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Abstract—Text categorization is the problem of classifying text 

documents into a set of predefined classes. In this paper, we 
investigated three approaches to build a meta-classifier in order to 
increase the classification accuracy. The basic idea is to learn a meta-
classifier to optimally select the best component classifier for each 
data point. The experimental results show that combining classifiers 
can significantly improve the accuracy of classification and that our 
meta-classification strategy gives better results than each individual 
classifier. For 7083 Reuters text documents we obtained a 
classification accuracies up to 92.04%. 
 

Keywords—Meta-classification, Learning with Kernels, Support 
Vector Machine, and Performance Evaluation. 

I. INTRODUCTION 
HILE more and more textual information is available 
online, effective retrieval is difficult without good 

indexing and summarization of document content. Document 
categorization is one solution to this problem. The task of 
document categorization is to assign a user defined categorical 
label to a given document. In recent years a growing number 
of categorization methods and machine learning techniques 
have been developed and applied in different contexts. 

Documents are typically represented as vectors in a features 
space. Each word in the vocabulary is represented as a 
separate dimension. The number of occurrences of a word in a 
document represents the value of the corresponding 
component in the document’s vector. 

In this paper we investigate some strategies for combining 
classifiers in order to improve the classification accuracy. We 
used classifiers based on Support Vector Machine (SVM) 
techniques. They are less vulnerable to degrade with an 
increasing dimensionality of the feature space, and have been 
shown effective in many classification tasks. The SVM is 
actually based on learning with kernels and support vectors. 

We combine multiple classifiers hoping that the 
classification accuracy can be improved without a significant 
increase in response time. Instead of building only one highly 
accurate specialized classifier with much time and effort, we 
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build and combine several simpler classifiers. 
Several combination schemes have been described in the 

literature [1]. A usually approach is to build individual 
classifiers and later combine their judgments to make the final 
decision. Another approach, which is not so commonly used 
because it suffers from the “curse of dimensionality” [3], is to 
concatenate features from each classifier to make a longer 
feature vector and use it for the final decision. Anyway, meta-
classification is effective only if it classifier synergies can be 
exploited. 

In previous studies combination strategies were usually ad 
hoc and are strategies like majority vote, linear combination, 
winner-take-all [1], or Bagging and Adaboost [2]. Also, some 
rather complex strategies have been suggested; for example in 
[3] a meta-classification strategies using SVM [4] is presented 
and compared with probability based strategies. 

Section 2 contains prerequisites for the work that we 
present in this paper. In sections 3 and 4 we present the 
methodology used for our experiments. Section 5 presents the 
experimental framework and section 6 presents the main 
results of our experiments. The last section debates and 
concludes on the most important obtained results and proposes 
some further work. 

II. SUPPORT VECTOR MACHINE 
The Support Vector Machine (SVM) is a classification 

technique based on statistical learning theory [5], [6] that was 
applied with great success in many challenging non-linear 
classification problems and on large data sets. 

The SVM algorithm finds a hyperplane that optimally splits 
the training set. The optimal hyperplane can be distinguished 
by the maximum margin of separation between all training 
points and the hyperplane. Looking at a two-dimensional 
problem we actually want to find a line that “best” separates 
points in the positive class from points in the negative class. 
The hyperplane is characterized by a decision function like: 

( )bxxf += )(,sgn)( Φw                        (1) 

where w is the weight vector, orthogonal to the hyperplane, 
“b” is a scalar that represents the margin of the hyperplane, 
“x” is the current sample tested, “Φ(x)” is a function that 
transforms the input data into a higher dimensional feature 
space and ⋅⋅,  representing the dot product. Sgn is the sign 

function. If w has unit length, then <w, Φ(x)> is the length of 
Φ(x) along the direction of w. Generally w will be scaled by 
||w||. In the training part the algorithm needs to find the normal 
vector “w” that leads to the largest “b” of the hyperplane. 
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For extending the SVM algorithm from two-class 
classification to multi-class classification typically one of two 
methods is used: “One versus the rest”, where each topic is 
separated from the remaining topics, and “One versus the 
one”, where a separate classifier is trained for each class pair. 
We selected the first method for two reasons: First, 
preliminary experiments shows that the first method gives 
better performance, which might be explained by the fact that 
the Reuter’s database contains strongly overlapping classes 
and assigns almost all samples in more than one class. Second 
overall training time is much shorter for the first method. 

III. SELECTING INDIVIDUAL CLASSIFIERS  
Our previous work [8], [10] showed that the correct 

classification of some “difficult” documents strongly 
depended on selecting the optimal SVM architecture. 
Following this observation we first generate a pool of 
different SVM classifiers.  These classifiers use different 
kernel types, different kernel degrees and different input data 
representation. The latter was showed in [8] that have a great 
influence on classification accuracy. After analyzing test 
results for each studied classifier [8, 9, and 10] using the same 
training and testing data set we selected 8 different classifiers 
as components of the developed meta-classification system. 

 
TABLE I. SELECTED CLASIFIERS 

 
Nr. 
Crt. 

Kernel 
type 

Kernel 
degree 

Data 
representation 

Accuracy 
obtained 

1 Polynomial 1 Nomianl 86.69 
2 Polynomial 2 Binary 86.64 
3 Polynomial 2 Cornell Smart 87.11 
4 Polynomial 3 Cornell Smart 86.51 
5 Gaussian C1.8 Cornell Smart 84.30 
6 Gaussian C2.1 Cornell Smart 83.83 
7 Gaussian C2.8 Cornell Smart 83.66 
8 Gaussian C3.0 Cornell Smart 83.41 

  
As we showed in [8] and [10] the best results were obtained 

for this data set for an optimal dimension of the feature vector 
of 1309 features. Table I present those 8 selected classifiers, 
each of them with optimized parameter using a cross 
validation set. 

In all presented results we used Support Vector Machine as 
features selection method (SVM_FS) as presented in [8]. We 
showed that this method obtained best results if compared 
with Information Gain [8] or Genetic Algorithm [9]. 

An interesting question is if there are some input 
documents, which are incorrectly classified by all selected 
classifiers. In all comparisons we take as a reference the 
Reuters’s classification. To analyze this question, we take all 
selected classifiers for the Reuters’ data and count documents 
that are incorrectly classified by all classifiers. We found 136 
test set documents from 2351 that are incorrectly classified by 
all classifiers. Thus the maximum limit of our meta-classifier 
containing these selected classifiers is 94.21. 

IV. META-CLASSIFIER MODELS 
In order to design the meta-classifier we are using three 

models. First of them is a simple approach based on the voting 
principle. The other two approaches are implementing 
adaptive methods. 

A. Majority Vote 
This first model for meta-classification was tested due to its 

simplicity. It is a maladjusted model that obtains the same 
results in time. The idea is to use all selected classifiers to 
classify the current document. Each classifier proposes a 
specified class for this document incrementing the 
corresponding class-counter. The meta-classifier will select 
the class with the greatest count. If we obtain two or more 
classes with identical count we classify the current document 
in all proposed classes. The percentage of documents correct 
classified with this meta-classifier is 86.38%. This result is 
with 0.73% worse than the maxim value obtained with the 
best selected classifier, but is greater than their average 
accuracy. 

B.  Selection based on Euclidean Distance (SBED) 
Since the previous meta-classifier didn’t obtain good results 

we build a meta-classifier that adapts its behavior depending 
on the input data. To do this, we build a meta-classifier that 
selects a classifier based on the current input data. It will learn 
only on data that is incorrectly classified by the selected 
classifier, because we are expecting a smaller number of 
incorrectly classified input data if compared to correctly 
classified input data. Thus we create for each classifier a 
buffer which contains all incorrectly classified documents. 
Therefore, our meta-classifier consists in the 8 queues 
attached to the component classifiers. 

When we have an input document (current sample) that 
needs to be classified, first we randomly chose one classifier. 
We compute the Euclidean distance (equation 2) between the 
current sample and all samples that are in that self queue of 
the selected classifier. If we obtain at slightly one pattern with 
a distance smaller than a predefined threshold we will reject 
this classifier. Instead we will randomly select another 
classifier, except for the already rejected one. If all component 
classifiers are rejected, however, we’ll choose the classifier 
with the greatest Euclidian distance. 

∑
=

′−=′
n

i
ii xxEucl

1

2)][]([),( xx                 (2) 

Where [x]i represent the value from entry i of the vector x, and 
x and x’ represent the input vectors. 

After selecting the optimal classifier we’ll used it to classify 
the current sample. If the selected classifier succeeds to 
correctly classify the current document, nothing is done. 
Otherwise we’ll put the current document into the 
corresponding queue. To see if the document is correctly or 
incorrectly classified we compare our proposing class with the 
Reuters proposed class.  

We have also implemented an alternative method that 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2996

 

 

compares the input data with all the samples stored in the 
queues. We are not presenting results using this method 
because it is slower, taking in average with 16 minutes more. 
The quality of the obtained results was similar with the 
presented SBED method. 

The training is as follows: the meta-classifier analyzes the 
training set and each time when a document is incorrectly 
classified, the pattern is added to the selected classifier queue. 
In the second step, the validation step, we test the 
classification accuracy using the validation set. In the testing 
step the characteristics of the meta-classifier remains 
unchanged. Because after each training part the characteristics 
of meta-classifier might change, we repeated these two steps 
many times. After 14 steps we obtain good results and the 
classification accuracy have not substantially increasing after 
that. 

C. Selection based on Cosine Angle (SBCOS) 
The cosine angle is another possibility to compute the 

document similarity, often used to calculate text similarities. 
The formula to compute the cosine angle θ between two input 
vectors x and x’ is: 

∑∑

∑
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where [x]i represent the value from entry i of a vector x. 
This method is like the method SBED with two 

modifications. The first modification is that the similarity 
between documents is computed using the cosine angle 
between input vectors. The second modification is that the 
classifier is not randomly selected. Instead we constantly take 
into consideration all available classifiers. We compute the 
cosine between the current sample and all incorrect classified 
samples that are in the self queues. We choose the classifier 
that obtains the minimum cosine value. 

We have already implemented an alternative method that 
randomly chooses the first acceptable classifier, similar with 
the SBED presented method. We are not presenting this 
method because, despite its speed, the classification results are 
inferior (maximum 89.11% classification accuracy). 

V. EXPERIMENTAL FRAMEWORK 

A. The Dataset  
Our experiments are performed on the Reuters-2000 

collection [11], which has 984Mb of newspapers articles in a 
compressed format. Collection includes a total of 806,791 
documents, with news stories published by Reuters Press 
covering the period from 20.07.1996 through 19.07.1997. The 
articles have 9822391 paragraphs and contain 11522874 
sentences and 310033 distinct root words. Documents are pre-
classified according to 3 categories: by the Region (366 
regions) the article refers to, by Industry Codes (870 industry 

codes) and by Topics proposed by Reuters (126 topics, 23 of 
them contain no articles). Due to the huge dimensionality of 
the database we will present here results obtained using a 
subset of data. From all documents we selected the documents 
for which the industry code value is equal to “System 
software”. We obtained 7083 files that are represented using 
19038 features and 68 topics. We represent a document as a 
vector of words, applying a stop-word filter (from a standard 
set of 510 stop-words) and extracting the word stem [12]. 
From these 68 topics we have eliminated those topics that are 
poorly or excessively represented. Thus we eliminated those 
topics that contain less than 1% documents from all 7083 
documents in the entire set. We also eliminated topics that 
contain more than 99% samples from the entire set, as being 
excessively represented. After doing so we obtained 24 
different topics and 7053 documents that were split randomly 
in training set (4702 samples) and testing set (2351 samples). 
In the feature extraction part we take into consideration both 
the article and the title of the article. 

B. Kernel Types 
The idea of the kernel trick is to compute the norm of the 

difference between two vectors in a higher dimensional 
feature space without representing those vectors in the new 
feature space. In practice we observed that by adding a 
constant bias to the kernel we obtained improved classifying 
results. In this work we present results using a new idea to 
correlate this bias with the dimension of the space in which 
the data will be represented. For more details please consult 
[7]. We consider that those two parameters (the degree and the 
bias) need to be correlated in order to improve the 
classification accuracy. 

We’ll use in our selected classifiers two types of kernels 
each of them with different parameters (see section III). For 
the polynomial kernel we vary the degree and for the Gaussian 
kernel we change the parameter C according to the following 
formulas (x and x’ being the input vectors):  
• Polynomial 

( )dxxdxxk '2)',( ⋅+⋅=                    (4) 

• d being the only parameter to be modified and represent 
the degree of the kernel, 

• Gaussian (radial basis function RBF)  

( )Cnxxxxk ⋅−−= /'exp)',( 2
               (5) 

• C being the classical parameter and n being the new 
parameter, introduced by us, representing the number of 
elements from the input vectors that are greater than 0. 

For feature selection with Support Vector Machine method 
we use the polynomial kernel with degree 1 [8]. 

C. Correlating Parameters for the Kernel  
Usually when learning with a polynomial kernel researchers 

use a kernel that can be expressed as like ( )db+′⋅ xx  where 

d and b are independent parameters. Parameter “d” is the 
kernel degree and it is used as a parameter that helps mapping 
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the input data into a higher dimensional space. Thus, this 
parameter is intuitive. The second parameter “b” (the bias), is 
not so easy to infer. In all previous work, the researchers used 
a nonzero b, but they didn’t present a method for selection it. 
We notice that if this parameter was eliminated (i.e., chosen to 
be zero) the quality of the results can be poor. It is logically 
that there is a need to correlate the parameters d and b because 
the offset b needs to be modified as the dimension of the space 
modifies. Due to this, based on laborious classification 
simulations presented in [7], [10], we suggest the best 
correlation is “b=2*d”. 

Also for the Gaussian kernel we modified the standard 
kernel used in the research community given by 
formula )/'exp()',( 2 Cxxxxk −−= , where the parameter C is 

a number witch usually takes values between 1 and total 
numbers of features. We introduce the parameter n [7] that 
multiplies the usually parameter C with a value that represents 
the number of distinct features having weights greater than 0 
that occur in the current two input vectors, decreasing 
substantially the value of C (see Equation 5). As far as we 
know, we are the first authors proposing a correlation between 
these two parameters for both polynomial and Gaussian 
kernels. 

D.  Representing the Input Data 
Also in our selected classifier we will use different 

representation of the input data. After extensive experiments 
[8], [10] we see that different types of kernels work better 
with different types of data representation. We represent the 
input data in three different formats. In the following formulas 
n(d, t) is the number of times that term t occurs in document d, 
and n(d,τ) is the maximum frequency occurring in document 
d. 

• Binary representation – in the input vector we store “0” 
if the word doesn’t occur in the document and “1” if it 
occurs without considering the number of occurrences. 

• Nominal representation – we compute the value of the 
weight using the formula: 

),(max
),(),(

ττ dn
tdntdTF =                             (6) 

• Cornell SMART representation –we compute the 
value of the weight using the formula:  

⎩
⎨
⎧

++
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=
otherwisetdn

tdnif
tdTF

)),(log(1log(1
0),(0

),(         (7) 

This are later called as BIN, NOM or CS. 

VI. EXPERIMENTAL RESULTS 
In [8] and [10] we showed that the best results are obtained 

using a dimension of the feature space about 1309 relevant 
features. In this paper we present results obtained using only 
this feature dimension. For select relevant features we use 
feature selection method based on support vector machine 
technique, also with a linear kernel. This method was detailed 
in [8]. 

In all presented comparisons accuracies we take as a 
reference the Reuter’s classification topics that was 
considered to be perfect. Also all results are presented for 
multi-class classification, taking into consideration all 24 
selected classes. 

In Fig. 1 we present results obtained using all three 
approaches. Also in this figure the upper limit that can be 
obtained with our selected classifiers is represented. 

As we already mentioned, the last two methods, SBED and 
SBCOS, request some learning steps for training. We resume 
presenting here only first 14 steps because after those steps the 
substantial improvement of classification accuracy wasn’t 
obtained. Sometime, after those steps we obtain small 
decreases followed by small increases, in average the values 
are closer to presented value. For example for SBCOS obtain 
89.66% after 10 steps, decreasing after that to 89.58% and 
increasing to 89.74% in step 14th. In order to have a good 
view, we multiply in presented figure the value of upper limit 
(94.21%) that can be obtained. 

With Majority Vote the accuracy of classification that was 
obtained with this meta-classifier is 86.38%. This result is 
with 0.73% smaller than the maxim individual value but it is 
greater than average over all classifiers. 

For each of the last two methods (SBED and SBCOS) we 
are doing 14 learning steps. After each learning step we do a 
testing step. In Fig. 1 we present results obtained after each 
step as a percentage of correct classified documents. 

For SBED the distance threshold was chosen during the 
firsts 7 steps equal to 2.5 and during the last 7 steps equal to 
1.5. For the initial training phase we selected a greater 
threshold value in order to quickly obtain a “correct” 
classifier. Both these distance thresholds were chosen after 
laborious simulations. 

At the beginning of training, when there are no documents 
in the queue yet, the classification accuracy is not so good 
(84.77%). But, as can be observed, after each step the 
accuracy improves growing up to 92.04% in 13th step. 
Comparatively with the upper limit that can be obtained with 
these selected classifiers, the obtained results after the 13th 
step can be considered a good result. 

In SBCOS we chose during the first 7 steps a cosine 
threshold equal to 0.8 followed during the last 7 steps by a 
threshold equal to 0.9. If compared with SBED this method 
has a better starting point (85.33%). After 14 steps the 
accuracy increases only to 89.75%. Also the SBCOS method 
is slower than the SBED because it computes the distance 
between the current sample and all samples that are into the 
queues, in order to find the minimum value. In contrast, 
SBED randomly finds the first acceptable chose pattern and 
not the globally optimal one. The difference time between 
those two methods is in average of 21 minutes. If we compare 
those two methods using same modality to select classifier the 
method based on Euclidian distance is faster in average with 5 
minutes than method based on cosine, whatever selected 
method we chose to be use. 

In last two methods we kept in the queue of each classifier 
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the vector of documents that were incorrectly classified by 
that classifier. As an alternative to this, we also tried to reduce 
the queues’ dimension by keeping only the average over all 
vectors that are needed to be kept. Thus each queue has now 
only a single vector, making the algorithm faster. 
Unfortunately the results are not so good, achieving only 
87.11% accuracy, so that we will not discuss it further. 

The Majority Vote needs more than one hour to generate 
the result. This relatively long training time occurs because it 
is necessary to compute the result involved by each of the 8 
component classifier. The SBCOS is also not as fast: the 
response time increase from 19 minutes for the first step to 53 
minutes for the 14th step when the dimension of the queue is 
greater. The fastest method is SBED where the time increases 
from 18 minutes for the first step to 24 minutes at 14th step, 
when the queue is completed. The numbers are given for a 
Pentium IV at 3.4 GHz, with 1 GB memory, 10 GB HDD a 
(7200 rpm) and Windows XP. 

VII. CONCLUSIONS AND FURTHER WORK 
In this paper, we investigated three approaches to build an 

efficient meta-classifier. Based on our previous work we 
select 8 different SVM classifiers. For each of the classifier 
we modified the kernel, the degree of the kernel and the input 
data representation. Based on these selected classifiers we 
calculate the upper limit of our meta-classifier that is 94.21%. 
We compare one simple static method based on Majority Vote 
with two adaptive methods. 

With Majority Vote the classification accuracy was 
86.38%. As we expected, the documents that are correctly 
classified by only one classifier can’t be correctly classified by 

this method. 
The SBED method obtains best results, growing up to 

92.04% after 14 learning steps with 2.17% smaller than the 
upper limit. Also this method is the fastest one because it 
selects the first acceptable classifier and because the 
computation cost is lowers. The last method (SBCOS) is the 
most rigorous one because it finds the best component 
classifier. As a consequence, the training time for SBCOS is 
longer at an average of 21 minutes comparatively with SBED.  

The goal of our ongoing work is to classify larger text data 
sets (the complete Reuters database). Also we want to develop 
a pre-classification of all documents, obtaining fewer samples 
(using simple algorithms like Linear Vector Quantization or 
Self Organizing Maps). After that we’ll use the obtained 
samples as entry vectors for the already developed features 
selection and classification methods. 

An interesting natural extension of our work might be an 
adaptation for Web mining applications, in order to extract 
and categorized online news. 
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