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Abstract—In this paper, we consider a new particle filter inspired 

by biological evolution. In the standard particle filter, a resampling 
scheme is used to decrease the degeneracy phenomenon and improve 
estimation performance. Unfortunately, however, it could cause the 
undesired the particle deprivation problem, as well. In order to 
overcome this problem of the particle filter, we propose a novel 
filtering method called the genetic filter. In the proposed filter, we 
embed the genetic algorithm into the particle filter and overcome the 
problems of the standard particle filter. The validity of the proposed 
method is demonstrated by computer simulation.  
 

Keywords—Particle filter, genetic algorithm, evolutionary 
algorithm. 

I. INTRODUCTION 
O estimate the latent variables of the dynamics, several 
filtering methods have been reported, for example, Kalman 

filter (KF) [1] and grid based filter [2]. In these filters, the 
posterior density probability was assumed to be Gaussian. 
Unfortunaly, however in many real problems the posterior 
density is not Gaussian but is multimodal and its performance is 
not as good as expected. 

To overcome this problem, many researches have been 
reported on the nonlinear filtering methods such as extended 
Kalman filter (EKF) and the approximation grid based 
filter.[2,3] One of the famous methods is the particle filter 
[2-4]. In the particle filter, any assumption on the functional 
form of the posterior is not made. Instead, the posterior 
probability density is approximated as a set of particles. When 
the particles are properly placed, weighted and propagated, 
posteriors can be estimated sequentially over time. The density 
of particles represents the probability of posterior function. By 
using a finite number of particles, we can estimate almost any 
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kind of system dynamics; even nonlinear system with 
non-Gaussian, or multimodal distributions.  

In spite of these advantages, the particle filter has a serious 
drawback: Even with a large number of particles, it may happen 
that there are no particles in the vicinity of the correct state.  
This drawback is called the particle deprivation problem. To 
overcome these drawbacks of particle filter, we embed the 
genetic algorithm into the standard particle filter. This 
philosophy is not completely new. In the past relative research, 
K. Uoraki at el. are combined the evolutionary algorithm, 
especially evolutionary programing with the standard particle 
filter[5]. But K. Uoraki ‘s work was not fully exploited 
advantage of evolutionary algorithm.. In this paper, by using 
genetic algorithm which is one of the evolutionary algorithm, 
we can solve several drawbacks of particle filter which would 
be occurred in some special tracking case, like maneuvering 
target of state jump tracking. And as we reform the genetic 
operations, such as crossover and mutation, we can use genetic 
algorithm more properly than previous work. 

The organization of this paper is as follows; In Section 2, the 
particle filter is briefly reviewed. In Section 3, the genetic filter 
is proposed and the detailed explanations are given. In Section 
4, simulation is conducted and the result is presented to show 
the effectiveness of the genetic filter. Finally, conclusion 
remarks are made in Section 5.. 

II. PARTICLE FILTER 
The particle filter is a special version of the Bayes filter 

based on Monte Carlo sampling. In the particle filter, we 
represent the posterior probability 1:( | )k kp x z as a set kS  of 

N  weighted samples 
{( , ) | 1, , }m m

k k kS x w m N= = L .                   (1) 

Here, m
kx  denotes the m -th particle of kS  and the m

kw  is 
the associated importance weights. The standard particle filter 
(SIR) is summarized as in Table I [2]. 
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TABLE I 
THE ALGORITHM OF SIR 

1: Algorithm SIR 1 1 1 1[{ , } | ] [{ , } | , ]m m M m m M
k k m k k m kx w SIR x w z= − − ==  

2: Initialize particles ( weight ) 
3: For 1:m N=  
4:   Draw m

kx  ~ 
1( | )m

k kp x x −
 

5:   Assign a weight m
kw  to the particle according to ( | )m

k kp z x  
6: End for 
7: For 1:m N=  

6:   Resampling m
kx  according to m

kw  
7: End for  
8: Replace 1k k← +  and return Line 3 
 
The particle filter algorithm consists of three steps: 

sampling, calculation of the importance weight and resampling. 
In the sampling step, samples are generated according 
to

1( | )m
k kp x x −

. In the step of importance weighting, the 
importance weight is computed for each particle as ( | )m

k kp z x . 
In the resampling step, the particles with different weights are 
sampled again with replacement according to their weights and 
the particles with different weights are replaced by the new 
particles with equal weights (1/ N ). The particles with larger 
weights are more likely to be selected than the particles with 
smaller weights. 

III. THE PARTICLE FILTER WITH VARYING NUMBER OF 
PARTICLES (PFVANP) 

The Bayes filter is the most generic estimation method but it 
is not appropriate for direct implementation because it requires 
the convolution of the distribution functions. Instead, the 
Kalman filter is the concrete and simplest implementation of 
the Bayes filter and is widely employed in many engineering 
fields. But its use is limited to the case of the linear estimation 
with the Gaussian noise.  

These days, the particle filter has received the high attention 
in the signal processing community as an alternative method for 
the state estimation. It deals with not only linear models with 
Gaussian noise but also the non-linear models with 
non-Gaussian noise. But, as mentioned in Section 1, the particle 
filter suffers from the particle deprivation problem: Even with 
a large number of particles, it may happen that there are no 
particles in the vicinity of the correct state. In order to 
overcome the drawbacks of the particle filter, we propose a new 
filtering method called the genetic filter. The basic idea of the 
genetic filter is to view the particles of the particle filter as the 
chromosomes of the genetic algorithm and embed the genetic 
algorithm [6] into the particle filter. Shown in Fig. 1 is the 
procedure of the Genetic filter, which is very similar to the 
standard genetic algorithm.  

 
Fig. 1 Procedure of the Genetic Filter 

 
The procedure of the genetic filter consists of three steps: 

sampling step, the genetic operation step and the resampling 
step. In the samling  step, a new population of chromosomes is 
generated from the one time earlier population 1tX −  according 
to the state transition probability ( | , )m

k k kp x u x (sampling).  
In the second step of proposed algorithm, the genetic 

operations such as crossover and mutation are applied to the 
temporary set of the chromosomes. Crossover and Mutation 
play the important roles in solving the inherent particle 
deprivation problem while selection generate degeneracy 
problem.  

The third step is that the fitness values of the selected 
chromosomes are evaluated (fitness evaluation). The fitness 
value of each chromosome is the measurement 
probability ( | )m

k kp z x . Then, the chromosomes are resampled 
with replacement according to their fitness values (resampling). 
The new population tX  represents the posterior density 

1( | , , )k k k kp x z u x −
.The algorithm of the genetic filter is given 

below in Table II. 
 

TABLE II 
ALGORITHM OF THE GENETIC FILTER 

1: Algorithm Genetic Filter ( 1, ,m
k k kx u z−

) 

2: 1 1 1 1[{ , } ] GF[{ , } , ]m m N m m N
k k m k k m kx w x w z= − − ==  

3: For 1:m N=  
4: Draw m

tx  ~ 
1( | , )m

k k kp x u x −
 

5: Do genetic operation as table (3) and (4) 

6: Assign the particle a weight m
kw  according to ( | )m

k kp z x  

7: Select  m
kx  according to m

kw  by roulette wheel selection 

method  
8: End 
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A.  Sampling 
The sampling step is same as standard particle filter, which 

describe in chapter 2. In the sampling step, samples are 
generated according to 1( | , )m

k k kp x u x −
. 

 
B.  Genetic Operation 
The Genetic operations consist of two operators, crossover 

and mutation. Crossover is to choose a pair of chromosomes 
promoted in the selection and mate them to produce a new pair 
of offsprings. The mutation operator is to change a 
chromosome randomly. In this paper, we use the arithmetic 
crossover [6], and residual mutation. 

The arithmetic crossover produces the offspring 
chromosomes from parent chromosomes and the produced 
offsprings are located in convex set region of parent 
chromosomes, so it can search the convex set region where is 
not existed by its parent chromosomes. The arithmetic 
crossover is represented in Table III.  
 

TABLE III 
ARITHMETIC CROSSOVER 

( )
( )

' (1 )

' (1 )

m m n
k k k

n n m
k k k

x a x a x

x a x a x

= ⋅ + − ⋅

= ⋅ + − ⋅
 

where a  is a random number between 0 and 1, ,m n
k kx x  are 

parent chromosomes at k -th time population, and 

( ) ( )', 'm n
k kx x  are produced chromosomes at k -th time 

population. 
 
Residual mutation, which is proposed in this paper, is offered 

to overcome particle deprivation problems. The detail of 
residual mutation is that the mutated chromosome is made by 
sum of original chromosome value and normal random variable 
with mean and variance, ( , )m

k kN z x q−  . Since the 
measurement residual value is used in mutation step, even if 
particle deprivation problem occurs while track out target, we 
can move the location of some chromosomes near the real state 
by residual mutation. The detail of residual mutation is shown 
in Table IV. 
 

TABLE IV 
RESIDUAL MUTATION 

( ) 'm m
k kx x c= +  

where c  is random variable with ( , )m
k kN z x q−  , m

kx  is a parent 

chromosome at k -th time population, q  is a predefined 

constant and ( ) 'm
kx  is a produced chromosomes at k -th time 

population. 
 

However, since the particle deprivation is not always 
happened, if the particle deprivation problem doesn’t be 
happened, the crossover and mutation are not improve the 
tracking performance, even thought they can cause another 

computational burden. So the crossover and mutation 
probability are governed whether the particle deprivation is 
happened or not. So, in this paper, we decide the crossover and 
mutation probability according to tracking performance. If the 
recently tracking performance is small, the most chromosomes 
are not located around the real state, so we should assign 
crossover and mutation probability larger values. And if it is 
not, we can assign crossover and mutation probability smaller 
values. By adapting the mutation and crossover probability 
values, we can get both the better tracking performance and 
efficiency of computational complexity. The detail of 
determination of crossover and mutation probability is 
represented as equation (4). 

110, %
     ( -6)   ( -1)-  

15, %
     ( -6)   ( -1)-  

C

M

Min
averagingpositiontrackingperformancefromk thto k thtime

Min
averagingpositiontrackingperformancefromk thto k thtime

ρ

ρ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

      (2)                   

where Cρ  is crossover probability, Mρ  is mutation probability 

and ( )      if 
,

    otherwise
a a b

Min a b
b

≤
= .  

 
Equation (4) means that the crossover and mutation 

probability are depend on their tracking performance, however, 
it is bounded some constant value.  

By genetic operation, we can enlarge the search space, so 
although the chromosomes are not located near the real state, 
the chromosomes can be shifted around real state by mutation 
and crossover. 
 

C.  Selection 
After genetic operation, we select the chromosomes which 

have large fitness values. In the selection step, the sampled and 
produced chromosomes by genetic operations are resampled 
with replacement according to their fitness values, )|( m

tt xzp . 
In the standard genetic algorithm, there are several selection 
methods such as ranking method or elitism method.[6] In this 
genetic filter, we use the well known roulette wheel method in 
the resampling step. The basic idea of the roulette wheel 
method is that the higher the fitness value is, the more likely the 
chromosome is selected (or resampled) in the genetic algorithm 
(or filter). The fitness value of each chromosome is the 
measurement probability 

( ) ( | )m m
k k kfitness x p z x=                           (3) 

Shown in Table V is the algorithm of the roulette wheel 
selection.  

 
TABLE V 

ALGORITHM OF THE ROULETTE WHEEL SELECTION. 

1: Calculate  ∑= fitnessffitnessTotal sum )(  

2: Choose a random number, sR , between 0  and sumf  
3: Add together the fitness of the population members (one at a 
time) stopping immediately when the sum is greater than sR . 
The last individual added is the selected individual and a copy 
is passed to the next generation. 
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As in line 6 of Table II, the resampled chromosome is added to 
the population set tX of the chromosomes. The resulting 

population, the set of chromosomes m
kx , represents posterior 

density probability, 1( | , , )k k k kp x x u z−
, which is 

1
1

1( | , , ) ( )
M

m
k k k k k

m
p x x u z x x

M
δ−

=

≈ −∑ .                     (4) 

where M is tge number of  chromosomes and 
1,      if 0

( )
0,   otherwise

x
xδ

=
= . 

 

IV. SIMULATION RESULTS 
In this section, we present an example to show the 

effectiveness of the suggested filter. In this simulation, the 
target is assumed to move along x -direction and trajectories is 
governed by 

2 2

12 2

1

1

1
0 1
0 0 1 1

T T
k k

k k k

k k

x T x
x T x T w
x x

−

−

−

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

& &

&& &&

                  (5) 

[ ]1 0 0
k

k k k

k

x
z x v

x

⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦

&

&&

.                          (6) 

where kx , kx& , and kx&&  are distance, velocity, acceleration of the 

target respectively. T  is the radar scan time. Noise kw  and kv  
are assumed to be mutually independent and be a white 
Gaussian noise with zero mean and variances  20.1Q = and 

22R = . Shown in Fig. 2 are the estimation errors of the two 
filters, PF and GF. The dashed line denotes the GF, the dotted 
line denotes the PF. We use three hundred particles for each 
filter.  

 
 

Fig. 2 The tracking error of PF (red line) and GF(blue line) 
 
To show in Fig. 2, the performance of GF is not different 

from it of PF. In GF case, the chromosomes spread in all 
directions, however, highly possible chromosomes are selected 

by selection stage. The root mean square error of each state is 
shown below Table VI. 

 
TABLE VI 

ROOT MEAN SQUARE ERROR OF EACH FILTERING METHOD (M) 
 Particle Filter Genetic Filter 

Distance RMSE 0.3259 0.3222 
Velocity RMSE 1.2297 0.9861 

Acceleration RMS
E 

1.0015 0.9245 

 
Fig. 3 represents the maneuvering target case. As you see in 

Fig. 3, if the target is maneuvering fast, the PF cannot track out 
the real state, because, in PF case, the particles cannot be 
moved fast through all stage of particle filter: sampling, 
calculation of importance weight and resampling. But, GF is 
able to search the chromosomes wider than particle filter by 
using genetic operators. The dotted line represents the PF, the 
dashed line represents the GF, and the real state is represented 
by the solid line. 

 

 
Fig. 3 Maneuvering Target Tracking – PF (dotted line), GF (dashed 

line) and state (solid line) 
 

The effect mutation is represented in Fig. 4. In PF case, if 
state jump somewhere (like kidnap problem of mobile robot 
[3]), the particles are not located around the real state, the 
particles cannot find real state, in PF case. But, in GF case, 
although the chromosomes are not located around the real state, 
the chromosomes can be moved by residual mutation. 
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Fig. 4 Particle deprivation problem case – PF (dotted line), GF(dashed 

line) and state(solid line) 

V. CONCLUSION 
In this paper, we have proposed a new particle filter with 

varying number of particles. By adjusting the number of 
particles, we can reduce the computational load while 
maintaining the tracking performance. Therefore, the proposed 
method is very suitable for practical applications. Further, 
although the resampling step can resolve the particle 
degeneracy problem, it cannot be implemented in a parallel 
hardware. Since there is no resampling (selection) step in the 
PFVaNP, the proposed method is very suitable for the 
hardware implementation.  
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