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Abstract—Although there have been many researches in cluster 

analysis to consider on feature weights, little effort is made on sample 
weights. Recently, Yu et al. (2011) considered a probability 
distribution over a data set to represent its sample weights and then 
proposed sample-weighted clustering algorithms. In this paper, we 
give a sample-weighted version of generalized fuzzy clustering 
regularization (GFCR), called the sample-weighted GFCR 
(SW-GFCR). Some experiments are considered. These experimental 
results and comparisons demonstrate that the proposed SW-GFCR is 
more effective than the most clustering algorithms. 

 
Keywords—Clustering; fuzzy c-means; fuzzy clustering; sample 

weights; regularization. 

I. INTRODUCTION 
LUSTERING methods are used to partition a data set into 
several subsets so that the sample points in the same 

subsets are the most similar to each other and the sample points 
in the different subsets are the most dissimilar. Nowadays, 
clustering algorithms have been widely and successfully 
applied in a variety of substantive areas, such as image 
processing, data mining, pattern recognition, machine learning, 
etc. In general, clustering methods are based on an objective 
function of similarity or dissimilarity measures in which 
partitional methods are popularly used [1]. The most popular 
partitional methods with cluster prototypes are k-means [2]-[3], 
fuzzy c-means (FCM) [4]-[5] and possibilistic c-means (PCM) 
[6]-[7]. 
In general, clustering algorithms treat feature components as 
equal weights. To improve their clustering strengths, there are 
many researches in considering feature weighting extensions of 
clustering methods, such as Modha and Spangler [8], Huang et 
al. [9], Wang et al. [10] and Hung et al. [11]. However, most 
clustering methods, even with those feature weighting 
extensions, are always considering all sample points as equal 
weights during clustering processes. In practice, it is not good 
to suppose that every sample in a data set has the same weight 
in cluster analysis. Recently, Yu et al. [12] had considered a 
probability distribution over a data set to represent its sample 
weights and then proposed sample-weighted clustering 
algorithms. 

In this paper, we first consider fuzzy clustering with 
regularizations. We then give a sample-weighted version of 
these fuzzy clustering regularization methods, called the 
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sample-weighted generalized fuzzy clustering with 
regularizations (SW-GFCR). Some examples are considered 
for comparisons. These experimental results and comparisons 
actually demonstrate that the proposed SW-GFCR is more 
effective than the clustering algorithms. The rest of this paper is 
organized as follows. In Section II, we first considered a 
probability distribution over a data set to represent its sample 
weights and also review the generalized fuzzy clustering with 
regularizations (GFCR). We then propose the sample-weighted 
generalized fuzzy clustering with regularizations (SW-GFCR). 
In Section III, the example is made with real data sets to 
demonstrate the effectiveness and usefulness of the proposed 
algorithms. Finally, conclusions are stated in Section IV. 

II.  SAMPLE-WEIGHTED FUZZY CLUSTERING WITH 
REGULARIZATIONS 

Let { }1 2, , , nX x x x=  be an s-dimensional data set. Suppose 

that [ ]ik c n fcmu u M×= ∈  
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matrix and 1{ , , }cv v v=  is the set of cluster centers. The 
fuzzy c-means (FCM) objective function [4-5] is defined as 
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The FCM algorithm is iterated with the above update 

equations where it becomes the most used clustering algorithm 
in the literature. 

There are many generalizations of FCM. In Yu and Yang 
[13], they proposed a generalized model, called a generalized 
fuzzy clustering regularization (GFCR) method with the 

constraint on membership functions iku . The GFCR objective 
function was defined as follows [13]: 
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where ( )ikp u  is a function of iku . By the Lagrange 

multiplier kδ , the necessary conditions of minimization of 
equation (1) are derived as follows: 
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We see that the update (3) of the cluster 

centers 1{ , , }cv v for GFCR is the same as that for the FCM. 
The iterations with update (2) and (3) are called the GFCR 
algorithm. We mention that Wei and Fahn [14] considered the 
function ( )ikp u with ( )ikp u
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On the other hand, Yu et al. [12] considered a probability 

distribution over a data set to represent its sample weights and 
then proposed sample-weighted clustering algorithms. We 
review it as follows. If the distortion measure between a sample 
point kx  and the cluster centers 1{ , , }cv v  is denoted as kd  

and a distribution over X  is denoted as ( )xp , then the 
expected distortion can be defined as  
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where for each k, ( ) 0kp x ≥  and ( )
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=∑ . In cluster 

analysis, the best partitioning results should minimize the 
objective function D. However, the direct minimization of 
equation (4) with respect to a distribution ( )xp  and the cluster 

centers 1{ , , }cv v  may produce unreasonable clustering 

results. This is because, for *
1
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≤ ≤
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= ≥∑ . Therefore, we obtain a unique 

minimum for equation (4) with the sample weight ( )0 1jp x =  

if
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≤ ≤
=  and 0 elsewhere. However, this weighting 

function for a data set only produces a cluster with a data point, 
which obviously makes no sense for clustering. This kind of 
result is produced because there is no prior knowledge about 
the distribution ( )xp . In this sense, we may apply the 
maximum entropy principle so that Yu et al. [12] proposed the 
following objective function: 
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the Lagrange multiplier, the following update equation for 
( )xp  can be obtained: 
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Next, we propose our sample-weighted generalized fuzzy 

clustering with regularizations (SW-GFCR). To have the 
GFCR with sample weights, we consider the SW-GFCR 
objective function as follows: 
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as follows: 
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Furthermore, we consider 0.
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In this paper, we consider the following three cases: 
(I) ( ) log ;ik ik ikp u u u=  We have that ( )' log 1ik ikp u u= +  
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For learning the parameters ζ  and λ , we consider to use 

1)1( 999.0 ++ = llζ  and 11 9990 ++ = ll .)(λ . Thus, we can 
construct a new sample-weighted generalized fuzzy clustering 
with regularizations (SW-GFCR) as follows: 

SW-GFCR algorithm 
    Step 1: Fix nc ≤≤2  and fix any .0>ε  Give initials 

 (0) (0)[ ]ik c nu u ×=  

and (0) (0) (0)
1{ , , }kw w w=  and let 0t = . 

Step 2: Learning the parametersζ and λ  by 
( 1) 10.999t tζ + +=  and (t 1) 10.999tλ + += . 

Step 3: Compute the cluster center ( 1)tv +  with ( )tu   
using equation (7).  

Step 4: Compute the probability weight ( 1)t
iw +  by  

equation (8); 
Step 5: Update ( 1)tu +  with ( 1)tv +  using equation (10) or (11)  

or (12). 
 

Step 4: Compare ( 1)tu +  to ( )tu  in a convenient matrix norm 
 ⋅ . 

          IF ( 1) ( )t tu u ε+ − < , STOP 

           ELSE 1t t= +  and return to step 2. 

III. EXAMPLE AND COMPARISONS 
In this section, we compare FCM, sample-weighted FCM 

(SW-FCM), sample-weighted k-means (SW-KM) with our 
SW-GFCR(I), SW-GFCR(II) and SW-GFCR(III) in the cases 
(I), (II) and (III), respectively, for the following two real data 
sets. 

Data 1: The IRIS data set [18] that has 150 data points with 
each four attributes. It is divided into three clusters of Iris 
Setosa, Iris Versicolor and Iris Virginica, and two of them are 
overlapping where each cluster has 50 data points. 

Data 2: The liver disorders data set has 290 data points with 
each seven attributes [19]. The first six components are 
continuous-type attributes as follows: mean corpuscular 
volume, alkaline phosphatase, alamine aminotransferase, 
aspartate aminotransferase, gamma-glutamyl transpeptidase 
and number of half-pint equivalents of alcoholic beverages 
drunk per day. The last component is a categorical attribute of 
selector that is a field used to split data into two sets. 

    We first implement SW-KM, SW-FCM, SW-GFCR(I), 
SW-GFCR(II) and SW-GFCR(III) for the IRIS data set with 
different values of the parameter ζ  under the learning way 

(t 1) 10.999tλ + += . We consider average error counts of different 
algorithms with each 100 runs. The results are shown in Table 
I. We find that, for all different algorithms, if the value of ζ  is 
larger than 1.0, then the average error counts will become 
larger. We also find that, the parameter λ  has the similar 
situation as the parameter ζ . In this sense, we consider the 
learning way for the parameters ζ  and λ  with ( 1) 10.999t tζ + +=  
and (t 1) 10.999tλ + +=  during implementing SW-FCM, GFCR and 
SW-GFCR. Furthermore, from Table I, we also find that 
SW-GFCR(I) presents the best for the IRIS data set among 
SW-GFCR(I), SW-GFCR(II) and SW-GFCR(III). In this 
sense, we pick the case (I) of ( ) logik ik ikp u u u=  for 
regularization. In Table II, we compare the average error counts 
of SW-GFCR(I) with FCM, SW-FCM and GFCR(I) under 
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( 1) 10.999t tζ + +=  and (t 1) 10.999tλ + +=  for the IRIS data set with 
100 runs. We can see that SW-GFCR(I) is the best one among 
them. Moreover, we consider FCM, GFCR(I) and 
SW-GFCR(I) under ( 1) 10.999t tζ + +=  and (t 1) 10.999tλ + +=  for the 
liver disorders data set. These average error counts are shown 
in Table III. We find that SW-GFCR(I) also gives the best 
result for the liver disorders data set. 

 
TABLE I 

AVERAGE ERROR COUNTS OF ALGORITHMS WITH (t 1) 10.999tλ + +=  FOR THE 
IRIS DATA SET (100 RUNS) 

 ζ =
0.004 

ζ =
0.26 

ζ =
0.48 

ζ =
0.89 

ζ =
1.62 

ζ =
5.50 

ζ =
10.00 

SW-K

M 36.71 37.58 41.69 41.91 52.88 54 34.88 

SW-FC

M 16 15 15 41 42 44 56.27 

SW-GF
CR(I) 

13.83 13.83 13.83 13.93 14.15 15.13 22.41 

SW-GF

CR(II) 
24.68 24.68 24.68 24.68 27.15 32.08 33.32 

SW-GF

CR(III) 
27.37 27.37 29.37 29.30 29.45 35.45 40.33 

 
TABLE II 

AVERAGE ERROR COUNTS FOR THE IRIS DATA SET 
FCM SW-FCM GFCR(I) SW-GFCR(I) 

16 15.2 15.93 13.83 

 
TABLE III 

AVERAGE ERROR COUNTS FOR THE LIVER DISORDERS DATA SET 
FCM GFCR(I) SW-GFCR(I) 

27.7% 26.7% 25.5% 

IV. CONCLUSIONS 
In this paper, we propose the sample-weighted generalized 

fuzzy clustering with regularizations (SW-GFCR). The 
proposed method can obtain probability weights over the data 
points with membership regularizations. It is not only to 
consider the sample weights, but also to adjust the bias with 
memberships. The experiments and comparisons demonstrate 
the superiority and effectiveness of the proposed SW-GFCR. 

REFERENCES   
[1] L. Kaufman, P.J. Rousseeuw, Finding Groups in Data: An Introduction to 

Cluster Analysis. Wiley, New York, 1990. 
[2] J. MacQueen, “Some methods for classification and analysis of 

multivariate observations,” in Proc. 5th Berkeley Symp. Math. Statist, 
Prob. 1, 1967, pp. 281-297. 

[3] D. Pollard, “Quantization and the method of k-means,” IEEE Trans. 

Information Theory, vol. 28, pp. 199-205, 1982. 
[4] J.C. Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function 

Algorithms. Plenum Press, New York, 1981. 
[5] M.S. Yang, “A survey of fuzzy clustering,” Mathematical and Computer 

Modeling, vol. 18, pp. 1-16, 1993. 
[6] R. Krishnapuram, J. M. Keller, “A possibilistic approach to clustering,” 

IEEE Trans. Fuzzy Systems, vol. 1, pp. 98-110, 1993. 
[7] M.S. Yang and C.Y Lai, “A robust automatic merging possibilistic 

clustering method,” IEEE Trans. on Fuzzy Systems, vol. 19, pp. 26-41, 
2011. 

[8] D.S. Modha and W.S. Spangler, “Feature weighting in k-means 
clustering,” Machine Learning, vol. 52, pp. 217-237, 2003. 

[9] J.Z. Huang, M.K. Ng, H. Rong, and Z. Li, “Automated variable weighting 
in k-means type clustering,” IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 27, pp. 657-668, 2005. 

[10] X.Z. Wang, Y.D. Wang, L.J. Wang, “Improving fuzzy c-means clustering 
based on feature-weight learning,” Pattern Recognition Letter, vol. 25, 
pp. 1123–1132, 2004. 

[11] W.L. Hung, M.S. Yang and D.H. Chen, “Bootstrapping approach to 
feature-weight selection in fuzzy c-means algorithms with an application 
in color image segmentation,” Pattern Recognition Letters, vol. 29, pp. 
1317-1325, 2008. 

[12] J. Yu, M. S. Yang, E. S. Lee, “Sample-weighted clustering methods,” 
Computers and Mathematics with Applications, vol. 62 (2011) 
2200-2208. 

[13] J. Yu, M. S. Yang, “A generalized fuzzy clustering regularization model 
with optimality tests and model complexity analysis,” IEEE Transactions 
on Fuzzy Systems, vol. 15, pp. 904-915, 2007. 

[14] C. Wei, C. Fahn, “The multisynapse neural network and its application to 
fuzzy clustering,” IEEE Transactions on Neural Networks, vol. 13, pp. 
600-618, 2002. 

[15] M. S. Yang, “On a class of fuzzy classification maximum likelihood 
procedures,” Fuzzy Sets Systems, vol. 57, pp. 365-375, 1993. 

[16] D. Özdemir, L. Akarun, “A fuzzy algorithm for color quantization of 
images,” Pattern Recognition, vol. 35, pp. 1785-1791, 2002. 

[17] M. Yasuda, T. Furuhashi, M. Matsuzaki, S. Okuma, “Fuzzy clustering 
using deterministic annealing method and its statistical mechanical 
characteristics,” in Proc. 10th IEEE International Conference on Fuzzy 
Systems, 2001, pp. 797-800. 

[18] E. Anderson, “The IRISes of the Gaspe Peninsula,” Bull. Am. IRIS Soc., 
vol. 59, pp. 2-5, 1935. 

[19] UCI machine learning repository, Center for Machine Learning and 
Intelligent Systems, Liver Disorders Data Set. Available from: 
http://archive.ics.uci.edu/ml/datasets/Liver+Disorders 

 
 
 

 


