl(r,z,w)cosez Yz , (15)
mdo
in Region 1, and
f~2(r,f,w):]—2_[.[lmf2(r,z—l,a))cos{e—l Yz | (16)

in Region 2, the partial differential equations 8y (4) lead
to

dA, 1du

dr2 rdr ()l2+—)u =0.

q=12 a7

Considering the boundary conditions (10) and (ihgy
can be written as

dzl]q 1 dd, 1.
ag? "¢ ag %o

g=12 (18)
whereA?(w) =&*-w’/C2, (=14,
g=1and Z are the Fourier cosine transforms af (r, z,w)
as defined in (15) and (16). The solutions of eiguatl8) is

and 0,(r,é,w) for

Gy (r,é,w) = A (&, WK, (Ar)+ B, (¢, w), (Ar),g=12 (19)

where 1,(¢)and K,({) are the first order modified Bessel

functions of the first and second kind, respectivel

To satisfy the radiation condition (12B,(&,«w) should be
identically zero asl,(Ar) is unbounded whem approaches
infinity. A (¢, w)

In addition, must be zero for the

displacementd,(r,z,w) in the Region 2 to be bounded at

r=0.

is a prescribed non-dimensional function.
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Applying the inversion theorem for the Fourier cmsi Then, the continuity condition (14) can be statethe form

transforms , the displacemenf(r, z,w) for g=1and z can
be written as

ul(r,z,w)=IowA($,w)K1(/1r)coséz):l.{, rzaz= ( (20)

uz(r,z,w):j: B,(£,0)l ,(Ar)cost g—1 & r<azzl (21)

Based on the continuity conditions (13) and (14)tba

of

[(@ @ 2-¢a)+4 @ 2+ -2.0)

x1(¢.a)dd+ [ (4@ 2= ) 30)

(@, 2+, )1 WAl =-[ @, @ 2= w)
+p,@ 2+ )T (W)

z=|

cylindrical boundaryr =a, one may write the shear stress

T, inthe Region1 as

falr =a’,2.0)= lm ur 2 (%) = px(z.0) (22)

where y(z,w) =1 (z,w) for 0<z<|
for z=1.

and x(z,w) =1(z,w)
Moreover, the function(z, w) is unknown, which
is determined from the solution and (z,w) is a known
boundary function. Similarly,r,,, at r =a in Region 2 is
written as

T(r=a,z,w)= lim yrai(u—z) =ur(z, ), zzl (23)
r-a rr

Substituting the displacements from (20) and (2&td, (22)

and (23), respectively and using the inverse thmofer
Fourier cosine transform, one may find
__ 2 "
A = [ x@a)cosezye, (24)
__ 2 ® _
Bz(f,w)—mz()la)jl X(z.w)cost -1 )iz, (25)
By virtue of (20), (21), (24) and (25) it can besim that
ou, _lgp-® _
Lrzw)=—{ .2-¢.w) (26)
+o(r,z+{,wx({,wdd, r>azz0
ou, __Llgp- B
SLnzw)=-=[14,(r2-¢,0) -
+¢,(r,z+{ -2,w)x({ ,w)d{, r<a,zzl
where ¢, (r,d,w) and ¢, (r,d,w) define as follow
K, (1r)
p(rdw)=| /]Kl(/] -y Sin€a)de, (28)
_ =&,
b (da)= (e S (29)

Equation (30) is a single integral equation @®termining
({,w).

IIl. INTEGRAL EQUATION

The equation (30) is a generalized Cauchy singulzgral
equation [10, 11]. The solution of several problemis
mathematical physics and specialty plane elasteitg fluid
mechanics can be reduced to the solution of Caugpg
singular integral equation. For further analysighe integral
equations, it is useful to consider the equati@® énd (29).
The equation (30) can be written as

2 1
I - d
R T e (L
+[ k(20 -k +2-2 @) (31)
+h, (8 - 2,0) -k, + 2,07 w)d¢ = F(w), 221
where
( ,w):jm({ll({))—l)sin(.?d )dé, (32)
k,(d,w) = f (‘CK()) 1)singd )d<, (33)
1o=[ to SarsTar@rzar =]
' ({,w)d{
with
N I Y -
z=—, |l =—, (== f=¢fa, A=Aa, (35)
a a a

where 7(z,w) = F(2,w), A =+/é* —af and @ =% is non-

dimension frequency.

The solution of the singular integral equation (3)the
unknown shear stress distribution mt=a over z>1. The

! is a generalized Cauchy kernel [11]. In

kernel -~ -~
(¢+z-20)

ZZ)

this kernel, the termsﬁé *1ﬁ become
({-2) ({+z-21)

123



International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:6, No:1, 2012

ithed 5 ; 5 1 T(v,w
unbounded as eithef approachefz or both{ and z %j_lG(|X|v|V|) (1(_|\|/2)y)3 dv = 9(|X|"")- ~1<x<1  (40)
approach the end point of the cavity,
IV.  NUMERICAL SOLUTION OF SINGULAR INTEGRAL With the aid of the Gauss-Jacobi numerical integnatule
EQUATION and using collocation method [11], (40) can be ceduto

Because of complex kernel function exists in thednand
of the integral introduced in previous section, iheegral 1 & _
cannot be determined analytically, and thus a nigaler EKZ_:WkG(|XJ|’|Vk|)T(IVk|’w)_g(]XJ"’w)’ (41)
procedure is needed, which is presented in thisosed o this =

end, it is convenient to write the integral equat{81) as J=L. N-1
1 - where
f GV Iv,w)dv=g(x,w), 0svs1l (36)
0
W= ~(AN+y+pB+2)2*F
=
where (2N +1)I(2N + y+ B +1) PYA) @ )dPYA) @, ) fdv 42)
« F2N+y+)r(2N+4+1)
GV =[2-—2X"L 1, F2N+y+B+1)
X=V V+X—2vX X+V
) Qo ror - and x; , v, are the roots of Jacobi's functions
HAk(C -7 @) -k(o+—--2,w) (37)
v vV X vV X
FoT ) PE%%9(x ) =0, j=1..,N-1 (43)
+k2(———,&))—k2(—+—,a))], - !
vV X vV X PLY3 19y, ) = 0, k=1,.. N (44)

and v=1/¢, x=I/Zand g(x,&)=f (I /x,@). For respectively. As the roots, and v, are symmetric with
normalizing the variable, it is convenient to calesian even yegpect to the origin, (41) can be reduced to alsimsystem
extension of f(IA/v, w) with respect to the origin so that theof equations as

limits of integration in (36) changes to the symriteinterval

of (-1,1), which results in ZVVKG(Xj VT, @) = 9(X, ). i=1..N (45)
k=1

e A 1M, w)d 38

- = -1< x<

2.[-1 (‘X VDE( ‘V @)V g(]x @), lex=1 (38) Equation (45) providesn equations to determinen

unknowns T(v,,w) at n collocation pointsv,, k=1ton.
In recognition of the singular behavior of (Z, w)it is useful The last equation in (45) involves the rogf =0, which
to separate the regular and singular part of thkenawmn corresponds to infinity foez.
function and by means of two sectionally analytimdtion  yith the relationship betweeTi(x, w) and 7( «), and the
which are statement in [7ﬁ(f/x, w) is expressed as [7, 11] representations (20), (21), (24) and (25), the amsp of the
half-space to an arbitrary distributed load,(z,w), can be

f(f/x,w) =T(X,w)/ (1- % )é , (39) determined completely. For many applications, the
displacement and shear stress variation along dkigycwall

where T(x,w) is a regular and analytic unknown function®® of partigular interest.. To determiqe these fumztions, we
with respect tox, which of course is bounded in the intervarecall equation (20), which can be writtenrata as

-1<x<1 , and (1—X2)'% is considered as a weighting

U(a,2.0)= Q20 + [ Ta(2+{,

function. Since the weighting function is the saras (46)
weighting function for Jacobi polynomial®"# (x) for +0,(2-¢, W) F({, w)d}
_5_1 ;
y=p3 =3 [12], one may use a numerical procedure based Ahere
Gauss-Jacobi integration formula to solve the irglegquation .
. o K /] ~ ~
(36). In the term of (39), (38) can be written &%][ a,(d,@) = _J‘ K(4) coséd Yié (47)

K,(4)
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R P . . . A and the same results reported by Pak and AbedzBfeh
Q(z,a)):Io[qz(z+Z,w)+q2(z—Z,w)]r (¢, @)dd (48)  where an excellent agreement is discovered between

- . solutions.
(2,0 =T (z,0) (49)
06 ‘ -
. . —This Study, s=0.5
In terms of the solutiofT (x,w) , one may write (46) as a . paLlA;'edyZ:deh (1992), §=05
0.4 1 ... .ThisStudy,5=1.0
N ~ + Pak&Abedzadeh (1992), $=1.0
u@azw) 1. . ~ | 024 This Study, §=1.5
——— =z + Z\Nk[ a(Z+— &) « Pak&Abedzadeh (1992), =15
a Vi Py vV,
R R (50) 0
~ | An LT
+ —_ N <
A Ca ) C L) . s

k k

which can be computed numerically. With the aid2f), the 04 ’
shear stress,,(a, z,w) can be expressed as 06 1 "v.,“
i TP
ry,(azw) _1 f3 » 1 1 0.8 . WL L L a
u _I_T{ (24 +.[f [ 5-¢ * 547 0 025 05 075 1 125 15 175 2
. " Fig. 2 Comparison of static displacementsrat a along depth due
+k,(2-{,w) +k,(2+{,w)] (51)  toringload in isotropic elastic half-space witikfand Abedzadeh

<2(&.a)d2). 5<f | (1992) for | =2.0, = 0.5,1.0 and 1. _
The displacementu, and the stressr for different
dimensionless frequency are illustrated in Figsa®l 4,
respectively. It can be seen from the figures ttiet,responses
r (azw) 1 N of the half-space are decisively affected by thedfiency of
2= {f(Z +ZV\/kT(vk, %) excitation. As frequency increase, both the redl iamaginary
T k=1 parts show more oscillatory variation with the depAs
[ expected the dissipation of the displacement happeroth
X[ - +— (52) upward and downward direction. From the figurese th
presence of the singularity in the displacemernd fikie to the
0 0 torsional ring load is apparent. In addition, inche easily
x(k,(z——,w) +Kk,(z+—,w)]} deduced from (51) that the shear distribution hatal
Vi Vi induced singularity aiz=s of the order(z-s)™ and shape

induced singularity at the bottom of the holezat | of the

The forgoing representation also translates to

V. ILLUSTRATIVE RESULTS
-1
The displacement Green’s function for the problenhand order|z—|| s,

is determined by applying torsional shear stregg,t), ona -0.6 0.4 0.2 0 0.2 0.4 0.6 0.8
ring on the wall of the cylindrical cavity at arbdrary depth, 0@ | K 11 ' ! 1 0
s sa a o 38 ~Re(u).@ =1
Y, N Y eim), @ =1 025
o : ——Re(u), &} =3
T*(Z,t) - ad(z_s)emx’ 0<s<| (53) ) E’ﬂ* o) —o- Im(u), @, =3 0.5
// il ReW.@TS g og
: . . ey emwass
where 5(x) denotes the Dirac-delta function. For the loading /F_,_// iy i .
(53), one finds ‘*\\ g 4,
y g = »'*’A: 1.25
R R R R R 1 . s VKA
f(Zw) =k, (2-S, W)+ — +k,(2+ S, W)+ — (54) \\ o LSV 15
zZ-S zZ+Ss AN .
Q(z,w) =q,(Z+5 w)+0,(Z- 5 w). (55) < 2"," o2 1.75
‘3!.//3) “a,

The solution presented by Pak and Abedzadeh [i$ésl as a  Fig. 3 Real and imaginary parts of displacement &ta along
benchmark, to provide a comparison with the resltthis  gepth for isotropic half-space with different dirsnless frequency
paper for the static case. To this end, a cylirdimavity with for [=20ands= 1.

depth =2 ina half-space is considered. Fig. 2 shows the

displacement of the wall for differerst evaluated in this study

125



International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:6, No:1, 2012

-2 -15 -1 -0.5 0 05 1 15 2

A . —=Re(7), @ =1
y e e Im (1), @y =1
3 | ™~ Re(n).@=3

p’o —a-1m (1), @, =3

= —~—Re(r), @, =5

’ “o-Im (1), @, =5

05

2 R
B o K
a

|

Fig. 4 Real and imaginary parts of shear stregsaf. along depth
for isotropic half-space with different dimensicsgefrequency for

[ =2.0and8= 1.

VI. CONCLUSION

An isotropic half-space containing an open cyliodri
cavity of finite length has been considered to bbelar the
effect of a time-harmonic torsion force appliedtbe surface
of the cavity. Applying cosine transforms, the bdary value
problem for the fundamental solution has reducedato
generalized Cauchy singular integral equation. ®h&ined
Cauchy integral equation has numerically been sblvith the
aid of both the Gauss-Jacobi procedure and -collotat
method. Integral representations for the stress and
displacement have been obtained, and it has bemmnsthat
their degenerated form to the static problem imadde with
the solutions given by Pak and Abedzadeh (19923.r€kults
are numerically evaluated and illustrated. Somejdarities
are observed in the illustrations in both the dispment and
shear stress fields, which are either load indusedhape
induced singularities.
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