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Abstract—This paper presents the Function Approximation 

Technique (FAT) based adaptive impedance control for a robotic 

finger. The force based impedance control is developed so that the 

robotic finger tracks the desired force while following the reference 

position trajectory, under unknown environment position and 

uncertainties in finger parameters. The control strategy is divided into 

two phases, which are the free and contact phases. Force error 

feedback is utilized in updating the uncertain environment position 

during contact phase. Computer simulations results are presented to 

demonstrate the effectiveness of the proposed technique. 

 

Keywords—Adaptive impedance control, force based impedance 

control, force control, Function Approximation Technique (FAT), 

unknown environment position. 

I. INTRODUCTION 

ORCE control plays an important role when a robot 

end-effector is in contact with the environment. In force 

control, is it desired that the end-effector maintains a desired 

force while tracking a reference position trajectory. Some 

applications of force control include deburring, grinding, 

massaging and object manipulation. 

Impedance control is one of the main force control methods. 

Impedance function is realized by regulating the relationship 

between force and position/ velocity error [1]. The advantage 

of impedance control is it provides a uniform framework for 

controlling the robot both in free and contact spaces [2].  

In impedance control, a reference position to produce the 

desired contact force can be determined if the location and 

stiffness of the environment are known exactly [2]. However, 

in some practical cases, the environment parameters are not 

known precisely.  

Huang and Chien [3] proposed FAT based adaptive 

impedance controller for a flexible-joint electrically driven 

robots. The method is able to estimate time-varying 

uncertainties present in the system dynamics.  

Therefore, this study proposes FAT based impedance control 

for controlling a robotic finger while operating under imprecise 

knowledge of the environment position, including the shape of 

the object that is in contact with the finger. The force error 

feedback is utilized in updating the uncertain environment 

position in the adaptive control law. The method in [4] is 

applied to cater for the uncertainties in the plant parameters. 

This paper is organized as follows; review on the finger 

mechanism and its dynamic modeling are presented in Section 

II. The FAT based adaptive impedance control for unknown 

environment with plant parameter uncertainties are described in 

Section III. Simulation results are discussed in Section IV and 

finally conclusions are drawn in Section V. 
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II.  FINGER MECHANISM AND DYNAMIC MODEL 

The robotic finger is made of seven bar linkages with two 

degree of freedom (DOF) as shown in Fig. 1. The proximal 

phalanx is fixed, while the middle and distal phalanges are able 

to rotate. The mechanism is actuated by two motors which are 

Motor 2 and Motor s as shown in Fig. 1. Motor 2 is responsible 

for the angular displacement of the whole finger and Motor s 

actuates the slider mechanism in the middle phalanx to turn the 

distal phalanx. In this study, it is assumed that the angular 

displacement between link 4 and link 5 are constants or in other 

words, link 4 and link 5 are coupled. 

Since the input torques from the Motor 2 and Motor s are 

provided at link 2 and the lead screw of the slider mechanism 

respectively, the angular displacement of link 2, 2θ and the 

angular displacement of the lead screw in the slider 

mechanism, sθ are chosen as the generalized coordinates. 

Using Lagrange equation, the mathematical model describing 

the robotic finger motion can be represented as [5]  
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iθ  is the angular displacement of ith link, 
iθɺ is the angular 

velocity of ith link, 
iθɺɺ  is the angular acceleration of ith link, 

im  is the mass of ith link, 
rm  is the mass of slider nut, 

iJ  is 

the moment of inertia of ith link, 
rJ  is the moment of inertia of 

slider nut, P  is the lead screw pitch, ,ci ciX Y are the x and y 

displacement of ith link’s centroid from its origin respectively, 

2τ  and sτ  are the driving  torques from Motor 2 and Motor s 

respectively, 2eτ  and esτ  are the external disturbance torques 

at link 2 and lead screw of the slider mechanism respectively. 

Fig. 2 describes the linkages’ parameters used in the modeling.  

The dynamic model of the finger can be rewritten in the 

Cartesian space as 

 

( ) ( ) ( ) ( ) ( ),x x x eM X X t C X X X t G X F F+ + = −ɺɺ ɺ ɺ ɺ      (5) 

 

where ,X Xɺ and Xɺɺ are the 2 1× vector of position, velocity 

and acceleration respectively, ( )xM X is the 2 2× symmetric 

positive definite inertia matrix, ( ),xC X Xɺ  is the 2 1×  vector 

of Coriolis/ Centrifugal forces, ( )xG X  is the  2 1×  vector of 

gravitational force,  F  is the 2 1× vector of control input 

from the actuators and eF  is the 2 1× vector of force exerted 

by the robotic finger on the environment.  

2eτ  and esτ are related to eF by the finger’s2 2×  Jacobian 

matrix,  
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J is assumed to be nonsingular in the finger’s workspace. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Robotic finger parameters 

III. FAT BASED ADAPTIVE IMPEDANCE CONTROL 

A. Review on Function Approximation Technique (FAT)  

When a time varying uncertainty exits in a system, 

traditional adaptive scheme can not be applied in controlling 

the system [3]. As an alternative, the FAT based strategy can be 

adopted to solve this problem.  

The basic idea in FAT method is to represent the time 

varying uncertainties as orthogonal functions [6], consisting of 

summation of the multiplication of constant weighting matrices 

and time varying of basis function  matrices. Since the 

weighting matrices are constant, the update laws can be easily 

found by proper selection of Lyapunov or Lyapunov-like 

functions. 

Some of the orthogonal functions that can be utilized in FAT 

include Taylor polynomials, Chebyshev polynomials, 

Legendre polynomial, Hermite polynomials, Laguerre 

polynomials, Bessel polynomials and Fourier series [6]. 

For example, an unknown bounded period function, 

( )f xδ with period 2T can be expanded using the Fourier 

series [6] 
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The function, ( )f xδ  can be approximated and rewritten as  

( )f f fx W Zδ =                                                                      (9) 
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Fig. 1 Robotic finger mechanism 
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and M is the maximum number of the summation terms, 

n chosen in (8).  Similarly, the estimation of the function,  

( )ˆ
f xδ  can be represented as 

( )ˆ ˆ
f f f fx W Zδ ε= +                                                              (12) 

where ˆ
fW  is the estimation of fW  and fε  is the 

approximation error matrices. 

 Since ˆ
fW  is constant, the update laws for the parameter can 

be obtained easily by adaptive update law with a proper 

selection of the Lyapunov or Lyapunov-like function. However, 

it is very important that the valid range of the orthogonal 

functions to be orthonormal is ensured, to guarantee the 

effectiveness of the FAT strategy [6]. 

B. FAT based Adaptive Impedance Control for Unknown 

Environment Position 

The main objective of the control strategy is to drive the 

robotic finger to exert the desired force on the environment or 

object under uncertain environment position. The uncertainty 

may arise due to the lack of information of the environment 

position, [1] or the distance that it needs to move into the object 

to exert the desired force [2]. 

This study proposes two phases control law for the force 

controllable direction, which are the free space phase and 

contact phase.  

In non-contact or free space, the robotic finger is not in 

contact and is moving towards the environment. The target 

impedance in this phase governed by the standard force based 

impedance control for N DOF robot, 

d d d fM E B E K E E+ + = −ɺɺ ɺ ,            (13) 

E  and 
fE  are the position and force error respectively, 

described by  

dE X X= −                       (14) 

f e dE F F= −                                                                        (15) 

where dX  is the 1N × vector of the reference position for the 

robot end-effector and 
dF is the 1N × vector of desired force 

respectively. dM , dB  and dK  are the N N× diagonal 

symmetric positive definite desired inertia, damping and 

stiffness matrices which can be specified by the designer. The 

same target impedance is applied for position controllable 

direction for both free and contact phases. 

In contact space, the robotic finger interacts with the 

environment. Since the environment position or object shape 

may be unknown in practical [1], a new adaptive control with 

compensators is proposed as  

 

( ) ( ) ( )1 2 3' 'd d f e dB E K E K F F+ Ω + + Ω + Ω = − −ɺ       (16) 

 

where the compensator terms can be described as 
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1 2,Ω Ω  and 3Ω  are the compensators related to the velocity 

error, position error and force respectively, ek is the 

environment stiffness, fK  is N N×  diagonal symmetric 

positive definite force error factor matrix. 

In target impedance (16), the tracking error is replace by the 

inaccurate estimated environment position, 
'E which can be 

represented mathematically as  

 
'

e e xeX X δ= +                                                                      (20) 

 

 where eX is the unknown actual environment position and 

xeδ  is inaccuracy in  the estimation.  

Although the precise knowledge of object stiffness may also 

be unknown in practice, it is assumed to be known in advance at 

this stage of study. 

For simplicity, consider that force is applied in one direction 

only and let  
' ' ', , , , , , ,d d f e db k k e e x x fɺ  and ef  be the 

elements of 
' ' ', , , , , , ,d d f e e dB K K E E X X Fɺ  and eF .  

Therefore, (16) can be rewritten as 

 

( ) ( ) ( )1 2 3' 'd d f e db e k e k f f+ Ω + + Ω + Ω = − −ɺ                (21) 

 

 FAT can be utilized to approximate not only a flat 

environment, but also a varying function or non-flat 

environment. This can be done by representing the inaccuracy 

in the environment estimation and its true value as function of 

time, as 

 

ˆ ˆ ,xe xe xe xe xe xexe
W Z W Zδδ ε δ= + =ɺ

ɺ ɺɺ ɺ          (22) 

ˆ ˆ , ,xe xe xe xe xe xe xeW Z W Zδδ ε δ= + =                       (23) 

Where xeW is the true value of weighting matrices,  ˆ
xeW  is the 
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value to be estimated by adaptive law, xeZ  and xeZɺ  are 

matrices the basis functions, 
xeδε ɺ and xeδε  are the 

approximation error matrices which are assumed to be zero. 

 

Substituting (22) and (23) into (21),  
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where 

 

ˆ
xe xe xeW W W= −ɶ                 (25) 

 

From the environment model, the force, ef  can be described as  

 

( )e e ef k x x= −                 (26) 

 

Rearranging the equation,  
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x x
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e
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x x
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Substituting (27) into (24) yields 

 

( ) ( )

( )
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Replacing the force error in (28) as fe ,  

 

( )
0

d f d e f f
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b k Z W k k Z W
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− − =
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The update law for ˆ
xeW can be chosen by defining the 

Lyapunov-like function, 

 

( )1 1

2 2

T T

f d f xe xe xeV e b e W Q W= + ɶ ɶ                       (30) 

 

where xeQ  is a diagonal symmetric positive definite constant 

matrix. 

 

Differentiating (30),  

( )ˆT T

f d f xe xe xeV e b e Tr W Q W= − ɺɺ ɶɺ                        (31) 

 

Substitute  
d fb eɺ  from (29), 
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From (32), the update law can be set as 

  

( )1ˆ
xe xe d e xe d e xe fW Q B k Z K k Z e−= +ɺ ɺ                                  (33) 

 

Substituting (33) into  (32), 

 

( )T

f d e fV e K k e= − +ɺ                               (34) 

 

Since V is p d. and 0V ≤ɺ  as can be seen from (30) and (34) 

respectively, the force error fe and estimated parameter, 
xeWɶ  

are bounded. Taking the derivative of Vɺ , 
 

( )2 T

f d e fV e k k e= − +ɺɺ ɺ                           (35) 

 

Substituting (29) into (35) it can be observed that Vɺɺ  is also 
bounded. From Barbalat theory,   

 

lim 0
t
V

→∞
=ɺ                                                (36) 

 

which means that 

 

lim 0f

t

e
→∞

=                                                (37) 

Therefore, provided that the target impedance is achieved, 

with the adaptive impedance control law (21) and the updating 

law (33) for the robotic finger (5), the actual force exerted on 

the environment converges to the desired value, e dF F=  as 

t → ∞ . 

C. Impedance Control Strategy for Uncertainties in Dynamic 

Model 

The impedance control law as in [4] is applied to cater for the 

uncertainties in the plant parameters. In this control strategy, 

the following properties are utilized [4] 

i.  ( )xM x  is symmetric and positive definite. 

ii.    ( ) ( )2 ,x xC x x x M x− ɺɺ ɺ  is a skew- symmetric matrix. 
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iii.  The plant uncertainties is bounded by a known bound 

( ) ( ) ( ), , ,x M x C x GM X k C X X k X G X k≤ ≤ ≤ɺ  

where , ,M C Gk k k  are positive scalars.  

 

The control input is governed by 

 

s f eF F F F= + +                 (38) 

 

where 

( )1 2 3s r r

z

Z
F K X K X X K

Z δ
 

= − + +  + 
ɺɺ ɺ ɺ           (39) 

fF KZ= −                                                                                (40) 

 

K  and zδ are N N× positive definite diagonal matrices. 

2K and 3K  are also N N× positive definite diagonal 

matrices, with the elements 

 

1, 2, 3,, , , 1, 2....,i M i C i Gk k k k k k i N≥ ≥ ≥ =                   

(41) 

 

The proof for this can be found in [4]. 

The reference velocity, rXɺ  is related to the impedance error 

by the equation,  

rZ X X= −ɺ ɺ ,                    (42) 

and is different for each phase. For position controllable 

direction in both phases and force controllable direction during 

non-contact mode, from (13), the impedance error can be 

written as 

1 1 1

d d d d d fW E M B E M K E M E− − −= + + +ɺɺ ɺ       (43) 

Defining Z  in this phase as [4] 

flZ E E Eλ= + +ɺ                 (44) 

W  can be rewritten as  

W Z Zγ= +ɺ                    (45) 

where 
1

fl fl d fE E M Eγ −+ =ɺ ,  λ  and γ  are positive definite 

matrices chosen such that  
1 1

d d d dM B M Kλ γ λ λγ− −+ = + =ɺ .       (46) 

 

Therefore, the control objective is this phase is to drive Z  to 

zero, so that the impedance error converges to zero [4].  In this 

case, from (42) and (48), rXɺ  can be described as  

r d flX X E Eλ= − −ɺ ɺ                                                               (47) 

During contact phase, from (16), the impedance error for the 

force controllable direction during non-contact mode is 

governed by,  

 

( )' 1 ' 1 1

1 2 3d d d d f fZ E B K E B B K E− − −= + Ω + + Ω + Ω +ɺ  (48) 

From ( 42) and (48 ), rXɺ  in force controllable direction during 

non-contact mode is be written as  

( )' 1 ' 1 1

1 2 3r e d d d d f fX X B K E B B K E− − −= − Ω − + Ω − Ω −ɺ ɺ (49) 

IV. RESULTS 

Simulation has been carried out to investigate the 

effectiveness of the proposed method. The robotic finger is 

desired to exert a constant desired force, dF 20 N normal to the 

surface of the object, in x direction while moving along y 

direction on a sinusoidal shaped object. The initial position of 

the robot is defined to be ( (0), (0)) (3.4,1.5)x y = . The 

simulation time is set to be 0.58 and the object stiffness is set to 

be 40000N/m. In the beginning, the robotic finger is desired to 

move towards the object and only become in contact with the 

object after 0.08 seconds. Although the interaction with the 

environment may occur at any point along the distal phalanx 

surface, it is assumed that the contact occur at the end of the 

phalanx for simplicity. It is assumed in the simulation that the 

robotic finger contains 20% of parameter uncertainties from the 

true values. The actual values of the parameter can be found in 

[5]. The true object position or shape is assumed to be unknown 

and is estimated as a constant. The value of xeδ  has been 

approximated by the first 5 terms of Fourier series (n=2) and 

the controller gains are selected as the following 

 

1 2

3

2 2 2 2 2

[4200,500], [10,50], [20,20],

[7000,4000], [1,1], [1,1],

[1270,110], [3000,3000], [10,0],

ˆ (0) [0.6 10 0.075 10 0.075 10 0.075 10 0.075 10

z d

d d f

xe

K diag K diag K diag

K diag diag M diag

B diag K diag K diag

W

δ

− − − − −

= = =

= = =

= = =

= × × × × ×
8 8 8 8 8

]

[10 10 ,0.05 10 ,0.025 10 ,1 10 ,0.05 10 ]xeQ diag= × × × × ×
 Figures 3-7 illustrates the simulation results of the proposed 

technique with the above control parameters and setting. From 

Figures 3-4 can be observed that the control system 

successfully achieve the target impedance in both position and 

force controllable directions. The force tracking gives a 

satisfactory performance in which the force error is small as can 

be seen from Fig. 5. Fig. 6 shows the position tracking of the 

finger. It can be observed from Fig. 7 that the update law of the 

adaptive control strategy has successfully approximated the 

true value of xeδ . The simulation results prove that the 

proposed technique is successful in controlling the robotic 

system to exert the desired for under unknown environment 

position and uncertain plant parameter conditions. 
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V. CONCLUSION 

An adaptive impedance control based on Function 

Approximation Technique (FAT) for a robotic finger operating 

under uncertain environment position and plant parameter 

based is presented in this paper. The target impedance during 

contact mode for the force controllable direction has been 

modified by including compensators to cater for the imprecise 

information of the environment position. The environment 

parameter uncertainty has been expressed using FAT and the 

update law for the adaptive scheme has been obtained using 

Lyapunov stability theory.  The simulation results shows that 

the control system has successfully force the robotic finger to 

exert the desired force while following the reference position 

trajectory. Future works involves the investigation on the FAT 

based adaptive impedance control for unknown environment or 

object stiffness.  
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Fig. 5 Force tracking performance 

 

Fig. 6 Position tracking performance 

 

Fig. 7 Approximation of xeδ  


