
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2994

Abstract—Text categorization is the problem of classifying text

documents into a set of predefined classes. In this paper, we
investigated three approaches to build a meta-classifier in order to
increase the classification accuracy. The basic idea is to learn a meta-
classifier to optimally select the best component classifier for each
data point. The experimental results show that combining classifiers
can significantly improve the accuracy of classification and that our
meta-classification strategy gives better results than each individual
classifier. For 7083 Reuters text documents we obtained a
classification accuracies up to 92.04%.

Keywords—Meta-classification, Learning with Kernels, Support
Vector Machine, and Performance Evaluation.

I. INTRODUCTION
HILE more and more textual information is available
online, effective retrieval is difficult without good

indexing and summarization of document content. Document
categorization is one solution to this problem. The task of
document categorization is to assign a user defined categorical
label to a given document. In recent years a growing number
of categorization methods and machine learning techniques
have been developed and applied in different contexts.

Documents are typically represented as vectors in a features
space. Each word in the vocabulary is represented as a
separate dimension. The number of occurrences of a word in a
document represents the value of the corresponding
component in the document’s vector.

In this paper we investigate some strategies for combining
classifiers in order to improve the classification accuracy. We
used classifiers based on Support Vector Machine (SVM)
techniques. They are less vulnerable to degrade with an
increasing dimensionality of the feature space, and have been
shown effective in many classification tasks. The SVM is
actually based on learning with kernels and support vectors.

We combine multiple classifiers hoping that the
classification accuracy can be improved without a significant
increase in response time. Instead of building only one highly
accurate specialized classifier with much time and effort, we

Manuscript received September 27, 2006.
D. Morariu is with the Faculty of Engineering, “Lucian Blaga” University

of Sibiu, Computer Science Department, E. Cioran Street, No. 4, 550025
Sibiu, Romania (phone: 40/0740/092202; e-mail:
daniel.morariu@ulbsibiu.ro).

L. Vintan is with the Faculty of Engineering, “Lucian Blaga” University of
Sibiu, Computer Science Department, E. Cioran Street, No. 4, 550025 Sibiu,
Romania (e-mail: lucian.vintan@ulbsibiu.ro).

V. Tresp is with the Siemens AG, Information and Communications, 81739
Munchen, Germany (e-mail: volker.tresp@siemens.com).

build and combine several simpler classifiers.
Several combination schemes have been described in the

literature [1]. A usually approach is to build individual
classifiers and later combine their judgments to make the final
decision. Another approach, which is not so commonly used
because it suffers from the “curse of dimensionality” [3], is to
concatenate features from each classifier to make a longer
feature vector and use it for the final decision. Anyway, meta-
classification is effective only if it classifier synergies can be
exploited.

In previous studies combination strategies were usually ad
hoc and are strategies like majority vote, linear combination,
winner-take-all [1], or Bagging and Adaboost [2]. Also, some
rather complex strategies have been suggested; for example in
[3] a meta-classification strategies using SVM [4] is presented
and compared with probability based strategies.

Section 2 contains prerequisites for the work that we
present in this paper. In sections 3 and 4 we present the
methodology used for our experiments. Section 5 presents the
experimental framework and section 6 presents the main
results of our experiments. The last section debates and
concludes on the most important obtained results and proposes
some further work.

II. SUPPORT VECTOR MACHINE
The Support Vector Machine (SVM) is a classification

technique based on statistical learning theory [5], [6] that was
applied with great success in many challenging non-linear
classification problems and on large data sets.

The SVM algorithm finds a hyperplane that optimally splits
the training set. The optimal hyperplane can be distinguished
by the maximum margin of separation between all training
points and the hyperplane. Looking at a two-dimensional
problem we actually want to find a line that “best” separates
points in the positive class from points in the negative class.
The hyperplane is characterized by a decision function like:

()bxxf +=)(,sgn)(Φw (1)

where w is the weight vector, orthogonal to the hyperplane,
“b” is a scalar that represents the margin of the hyperplane,
“x” is the current sample tested, “Φ(x)” is a function that
transforms the input data into a higher dimensional feature
space and ⋅⋅, representing the dot product. Sgn is the sign

function. If w has unit length, then <w, Φ(x)> is the length of
Φ(x) along the direction of w. Generally w will be scaled by
||w||. In the training part the algorithm needs to find the normal
vector “w” that leads to the largest “b” of the hyperplane.

Daniel I. Morariu, Lucian N. Vintan, and Volker Tresp

Meta-Classification using SVM Classifiers for
Text Documents

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2995

For extending the SVM algorithm from two-class
classification to multi-class classification typically one of two
methods is used: “One versus the rest”, where each topic is
separated from the remaining topics, and “One versus the
one”, where a separate classifier is trained for each class pair.
We selected the first method for two reasons: First,
preliminary experiments shows that the first method gives
better performance, which might be explained by the fact that
the Reuter’s database contains strongly overlapping classes
and assigns almost all samples in more than one class. Second
overall training time is much shorter for the first method.

III. SELECTING INDIVIDUAL CLASSIFIERS
Our previous work [8], [10] showed that the correct

classification of some “difficult” documents strongly
depended on selecting the optimal SVM architecture.
Following this observation we first generate a pool of
different SVM classifiers. These classifiers use different
kernel types, different kernel degrees and different input data
representation. The latter was showed in [8] that have a great
influence on classification accuracy. After analyzing test
results for each studied classifier [8, 9, and 10] using the same
training and testing data set we selected 8 different classifiers
as components of the developed meta-classification system.

TABLE I. SELECTED CLASIFIERS

Nr.
Crt.

Kernel
type

Kernel
degree

Data
representation

Accuracy
obtained

1 Polynomial 1 Nomianl 86.69
2 Polynomial 2 Binary 86.64
3 Polynomial 2 Cornell Smart 87.11
4 Polynomial 3 Cornell Smart 86.51
5 Gaussian C1.8 Cornell Smart 84.30
6 Gaussian C2.1 Cornell Smart 83.83
7 Gaussian C2.8 Cornell Smart 83.66
8 Gaussian C3.0 Cornell Smart 83.41

As we showed in [8] and [10] the best results were obtained

for this data set for an optimal dimension of the feature vector
of 1309 features. Table I present those 8 selected classifiers,
each of them with optimized parameter using a cross
validation set.

In all presented results we used Support Vector Machine as
features selection method (SVM_FS) as presented in [8]. We
showed that this method obtained best results if compared
with Information Gain [8] or Genetic Algorithm [9].

An interesting question is if there are some input
documents, which are incorrectly classified by all selected
classifiers. In all comparisons we take as a reference the
Reuters’s classification. To analyze this question, we take all
selected classifiers for the Reuters’ data and count documents
that are incorrectly classified by all classifiers. We found 136
test set documents from 2351 that are incorrectly classified by
all classifiers. Thus the maximum limit of our meta-classifier
containing these selected classifiers is 94.21.

IV. META-CLASSIFIER MODELS
In order to design the meta-classifier we are using three

models. First of them is a simple approach based on the voting
principle. The other two approaches are implementing
adaptive methods.

A. Majority Vote
This first model for meta-classification was tested due to its

simplicity. It is a maladjusted model that obtains the same
results in time. The idea is to use all selected classifiers to
classify the current document. Each classifier proposes a
specified class for this document incrementing the
corresponding class-counter. The meta-classifier will select
the class with the greatest count. If we obtain two or more
classes with identical count we classify the current document
in all proposed classes. The percentage of documents correct
classified with this meta-classifier is 86.38%. This result is
with 0.73% worse than the maxim value obtained with the
best selected classifier, but is greater than their average
accuracy.

B. Selection based on Euclidean Distance (SBED)
Since the previous meta-classifier didn’t obtain good results

we build a meta-classifier that adapts its behavior depending
on the input data. To do this, we build a meta-classifier that
selects a classifier based on the current input data. It will learn
only on data that is incorrectly classified by the selected
classifier, because we are expecting a smaller number of
incorrectly classified input data if compared to correctly
classified input data. Thus we create for each classifier a
buffer which contains all incorrectly classified documents.
Therefore, our meta-classifier consists in the 8 queues
attached to the component classifiers.

When we have an input document (current sample) that
needs to be classified, first we randomly chose one classifier.
We compute the Euclidean distance (equation 2) between the
current sample and all samples that are in that self queue of
the selected classifier. If we obtain at slightly one pattern with
a distance smaller than a predefined threshold we will reject
this classifier. Instead we will randomly select another
classifier, except for the already rejected one. If all component
classifiers are rejected, however, we’ll choose the classifier
with the greatest Euclidian distance.

∑
=

′−=′
n

i
ii xxEucl

1

2)][]([),(xx (2)

Where [x]i represent the value from entry i of the vector x, and
x and x’ represent the input vectors.

After selecting the optimal classifier we’ll used it to classify
the current sample. If the selected classifier succeeds to
correctly classify the current document, nothing is done.
Otherwise we’ll put the current document into the
corresponding queue. To see if the document is correctly or
incorrectly classified we compare our proposing class with the
Reuters proposed class.

We have also implemented an alternative method that

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2996

compares the input data with all the samples stored in the
queues. We are not presenting results using this method
because it is slower, taking in average with 16 minutes more.
The quality of the obtained results was similar with the
presented SBED method.

The training is as follows: the meta-classifier analyzes the
training set and each time when a document is incorrectly
classified, the pattern is added to the selected classifier queue.
In the second step, the validation step, we test the
classification accuracy using the validation set. In the testing
step the characteristics of the meta-classifier remains
unchanged. Because after each training part the characteristics
of meta-classifier might change, we repeated these two steps
many times. After 14 steps we obtain good results and the
classification accuracy have not substantially increasing after
that.

C. Selection based on Cosine Angle (SBCOS)
The cosine angle is another possibility to compute the

document similarity, often used to calculate text similarities.
The formula to compute the cosine angle θ between two input
vectors x and x’ is:

∑∑

∑

==

=

⋅

=
⋅

=
n

i
i

n

i
i

n

i
ii

xx

xx

1

2

1

2

1

]'[][

]'[][

'
',

cos
xx
xx

θ , (3)

where [x]i represent the value from entry i of a vector x.
This method is like the method SBED with two

modifications. The first modification is that the similarity
between documents is computed using the cosine angle
between input vectors. The second modification is that the
classifier is not randomly selected. Instead we constantly take
into consideration all available classifiers. We compute the
cosine between the current sample and all incorrect classified
samples that are in the self queues. We choose the classifier
that obtains the minimum cosine value.

We have already implemented an alternative method that
randomly chooses the first acceptable classifier, similar with
the SBED presented method. We are not presenting this
method because, despite its speed, the classification results are
inferior (maximum 89.11% classification accuracy).

V. EXPERIMENTAL FRAMEWORK

A. The Dataset
Our experiments are performed on the Reuters-2000

collection [11], which has 984Mb of newspapers articles in a
compressed format. Collection includes a total of 806,791
documents, with news stories published by Reuters Press
covering the period from 20.07.1996 through 19.07.1997. The
articles have 9822391 paragraphs and contain 11522874
sentences and 310033 distinct root words. Documents are pre-
classified according to 3 categories: by the Region (366
regions) the article refers to, by Industry Codes (870 industry

codes) and by Topics proposed by Reuters (126 topics, 23 of
them contain no articles). Due to the huge dimensionality of
the database we will present here results obtained using a
subset of data. From all documents we selected the documents
for which the industry code value is equal to “System
software”. We obtained 7083 files that are represented using
19038 features and 68 topics. We represent a document as a
vector of words, applying a stop-word filter (from a standard
set of 510 stop-words) and extracting the word stem [12].
From these 68 topics we have eliminated those topics that are
poorly or excessively represented. Thus we eliminated those
topics that contain less than 1% documents from all 7083
documents in the entire set. We also eliminated topics that
contain more than 99% samples from the entire set, as being
excessively represented. After doing so we obtained 24
different topics and 7053 documents that were split randomly
in training set (4702 samples) and testing set (2351 samples).
In the feature extraction part we take into consideration both
the article and the title of the article.

B. Kernel Types
The idea of the kernel trick is to compute the norm of the

difference between two vectors in a higher dimensional
feature space without representing those vectors in the new
feature space. In practice we observed that by adding a
constant bias to the kernel we obtained improved classifying
results. In this work we present results using a new idea to
correlate this bias with the dimension of the space in which
the data will be represented. For more details please consult
[7]. We consider that those two parameters (the degree and the
bias) need to be correlated in order to improve the
classification accuracy.

We’ll use in our selected classifiers two types of kernels
each of them with different parameters (see section III). For
the polynomial kernel we vary the degree and for the Gaussian
kernel we change the parameter C according to the following
formulas (x and x’ being the input vectors):
• Polynomial

()dxxdxxk '2)',(⋅+⋅= (4)

• d being the only parameter to be modified and represent
the degree of the kernel,

• Gaussian (radial basis function RBF)

()Cnxxxxk ⋅−−= /'exp)',(2
 (5)

• C being the classical parameter and n being the new
parameter, introduced by us, representing the number of
elements from the input vectors that are greater than 0.

For feature selection with Support Vector Machine method
we use the polynomial kernel with degree 1 [8].

C. Correlating Parameters for the Kernel
Usually when learning with a polynomial kernel researchers

use a kernel that can be expressed as like ()db+′⋅ xx where

d and b are independent parameters. Parameter “d” is the
kernel degree and it is used as a parameter that helps mapping

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2997

the input data into a higher dimensional space. Thus, this
parameter is intuitive. The second parameter “b” (the bias), is
not so easy to infer. In all previous work, the researchers used
a nonzero b, but they didn’t present a method for selection it.
We notice that if this parameter was eliminated (i.e., chosen to
be zero) the quality of the results can be poor. It is logically
that there is a need to correlate the parameters d and b because
the offset b needs to be modified as the dimension of the space
modifies. Due to this, based on laborious classification
simulations presented in [7], [10], we suggest the best
correlation is “b=2*d”.

Also for the Gaussian kernel we modified the standard
kernel used in the research community given by
formula)/'exp()',(2 Cxxxxk −−= , where the parameter C is

a number witch usually takes values between 1 and total
numbers of features. We introduce the parameter n [7] that
multiplies the usually parameter C with a value that represents
the number of distinct features having weights greater than 0
that occur in the current two input vectors, decreasing
substantially the value of C (see Equation 5). As far as we
know, we are the first authors proposing a correlation between
these two parameters for both polynomial and Gaussian
kernels.

D. Representing the Input Data
Also in our selected classifier we will use different

representation of the input data. After extensive experiments
[8], [10] we see that different types of kernels work better
with different types of data representation. We represent the
input data in three different formats. In the following formulas
n(d, t) is the number of times that term t occurs in document d,
and n(d,τ) is the maximum frequency occurring in document
d.

• Binary representation – in the input vector we store “0”
if the word doesn’t occur in the document and “1” if it
occurs without considering the number of occurrences.

• Nominal representation – we compute the value of the
weight using the formula:

),(max
),(),(

ττ dn
tdntdTF = (6)

• Cornell SMART representation –we compute the
value of the weight using the formula:

⎩
⎨
⎧

++
=

=
otherwisetdn

tdnif
tdTF

)),(log(1log(1
0),(0

),((7)

This are later called as BIN, NOM or CS.

VI. EXPERIMENTAL RESULTS
In [8] and [10] we showed that the best results are obtained

using a dimension of the feature space about 1309 relevant
features. In this paper we present results obtained using only
this feature dimension. For select relevant features we use
feature selection method based on support vector machine
technique, also with a linear kernel. This method was detailed
in [8].

In all presented comparisons accuracies we take as a
reference the Reuter’s classification topics that was
considered to be perfect. Also all results are presented for
multi-class classification, taking into consideration all 24
selected classes.

In Fig. 1 we present results obtained using all three
approaches. Also in this figure the upper limit that can be
obtained with our selected classifiers is represented.

As we already mentioned, the last two methods, SBED and
SBCOS, request some learning steps for training. We resume
presenting here only first 14 steps because after those steps the
substantial improvement of classification accuracy wasn’t
obtained. Sometime, after those steps we obtain small
decreases followed by small increases, in average the values
are closer to presented value. For example for SBCOS obtain
89.66% after 10 steps, decreasing after that to 89.58% and
increasing to 89.74% in step 14th. In order to have a good
view, we multiply in presented figure the value of upper limit
(94.21%) that can be obtained.

With Majority Vote the accuracy of classification that was
obtained with this meta-classifier is 86.38%. This result is
with 0.73% smaller than the maxim individual value but it is
greater than average over all classifiers.

For each of the last two methods (SBED and SBCOS) we
are doing 14 learning steps. After each learning step we do a
testing step. In Fig. 1 we present results obtained after each
step as a percentage of correct classified documents.

For SBED the distance threshold was chosen during the
firsts 7 steps equal to 2.5 and during the last 7 steps equal to
1.5. For the initial training phase we selected a greater
threshold value in order to quickly obtain a “correct”
classifier. Both these distance thresholds were chosen after
laborious simulations.

At the beginning of training, when there are no documents
in the queue yet, the classification accuracy is not so good
(84.77%). But, as can be observed, after each step the
accuracy improves growing up to 92.04% in 13th step.
Comparatively with the upper limit that can be obtained with
these selected classifiers, the obtained results after the 13th
step can be considered a good result.

In SBCOS we chose during the first 7 steps a cosine
threshold equal to 0.8 followed during the last 7 steps by a
threshold equal to 0.9. If compared with SBED this method
has a better starting point (85.33%). After 14 steps the
accuracy increases only to 89.75%. Also the SBCOS method
is slower than the SBED because it computes the distance
between the current sample and all samples that are into the
queues, in order to find the minimum value. In contrast,
SBED randomly finds the first acceptable chose pattern and
not the globally optimal one. The difference time between
those two methods is in average of 21 minutes. If we compare
those two methods using same modality to select classifier the
method based on Euclidian distance is faster in average with 5
minutes than method based on cosine, whatever selected
method we chose to be use.

In last two methods we kept in the queue of each classifier

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2998

the vector of documents that were incorrectly classified by
that classifier. As an alternative to this, we also tried to reduce
the queues’ dimension by keeping only the average over all
vectors that are needed to be kept. Thus each queue has now
only a single vector, making the algorithm faster.
Unfortunately the results are not so good, achieving only
87.11% accuracy, so that we will not discuss it further.

The Majority Vote needs more than one hour to generate
the result. This relatively long training time occurs because it
is necessary to compute the result involved by each of the 8
component classifier. The SBCOS is also not as fast: the
response time increase from 19 minutes for the first step to 53
minutes for the 14th step when the dimension of the queue is
greater. The fastest method is SBED where the time increases
from 18 minutes for the first step to 24 minutes at 14th step,
when the queue is completed. The numbers are given for a
Pentium IV at 3.4 GHz, with 1 GB memory, 10 GB HDD a
(7200 rpm) and Windows XP.

VII. CONCLUSIONS AND FURTHER WORK
In this paper, we investigated three approaches to build an

efficient meta-classifier. Based on our previous work we
select 8 different SVM classifiers. For each of the classifier
we modified the kernel, the degree of the kernel and the input
data representation. Based on these selected classifiers we
calculate the upper limit of our meta-classifier that is 94.21%.
We compare one simple static method based on Majority Vote
with two adaptive methods.

With Majority Vote the classification accuracy was
86.38%. As we expected, the documents that are correctly
classified by only one classifier can’t be correctly classified by

this method.
The SBED method obtains best results, growing up to

92.04% after 14 learning steps with 2.17% smaller than the
upper limit. Also this method is the fastest one because it
selects the first acceptable classifier and because the
computation cost is lowers. The last method (SBCOS) is the
most rigorous one because it finds the best component
classifier. As a consequence, the training time for SBCOS is
longer at an average of 21 minutes comparatively with SBED.

The goal of our ongoing work is to classify larger text data
sets (the complete Reuters database). Also we want to develop
a pre-classification of all documents, obtaining fewer samples
(using simple algorithms like Linear Vector Quantization or
Self Organizing Maps). After that we’ll use the obtained
samples as entry vectors for the already developed features
selection and classification methods.

An interesting natural extension of our work might be an
adaptation for Web mining applications, in order to extract
and categorized online news.

ACKNOWLEDGEMENTS
The first two authors would like to express thanks to

SIEMENS AG, CT IC MUNCHEN, Germany, especially to
Dr. h. c. Hartmut RAFFLER, for his generous support, that he
has provided in developing this work.

REFERENCES
[1] N. Dimitrova, L. Agnihotri and G. Wei, Video Classification Based on

HMM Using Text and Face, Proceedings of the European Conference on
Signal Processing, Finland, 2000

[2] G. Siyang, L. Quingrui, M. Lin, Meta-classifier in Text Classification,
http://www. comp.nus.edu.sg/~zhouyong/papers/cs5228project.pdf

Classification accuracy for different build of meta-classifier

82

84

86

88

90

92

94

96

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Steps

A
cc

ur
ac

y(
%

)

Upper Limit

Majority Vote

SBED

SBCOS

Fig. 1 Influence of approaches to build meta-classifier

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2999

[3] W.-H. Lin , A. Houptmann, News Video Classification Using SVM-
based Multimodal Classifier and Combination Strategies, 2003

[4] W.-H. Lin , R. Jin, A. Houptmann, A Meta-classification of Multimedia
Classifiers, International Workshop on Knowledge Discovery in
Multimedia and Complex Data, Taiwan, 2002

[5] B. Schoelkopf, A. Smola, “Learning with Kernels, Support Vector
Machines”, MIT Press, London, 2002.

[6] C. Nello, J. Swawe-Taylor, “An introduction to Support Vector
Machines”, Cambridge University Press, 2000.

[7] D. Morariu, L. Vintan, “A Better Correlation of the SVM kernel’s
Parameters”, Proceeding of the 5th RoEduNet International Conference,
Sibiu, June 2006.

[8] D. Morariu, L. Vintan, V. Tresp, Feature Selection Methods for an
Improved SVM Classifier, Proceedings of the 14th International
Conference on Computational and Information Science, pp. 83-89,
Prague, August 2006

[9] D. Morariu, L. Vintan, V. Tresp, Evolutionary Feature Selection for Text
Documents Using the SVM , Submitted to The 3rd International
Conference on Neural Computing and Patter Recognition, October 2006

[10] D. Morariu, “Classification and Clustering using Support Vector
Machine”, 2nd PhD Report, University „Lucian Blaga“ of Sibiu,
September, 2005, http://webspace.ulbsibiu.ro/ daniel.morariu/html/Docs
/Report2.pdf.

[11] Reuters Corpus: http://about.reuters.com/researchandstandards/corpus/.
Released in November 2000.

[12] S. Chakrabarti, “Mining the Web- Discovering Knowledge from
hypertext data”, Morgan Kaufmann Press, 2003.

