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Abstract—Software estimation accuracy is among the greatest 

challenges for software developers. This study aimed at building and 
evaluating a neuro-fuzzy model to estimate software projects 
development time. The forty-one modules developed from ten 
programs were used as dataset. Our proposed approach is compared 
with fuzzy logic and neural network model and Results show that the 
value of MMRE (Mean of Magnitude of Relative Error) applying 
neuro-fuzzy was substantially lower than MMRE applying fuzzy 
logic and neural network.  
 

Keywords—Artificial Neural Network, Fuzzy Logic, Neuro-
Fuzzy, Software Estimation  

I. INTRODUCTION 
ANY existing research papers have proposed various 
estimation techniques, but no single software 
development estimation technique is the best for all 

situations [1]. A careful comparison of the results of the 
several approaches is most likely to choose the best one and 
produce realistic estimates [2]. The neural network research 
started in the 1940s, and the fuzzy logic research started in the 
1960s, but the neuro-fuzzy research area is relatively new [3]. 
The objective of this paper is to present a feasible way of 
combining fuzzy logic and neural networks for achieving 
higher accuracy. 

Neural network techniques are based on the principle of 
learning from historical data, whereas fuzzy logic is a method 
used to make rational decisions in an environment of 
uncertainty and vagueness. However, fuzzy logic alone does 
not enable learning from the historical database of software 
projects. Once the concept of fuzzy logic is incorporated into 
neural network, the result is a neuro-fuzzy system that 
combines the advantages of both techniques [4]. A software 
tool (MATLAB 7.4) was used to process the fuzzy logic, 
neural network and neuro-fuzzy systems. 

The paper is organized as follows: Section 2 reviews some 
related work in fuzzy logic and neural network domain, 
section 3 discusses fuzzy logic approach for time estimation in 
software development, section 4 describes neural network 
techniques for time estimation, section 5 begins with a brief 
discussion of neuro-fuzzy model in general and this is 
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followed by comparison between three described approaches, 
finally section 6 offers conclusions and a recommendation for 
future research. 

II. RELATED WORK 
Estimation accuracy is largely affected by modeling 

accuracy [5]. Finding good models for software estimation is 
very critical for software engineering in bidding and planning. 
In the recent years many software estimation models have 
been developed [6], [7], [8], [9].  

López Martín et al. [6] proposed a fuzzy logic model for 
development time estimation. Ting su et al. [7] described an 
enhanced fuzzy logic model for the estimation of software 
development effort which had the similar capabilities as the 
previous fuzzy logic model in addition to enhancements in 
empirical accuracy in terms of MMRE. Abbas Heiat [8] used 
artificial neural network techniques like RBF (Radial Basis 
Function) and MLP (Multi-Layer Perceptron) for estimating 
software development effort. Furthermore, Xishi Huang et al. 
[9] developed a novel neuro-fuzzy Constructive Cost Model 
(COCOMO) for software cost estimation which uses the 
desirable features of a neuro-fuzzy approach, such as learning 
ability and good interpretability, in COCOMO model. 

III. FUZZY LOGIC APPROACH  
Since fuzzy logic foundation by Zadeh in 1965, it has been 

the subject of important investigations [10]. It is a 
mathematical tool for dealing with uncertainty and also it 
provides a technique to deal with imprecision and information 
granularity [11].  

 The purpose in this section is not to discuss fuzzy logic in 
depth, but rather to present these parts of the subject that are 
necessary for understanding of this paper and for comparing it 
with Neuro-Fuzzy model. 

Fuzzy logic offers a particularly convenient way to generate 
a keen mapping between input and output spaces thanks to 
fuzzy rules’ natural expression [12]. There are some major 
modules: first stage transformed the classification tables into a 
continuous classification, this process is called Fuzzification 
[13]. These are then processed in fuzzy domain by inference 
engine based on knowledge base (rule base and data base) 
supplied by domain experts [14]. Finally the process of 
translating back fuzzy numbers into single “real world” values 
is named Defuzzification [13].  

Here, the development time of forty-one modules and for 
each module, coupling (Dhama), complexity (McCabe), and 
lines of code metrics were registered, all programs were 
written in Pascal, hence, module categories belong to 
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procedures or functions. The development time of each of the 
forty-one modules were registered including five phases: 
requirements understanding, algorithm design, coding, 
compiling and testing. The statistics and a brief description 
related to each module are depicted in Table Ι which is 
prepared by Lopez-Martin et al. [6]. 
 

TABLE I 
MODULES DESCRIPTION AND METRICS 

 Module Description MC DC LOC DT 
(min) 

1 Calculates t value 1 0.25 4 13 
2 Inserts a new element in a 

linked 
list 

1 0.25 10 13 

3 Calculates a value according to 
normal distribution equation 

1 0.333 4 9 

4 Calculates the variance 2 0.083 10 15 
5 Generates range square root 2 0.111 23 15 
6 Determines both minimum and 

maximum values from a stored 
linked list 

2 0.125 9 15 

7 Turns each linked list value 
into its z value 

2 0.125 9 16 

8 Copies a list of values from a 
file to an array 

2 0.125 14 16 

9 Determines parity of a number 2 0.167 7 16 
10 Defines segment limits 2 0.167 8 18 
11 From two lists (X and Y), 

returns the product of all xi and 
yi values 

2 0.167 10 15 

12 Calculates a sum from a vector 
and its average 

2 0.167 10 15 

13 Calculates q values 2 0.167 10 18 
14 Generates the sum of a vector 

components 
2 0.2 10 13 

15 Calculates the sum of a vector 
values square 

2 0.2 10 14 

16 Calculates the average of the 
linked list values 

2 0.2 10 15 

17 Counts the number of lines of 
code including blanks and 
comments 

2 0.2 15 13 

18 Prints values non zero of a 
linked list 

2 0.25 10 12 

19 Stores values into a matrix 2 0.25 10 12 
20 Generates range square root 3 0.083 17 22 
21 Returns the number of 

elements in a linked list 
3 0.125 11 19 

22 Calculates the sum of odd 
segments (Simpson’s formula) 

3 0.125 15 18 

23 Calculates the sum of pair 
segments (Simpson’s formula) 

3 0.125 15 19 

24 Generates the standard 
deviation of the linked list 
values 

3 0.143 13 21 

25 Returns the sum of square roots 
of a list values 

3 0.143 14 20 

26 Prints a matrix 3 0.143 14 21 
27 Calculates the sum of odd 

segments (Simpson’s formula) 
3 0.143 15 19 

28 Calculates the sum of pair 
segments (Simpson’s formula) 

3 0.143 15 20 

29 Calculates the average of 
linked list values 

3 0.167 13 15 

30 Returns the sum of a list of 
values 

3 0.167 14 13 

31 Generates the standard 
deviation of linked list values 

3 0.2 18 19 

32 Prints a linked list 3 0.25 9 13 
33 Calculates gamma value (G) 3 0.25 12 12 
34 Calculates the average of 

vector 
components 

3 0.25 17 12 

35 Calculates the range standard 
deviation 

4 0.077 16 21 

36 Calculates beta 1 value 4 0.077 31 21 
37 Returns the product between 

values of two vectors and the 
number of these pairs 

4 0.111 16 19 

38 Counts commented lines 4 0.2 24 18 
39 Reduces final matrix 

(according to Gauss method) 
5 0.143 22 24 

40 Reduces a matrix (according to 
Gauss method) 

5 0.143 22 25 

41 Counts blank lines 5 0.2 22 18 
MC: McCabe Complexity, DC: Dhama Coupling, LOC: Lines of Code, DT: 

Development Time(minutes) 
 

Implementing a fuzzy system requires that the different 
categories of the different inputs be presented by fuzzy sets, 
which in turn is presented by membership functions. A natural 
membership function type that readily comes to mind is the 
triangular membership functions [15]. 

A triangular MF is a three-point (parameters) function, 
defined by minimum (a), maximum (c) and modal (b) values, 
that is MF(a, b, c) where a ≤ b ≤ c. Their scalar parameters (a, 
b, c) are defined as follows [2]: 
MF(x) = 0   if x < a 
MF(x) = 1   if x = b 
MF(x) = 0   if x > c 

Based on the correlation of the variables, fuzzy rules can be 
formulated. Correlation is the degree of relation between two 
pairs of variables which varies from -1.0 to +1.0. The equation 
of the Correlation Coefficient is the following [16]: 

2 2 2 2

[ ( . )] ( )( )

[ ( ) ( ) ][ ( ) ( ) ]
i i i i

i i i i

n X Y X Y
r

n X X n Y Y

−
=

− −
∑ ∑ ∑

∑ ∑ ∑ ∑
          (1) 

The result of computing Correlation as shows in Table ΙΙ is 
indicated that there is an acceptable correlation between 
development time (DT) and the next three metrics: McCabe 
complexity (MC), Dhama coupling (DC), and lines of code 
(LOC), because their absolute values are higher than 0.5 [6]. 
 

TABLE ΙΙ 
CORRELATION BETWEEN VARIABLES 

Pair r Pair r 

MC_DC -0.3860 DT_MC 0.7078 
MC_LOC 0.7653 DT_DC -0.7051 

DC_LOC -0.4346 DT_LOC 0.5827 

 
For example the absolute value of correlation between DT 

and DC is higher than 0.5, therefore if one of them be low 
another one should be low too. So by using Table ΙΙ, six rules 
are derived [6]: 
1. If Complexity is low and Size(LOC) is small then DT is low 
2. If  Complexity is average and Size(LOC) is medium then DT 
is average  
3. If  Complexity is high and Size(LOC) is big then DT is high 
4. If  Coupling is low then DT is low 
5. If  Coupling is average then DT is average 
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6. If  Coupling is high then DT is high 
 

 
(a). McCabe Complexity Plot (input) 

 
(b). Dhama Coupling Plot (input) 

 
(c). Physical Lines of Code Plot (input) 

 
(d). Development Time Plot (output) 

 
Fig. 1 Inputs and Output Fuzzy Plots 

 
By using triangular membership functions, input and output 

fuzzy membership functions are shown in Fig. 1. 

IV. NEURAL NETWORK MODEL  
In recent years, a number of studies have used neural 

networks in various stages of software development [13]. 
Artificial neural network are used in estimation due to its 
ability to learn from previous data. In addition, it has the 
ability to generalize from the training data set thus enabling it 
to produce acceptable result for previously unseen data [7]. 
Artificial neural networks can model complex non-linear 
relationships and approximate any measurable function so it is 
very useful in problems where there is a complex relationship 
between inputs and outputs [14], [9]. 

When looking at a neural network, it immediately comes to 
mind that activation functions are look like fuzzy membership 
function [3]. 

Generally the radial basis function networks enjoy faster 
convergence than back-propagation networks [3]. So Radial 
Basis Function (RBF) model was used here. There are many 
techniques for training a neural network. The main techniques 
employed by neural networks are supervised and unsupervised 
learning [8]. RBF is in supervised category and finds a surface 
that best fits to given training data. Supervised training works 
in much the same way as a human learns new skills, by 
showing the network a series of examples [8]. Dataset is 
randomly divided into two parts: 25 of them are for training 
and all of them are used for validation. By MATLAB 7.4, 
RBF network was created, data were normalized between 0 
and 1, and test data were applied into network. The results of 
this implementation are gathered in Table ΙΙΙ. 

V. NEURO-FUZZY SYSTEM  
The hybridization of neural networks and fuzzy logic is the 

basic idea behind the neuro-fuzzy system. Neuro-fuzzy 
hybridization is done in two ways [17]: fuzzy neural networks 
(FNN) and neuro-fuzzy systems (NFS). FNN is a neural 
network equipped with the capability of handling fuzzy 
information. NFS is a fuzzy system augmented by neural 
networks to enhance some characteristics like flexibility and 
adaptability [18], [19], [20]. This paper is based on the second 
approach. 
Here Takagi-Sugeno neuro-fuzzy system was used which 
makes use of a mixture of back propagation to learn the 
membership functions and least mean square estimation to 
determine the coefficients of the linear combination in the 
rule’s conclusions. The Takagi-Sugeno neuro-fuzzy system 
schema is depicted in Fig. 2 [21]: 
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Fig.  2 Takagi-Sugeno Neuro_Fuzzy system 

 
Perhaps the first integrated hybrid neuro-fuzzy model is 

ANFIS, and also due to Takagi-Sugeno rules implementation 
in ANFIS, it has lowest Root Mean Square Error (RMSE) 
among the other Neuro-Fuzzy models. So ANFIS was used 
here for implement neuro-fuzzy model and Its’ architecture is 
very similar to Fig. 2. 

In ANFIS, the adaptation (learning) process is only 
concerned with parameter level adaptation within fixed 
structures [21]. The objective of the parameter-learning phase 
is to adjust parameters of the fuzzy inference system (FIS) 
such that the error function during training dataset, reaches 
minimum or is less than a given threshold [22].  

When Gaussian membership functions were used, 
operationally ANFIS can be compared with a radial basis 
function network. Our model was just trained at 20 epochs, 
also the previous training and testing data were used. The 
detailed functioning of each layer is as follows [21]: layer1, 2, 
3 functions the same way as Mamdani FIS. Every node in 
layer 4 (rule strength normalization) calculates the ratio of i-th 
rule’s firing strength to the sum of all rules firing strength: 

1 2

, 1, 2 , ...i
i

ww i
w w

= =
+                                      (2) 

Every node in layer 5 (rule consequent layer) is with a node 
function: 

1 2( )i i i i i iw f w p x q x r= + +                                     (3) 

Where iw  is the output of layer 4, and { }iii rqp ,,  is the 
parameter set. A well-established way to determine the 
consequent parameters is using the least means squares 
algorithm. The single node in layer 6 (rule inference layer) 
computes the overall output as the summation of all incoming 
signals: 

i ii
i i

i ii

w f
O vera ll ou tpu t w f

w
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                         (4) 

By MATLAB, the ANFIS structure with type: ‘sugeno’, 
and method: ‘prod’, or method: ‘max’, impMethod: ‘prod’ and 

aggMethod: ‘max’ was implemented and the results are given 
at Table ΙΙΙ. 

The Validation results of our experiments are assessed by 
Mean Magnitude Relative Error (MMRE) as estimation 
accuracy. MMRE is defined as [23]: 

1 1

| |1 1( )
i n i n

ii
i

i ii

T TM M R E M R E
n T n

= =

= =

−
= =∑ ∑     (5) 

Where there are n projects; iT  is the Actual Time, and iT is 
the Predicted Time. 
 

TABLE ΙΙΙ 
THE MRE AND MMRE COMPARISON BETWEEN ESTIMATION MODELS 

Fuzzy Logic Neural Network Neuro-Fuzzy Module Actual 
DT MRE MRE MRE 

1 13 0.0000 0.1010 0.0000 
2 13 0.0000 0.0000 0.0000 
3 9 0.0167 0.0764 0.0000 
4 15 0.1200 0.0616 0.0000 
5 15 0.1867 0.0112 0.0714 
6 15 0.0867 0.1118 0.0000 
7 16 0.0188 0.1098 0.0000 
8 16 0.0813 0.1363 0.1667 
9 16 0.0250 0.2425 0.2222 
10 18 0.1389 0.4339 0.2500 
11 15 0.0400 0.0440 0.1667 
12 15 0.0400 0.2247 0.0000 
13 18 0.1333 0.0475 0.0000 
14 13 0.0769 0.0096 0.0000 
15 14 0.0000 0.1896 0.0000 
16 15 0.0667 0.1037 0.0500 
17 13 0.1615 0.1008 0.0455 
18 12 0.0000 0.0454 0.0500 
19 12 0.0000 0.3910 0.0000 
20 22 0.2000 0.2221 0.0000 
21 19 0.0737 0.1310 0.0000 
22 18 0.0222 0.0374 0.0000 
23 19 0.0737 0.1268 0.0000 
24 21 0.1762 0.0442 0.0333 
25 20 0.1350 0.0760 0.0000 
26 21 0.1762 0.6917 0.0000 
27 19 0.0947 0.1536 0.0833 
28 20 0.1350 0.2796 0.0001 
29 15 0.1133 0.1363 0.1667 
30 13 0.2846 0.1471 0.0000 
31 19 0.2000 0.0475 0.0000 
32 13 0.0000 0.2263 0.0556 
33 12 0.0833 0.2279 0.0000 
34 12 0.0833 0.1758 0.0417 
35 21 0.1905 0.0497 0.0455 
36 21 0.1048 1.2159 0.0000 
37 19 0.0947 0.5766 0.0000 
38 18 0.1556 0.0879 0.0000 
39 24 0.2792 0.8469 0.0000 
40 25 0.3080 0.2495 0.0000 
41 18 0.1556 0.1039 0.0313 

 Fuzzy Logic Neural Network Neuro -Fuzzy 
MMRE 0.1057 0.202305 0.036098 

VI. CONCLUSIONS AND FUTURE RESEARCH  
The paper suggests a new approach for estimating of 

software projects development time. The major difference 
between our work and previous works is that neuro-fuzzy 
technique is used for software development time estimation 
and then it’s validated with gathered data. Here, the 
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advantages of neural network and fuzzy logic are combined 
and learning ability and good generalization are obtained. The 
main benefit of this model is its good interpretability by using 
the fuzzy rules and another great advantage of this research is 
that it can put together expert knowledge (fuzzy rules) project 
data and the learning ability of neural network model into one 
general framework that may have a wide range of applicability 
in software estimation. The results showed that neuro-fuzzy 
system is much better than two other mentioned methods 
(fuzzy logic and neural network). 

In order to achieve more accurate estimation, voting the 
estimated values of several techniques and combine their 
results maybe be useful. 
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