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Abstract—This paper addresses parameter and state estimation 

problem in the presence of the perturbation of observer gain bounded 
input disturbances for the Lipschitz systems that are linear in 
unknown parameters and nonlinear in states. A new nonlinear 
adaptive resilient observer is designed, and its stability conditions 
based on Lyapunov technique are derived. The gain for this observer 
is derived systematically using linear matrix inequality approach. A 
numerical example is provided in which the nonlinear terms depend 
on unmeasured states. The simulation results are presented to show 
the effectiveness of the proposed method.  

 
 

Keywords—Adaptive observer; linear matrix inequality,  
nonlinear systems; nonlinear observer; resilient observer; robust 
estimation.  

I. INTRODUCTION 
NE of  the major difficulties in the design of practical 
observers for most physical systems are their model 

uncertainties due to either constant or slow changes of 
unknown quantities such as unknown physical parameters. 
Adaptive observers have been used to cope with the lack of 
knowledge on the system parameters in state estimation 
problems.  

For nonlinear systems with unknown parameters, various 
adaptive observers have been introduced [1-5]. In [1], the 
authors reported early results on adaptive observers for 
nonlinear systems, namely observers estimating the entire 
state vector using an on-line adaptation for the unknown 
parameters. The authors in [2-4] focused on a class of 
nonlinear systems which are transformable by a global 
parameter-independent state-space diffeomorphism into a 
system whose dynamics are linear in unmeasured states and 
nonlinear in inputs and measurable outputs. Then, they 
designed an adaptive observer for the new system such that 
the state and parameter estimates both converge 
asymptotically under the persistence excitation condition. In 
these works, nonlinear terms are assumed to be related only to 
the input and the measured output, and disturbances are 
neglected.This design method has been extended in [5] and [6] 
to cover slightly more general case of systems where the 
nonlinear terms depend on the input and the entire state vector 
(not just measured outputs) with the nonlinearities satisfying 
Lipschitz conditions.  
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In this work, a systematic algorithm is provided to check the 

feasibility of an asymptotically stable adaptive observer. An 
arbitrarily small disturbance may force the parameter 
estimates to drift towards infinity, while the state estimation 
error remains small [7,8]. Several techniques have been 
introduced to modify the adaptive observer structure to 
prevent parameter estimation drift. For instance, in [7] and [8], 
this goal has been achieved by designing robust adaptive 
observers assuming that the nonlinear terms only depend on 
the input and the measured outputs.  

In [9], a robust-adaptive-observer for sensorless induction-
motor drives was designed based on the linearized dynamic 
equation and linear matrix inequality (LMI) method. The 
motor's dynamic equations are formulated in the form of a 
very special class of nonlinear system which are linear in 
feedforward and nonlinear in the feedback. The stability 
conditions and the observer gain are obtained by solving the 
corresponding LMIs. Another LMI-based observer design for 
a class of Lipschitz nonlinear dynamical systems can be found 
in [10]. Differential mean value theorem allows the nonlinear 
error dynamics to be transformed into a linear parameter 
varying system. The authors introduced a general Lipschitz-
like condition on the Jacobian matrix for differentiable 
systems. To ensure asymptotic convergence of the states 
estimation error, sufficient conditions are expressed in terms 
of LMIs. However, for large values of the Lipschitz constant, 
the stability conditions may become infeasible. 

An observer for which the estimation error diverges by a 
small perturbation in the observer gain is referred to as fragile 
or non-resilient [11]. Since the observer gains are usually 
obtained from offline calculations, in many practical 
applications the gain may have slow drifts; thus, it is necessary 
that the observer tolerates some perturbations in its 
coefficients. Authors in [12] have shown that even vanishingly 
small perturbations in the control coefficients may destabilize 
the closed–loop system. Afterwards, more researchers 
concentrated their attention on this subject  
[13-17],  In [13] an overview of the resilient design technique 
is presented. In [14] synthesis of a resilient regulator for the 
linear systems is provided. In [15], a robust resilient Kalman 
filter design for a class of linear systems with norm-bounded 
multiplicative uncertainties in the filter gain is introduced. In 
[16], present an LMI solution for nonlinear resilient observer 
design is presented. In reference [17], an observer is designed 
using LMI approach to maintain disturbance attenuation 
performance in the case of randomly varying perturbations in 
the observer gain. 

In this paper, Lipschitz class of nonlinear systems 
containing uncertain piecewise constant parameters in the 
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presence of bounded perturbation on the observer gains and 
bounded exogenous disturbances is considered. Our objectives 
are to find an LMI-based robust non-fragile adaptive observer  
for this systems. The proposed observer stabilizes the state 
estimation error. Moreover, when the persistent excitation 
condition holds, the parameter estimation vector converges to 
its true value. Unlike [7], we allow the nonlinear terms in the 
system depend on the input and all the states, in general, and 
we modified the adaptive law to overcome some drawback in 
parameter estimation. Unlike [6], we consider an exogenous 
input disturbance in the system; also shows that the proposed 
design is feasible for much larger values of the Lipschitz 
constants compared to those of the design in [6]. 

The rest of the paper is organized as follows: Section 2 
provides the problem statement. In section 3, the proposed 
resilient adaptive observer is presented. A numerical example 
is provided in section 4. Finally, the conclusion remarks are 
given in section 5. 

II. PROBLEM STATEMENT 

Consider an uncertain nonlinear system of the form:  

Cxy
uxbfuxAxx

=
+++= ωθφ ),(),(

 (1)

where nx ℜ∈ , qu ℜ∈ , my ℜ∈ , and pℜ∈θ are the state, 

input, output, and parameter vectors, respectively, mnb ×ℜ∈ , 
nmC ×ℜ∈  are constant matrices, nℜ∈ω  is disturbance input, 

and pmqnf ×ℜ→ℜℜ ][: , [ ] nqn ℜ→ℜℜ:φ  are nonlinear 
functions which are Lipschitz in x  with Lipschitz constants 

1γ  and 2γ , respectively, i.e.:  

21121 ),(),( xxuxux −<− γφφ  (2)
and 

21221 ),(),( xxuxfuxf −<− γ  (3)
for all nRxx ∈21, . System (1) is linear in θ  and nonlinear in 
x  with Lipschitz nonlinearities. This is fairly a general class, 
since, in most cases, nonlinearities are bounded in a Lipschitz 
manner if the states are bounded [6]. We assume that the 
unknown piecewise constant parameter vector and its distance 
from nominal parameter vector 0θ  are both bounded in the 
following sense: 

3γθ ≤  (4)
M≤− 0θθ  (5)

and the bounded disturbance ω  satisfies following constraint: 
ρω ≤2)(t  (6)

 
Lemma 1. [18]: Let x, y be real vectors of the same 
dimension. Then, for any scalar 0>ε , the following 
inequality holds: 

 

III. RESILIENT ADAPTIVE OBSERVER DESIGN 
If Consider a nonlinear adaptive observer of the form [6]: 

)ˆ)](([ˆ),ˆ(),ˆ(ˆˆ xCytLuxbfuxxAx −Δ++++= θφ  (8)

where x̂  and θ̂  are the state and parameter estimates, 
respectively, L is the observer gain and the resilient term )(tΔ  
is an additive perturbation on the gain with known bound 

rt ≤Δ )(  for all t. 
Then, the observer error dynamic equation is obtained as: 

ωθ

θφφ

+−

+−+Δ−−=
ˆ),ˆ(

),(),ˆ(),(~)(~

uxbf

uxbfuxuxxCLCAx

(9)
where xxx ˆ~ −=  is the state estimation error . 
The following theorem provides sufficient conditions for 

the stability of the robust adaptive observer (8). 
Theorem 1: Consider the following parameter adaption 

law: 

)ˆ()~),ˆ((ˆ
0

11 θθσθ −Γ−Γ= −− xCuxf T  (10)

where 0>Γ=Γ T  is an arbitrary constant matrix and: 
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with positive constants scalars M and 0σ . If there exist 

positive real numbers 1ε , 2ε , 3ε  and  matrices 0>= TPP  

and S , such that TCPb = and: 
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where  
CCrIbCSPASCPA TTTT

3
222

3
2
22

2
11 )( εγγεγε +++−+−=Λ   

with 1γ , 2γ , and 3γ  defined in (2), (3), and (4), respectively, 

then the observer gain TSPL 1−= stabilizes the state 
estimation error dynamics in (9) while the parameter 
estimation error remains bounded. Moreover, if the following 
persistency excitation condition holds: 

Idbuxfuxbf

t
t

t

TT ξτττττ

δξ
δ

>

>∃∀

∫
+0

0

))(),(())(),(( 

:such that  0,,0

  (13)

then, the parameter estimate vector converges to its true value 
for all disturbances satisfying rt ≤Δ )( . 

Proof: Consider the following Lyapunov function candidate 
for error dynamic (9): 

yyxxyx TTT 12 −+≤ εε  (7)
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θθ
~~~~ Γ+= TT xPxV  (14)

where θθθ ˆ~
−=  is the parameter estimation error. Taking the 

derivative of Eq. (14) and using (9), results in: 
[ ]

[ ] [ ]
ωθθ

θθφφ

Px

xPuxbfuxbfxPuxux

xCLCAPPCLCAxV

TT

TT

TT

~2~~2

~ˆ),ˆ(),(2~),ˆ(),(2

 ~)()(~

+Γ+

−+−

+Δ−−+Δ−−=

 
(15)

Using Lemma 1 and inequality (2) on the second term, and 

substituting θθθ
~ˆ −= in the third term of Eq. (15) result in: 

[ ]
[ ]

[ ] ωθθθ

θθεγε

PxxPuxbf

xPuxbfuxbfxPPx

xPCxxLCAPPLCAxV

TTT

TT

TTTTT

~2~~2  ~~),ˆ(2

~),ˆ(),(2~)(~

~~2~)()(~

1
1

2
11

+Γ++

−+++

Δ−−+−≤
−  

(16)

Again, applying Lemma 1 to the second and the fourth term of 
inequality (16) with 3ε  and 2ε , respectively, and using (3) 

and (4) and rt ≤Δ )( follow that:  

[ ]
[ ] ωθθθ

εεε

PxxPuxbf

xCCxrxPPεPPPPxV
TTT

TTT
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+++++Ω≤ −−−

 
(17)

where 
IbILCAPPLCA T 22

3
2
22

2
11)()( γγεγε ++−+−=Ω . 

Since θ  is piecewise constant, thus, we assume 0=θ  and 

thus θθ ˆ~
−= . Using this fact, substituting (10) in (17), and 

using CPbT = yield: 
[ ]

ωθθθσ

εεεε
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(18)

Then, using (5) follows that: 

N

M
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TT
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(19)

where: 

( )00
ˆˆ θθθθσ −−−= MN     (20)

If condition (11) holds, the derived upper bound N  in (19) is 
always is non positive, because: 

For M<− 0
ˆ θθ , since 0=σ , then 0=N . 

For MM 2ˆ
0 ≤−≤ θθ , we have 

( ) 0ˆˆ 2
00

0 ≤−−−−= θθθθσ M
M

N . 

For M2ˆ
0 >−θθ , we have 0ˆ

00 ≤−−≤ θθσ MN . 

Therefore, it follows that: 
0)ˆ(~2 0

T ≤−θθθσ  (21)

Substituting the above inequality in (18), it reduced to:  
[ ] ωεεεε PxxCCrPPxV TTT ~2~)(~ 2

3
1

3
1

2
1

1 +++++Ω≤ −−− (22)

Using Lemma 1 in second part of  RHS (22), results in: 
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If there exists a positive-definite matrix such that the 
following inequality holds: 

ICCrPP T αεεεεε −<+++++Ω −−−− 2
3

1
4

1
3

1
2

1
1 )(  (24)

then, condition (23) reduces to: 
 ~~ T

4 ωωεα +−≤ xxV T (25)

Integrating both sides of inequality (25) from 0=t  to ftt =  
follows that:  

ττωτωετττα ddxxVtV
ff tt T

f )()()(~)(~)0()(
0

T
4
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(26)  

which implies that: 

∫∫ +≤
ff tt T dVdxx

0

T4
0

)()()0()(~)(~ ττωτω
α
ε

α
τττ  

(27)

Thus the robust performance is guaranteed where 
α
ε 4 is a 

desired disturbance attenuation level. 
Then, using Schur complement Lemma, inequality  (24), can 
be rewrite  as: 
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Thus LMI (12) is obtained where PLS T= and 
CCr T

3
2ε+Ω=Λ .  

From (26), we have: 

∫
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Using Rayleigh-Ritz inequality gives: 
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)0(~)()0(~)(~
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2
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2
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2
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Γ

+Γ+
≤

λ

ρεθλλ
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(31)

where )(min ⋅λ , )(max ⋅λ  denote the minimum and maximum 
singular values of its argument, respectively. This implies 

∞∈ Lθ~ . Following the same procedure (29) from  to (31), we 
can prove that ∞∈Lx~ . Since 0),( ≥θxV  and )0(V is finite 
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and 2L∈ω , (26) implies that 2
~ Lx∈ . Moreover, since both 

),( uxφ and ),( uxf  are Lipschitz, Eq.(9) yields ∞∈Lx~ . With 

∞∈Lx~ , 2
~ Lx∈  and ∞∈Lx~ , and using Barbalat's lemma [19] 

follows that 0)(~lim =
∞→

tx
t

, and consequently, it can be also 

concluded that 0)(~lim =
∞→
tx

t
and 0)(lim =

∞→
t

t
ω . Therefore, 

considering Eq. (9), we have: 
( ) 0ˆ),ˆ(),(lim =−

∞→
θθ uxbfuxbf

t
 (32)

Since xx
t

=
∞→

ˆlim , Eq. (32) reduces to: 

( ) 0)ˆ)(,(lim =−
∞→

θθuxbf
t

 (33)

Thus if the persistency excitation condition (13) holds, we can 
say the parameter estimates converge to their true values  

( θθ →ˆ ) for all gain perturbations satisfying rt ≤Δ )( . □ 

Remark: By increasing )(min Γλ , dependency of parameter 
estimation error bound to the initial state estimation and 
disturbance decreases. However, increasing Γ  slows down 
the convergence of parameter estimate vector (10). Therefore, 
the trade off in selecting Γ should be considered in the design. 
For the case that persistent excitation condition is not met, 
(31) gives the resulting worst case bound on the parameter 
estimation error. 

IV. NUMERICAL EXAMPLE 

Consider the following nonlinear system: 
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with a unit step function input as )(tu , and unknown 
parameter 3=θ  for 500 <≤ t , with abrupt change to 6=θ  
for 50≥t . We select bounded continuous disturbance input 
signals as:  tet 1.0

21 )2.0sin( −== ωω . Moreover, consider that 

at time 52=t  the observer gain is added by values of -4, as 
an additive perturbation. The design parameters are chosen as 

11 =γ , 3.02 =γ , 73 =γ , 005.0=Γ , 5=M , 8.20 =θ , 
1.00 =σ . Moreover, 4)( ≤Δ t  is considered as an uncertainty 

bound in the design. Using YALMIP toolbox as parser [20] 
and LMI Control Toolbox in MATLAB as solver [21], the 
solution is derived as: [ ]05.1016.27=S  and 

⎥
⎦

⎤
⎢
⎣

⎡
=

50.20
042.1

P ,and ,0.51 =ε 7.42 =ε , ,47.53 =ε 47.54 =ε

. Hence, the observer gain is obtained as TL ]11.406.16[= . 
For comparison purposes, we also implement the design 
method in [6] for the above system.  

As it is shown in Fig.1, the gain obtained from the 
proposed resilient observer design causes the estimator to 
accurately track the system states while the method in [6] 
yields an unstable state estimation due to gain perturbation. 
Fig.2 shows that the parameter estimate in the proposed 
method also converges to its true value despite the abrupt 
changes of the real parameter. As we can see from the figures, 
when the strong gain perturbation at t=52 sec. occurs, the 
proposed design remains robust while the conventional 
adaptive observer [6] become unstables. As is expected, The 
gain perturbation does not have much effect on the estimation 
in the proposed method because in the observer dynamic (8), 
the observer gain is multiplied by output error, and since the 
estimation error in the proposed method converges to zero the 
effect of gain perturbation is omitted.  

V. CONCLUSION 

In this paper, we offered a systematic algorithm for 
designing an adaptive resilient observer for a class of 
nonlinear systems with containing uncertain time-varying 
parameters in the presence of bounded perturbation on the 
observer gains. The resulting LMIs can systematically obtain 
the robust adaptive observer gains, which ensure that state 
estimates under certain bound however, convergence of all the 
parameters, depends on the persistency of excitation. 

  

 
Fig. 1 Actual states (solid), state estimates of the proposed method 

(dashed), state estimates of [6] (dotted).  
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Fig. 2 Parameter estimate using the proposed adaptive observer 

(dashed) vs. the method in [6] (dotted) 
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