
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

389

A Formal Approach for Proof Constructions in
Cryptography

Markus Kaiser, Johannes Buchmann

Abstract— In this article we explore the application of a formal
proof system to verification problems in cryptography. Cryptographic
properties concerning correctness or security of some cryptographic
algorithms are of great interest. Beside some basic lemmata, we
explore an implementation of a complex function that is used in
cryptography. More precisely, we describe formal properties of this
implementation that we computer prove. We describe formalized
probability distributions (σ-algebras, probability spaces and condi-
tional probabilities). These are given in the formal language of the
formal proof system Isabelle/HOL. Moreover, we computer prove
Bayes’ Formula. Besides, we describe an application of the presented
formalized probability distributions to cryptography. Furthermore,
this article shows that computer proofs of complex cryptographic
functions are possible by presenting an implementation of the Miller-
Rabin primality test that admits formal verification. Our achievements
are a step towards computer verification of cryptographic primitives.
They describe a basis for computer verification in cryptography.
Computer verification can be applied to further problems in crypto-
graphic research, if the corresponding basic mathematical knowledge
is available in a database.

Keywords— prime numbers, primality tests, (conditional) proba-
bility distributions, formal proof system, higher-order logic, formal
verification, Bayes’ Formula, Miller-Rabin primality test.

I. INTRODUCTION

MATHEMATICAL proofs are often complex and hard to
verify by their readers. Consequently, the application

of formal proof systems are a useful approach in the area
of verification. Formal and computer verification augment
the traditional concept of software engineering by providing
techniques that guarantee trustiness as well as correctness of
software systems in a mathematical way. There are many
possible applications of formal and computer verification
like automotive, medical technology, information technology
security and cryptography.

In cryptographic research, the concept of provable security
is of great interest to ensure, whether a given cryptographic
primitive can be regarded as secure, or its behaviour is not as
intended. During the last ten years, the relevance of security
proofs increased rapidly. Great improvements in that direction
were achieved, e.g. by proving the Optimal Asymmetric En-
cryption Padding (OAEP) for the case of RSA ([4]), which
is widely used in practice. Finding a proof of an encryption
scheme is in general done by considering the computational
complexity of the regarded cryptographic primitive. Proof
constructions in the complexity theoretic approach consider
reductions from the problem of breaking a cryptographic

The authors are with the Technische Universität Darmstadt, 64289 Darm-
stadt, Germany. This work was partially funded by the German Federal
Ministry of Education and Technology (BMBF) in the framework of the
Verisoft project under grant 01 IS C38. The responsibility for this article
lies with the authors.

primitive to the underlying (probably) hard problem. These
proof constructions are typically made by human work. Con-
sequently, a proof about security of a cryptographic primitive
may contain some incorrectness. An example of this conse-
quence (with respect to OAEP) was described in [8].

Another direction in cryptographic verification is the formal
approach that can be applied to protocol verification. With
respect to this view on proofs, cryptographic operations are
handeled as perfect cryptographic operations. Consequently,
this approach can not be used to prove a cryptographic
primitive secure. But proof constructions with respect to the
formal view can gain from computer support that is possible,
for example by using a formal proof system.

A. Idea

Our idea related to the above described problem is to
construct proofs of cryptographic primitives like encryption
schemes in the complexity theoretic approach with computer
support. In this case, formal computational complexity and
formal probability theory has to be studied. For this purpose,
we use the proof assistant Isabelle/HOL, which is successfully
applied in the Verisoft project 1.

B. Contents

In this article, we describe formalized probability distri-
butions (σ-algebras, probability spaces and conditional prob-
abilities). These are given in the formal language of the
formal proof system Isabelle/HOL. Moreover, we computer
prove (a formalized version of) Bayes’ Formula. Besides we
describe an application of the presented formalized probability
distributions to cryptography.

The correctness of the implementation of cryptographic
functions such as encryption and digital signature is crucial
for the security of computer systems. But in general, such
functions are very complex which makes formal proofs very
hard. This article shows that computer proofs of complex
cryptographic functions are possible by presenting an imple-
mentation of the Miller-Rabin primality test that admits formal
verification. This test is a key ingredient of RSA and DSA
key generation. We describe its computer verification with
Isabelle/HOL. More precisely, it is possible to formally prove

k prime, x < k, gcd(x, k) = 1 =⇒ prim(x, k) = 1,

and

All primality conditions hold for k, x ⇔ prim(x, k) = 1.

1Verisoft is a German industrial research project, where formal mathemat-
ics, as well as computer science are applied to engineering.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

390

Fig. 1. Cryptography and Formal Verification

for an implementation prim. Besides, this implementation
will be part of a fully verified cryptography client.

In the remaining part of this paper, we give a computer
proven version of Bayes’ Formula and we show how a formal
proof system can be used to prove the correctness of an
implementation of a primality test. As a result, a verified
applicable function and formally proven properties, that extend
the used database, are received. For this purpose, we give a
new functional/logical description (and implementation) of the
well known Miller-Rabin primality test. This description is
written down and (interactively) verified in the formal proof
language of Isabelle/HOL. Moreover, this implementation can
be integrated into a cryptographic client that is implemented
and verified in the used formal proof language.

Altogether we prove that formal verification with computer
support of cryptographic relevant algorithms improves crypto-
graphic practice by providing correct implementations, as well
as cryptographic research by extending a formal database for
the purpose of cryptography. Both aspects are illustrated below
(Figure 1).

C. Overview

This paper is organized as follows: We start in II with a
description of the used formal proof system. In III we explore
Bayes’ Formula with a formal proof system, and in IV we
apply formalized probabilities in cryptography. Moreover, in
V we give some mathematical definitions, that describe a
basis of a formal description and verification of the Miller-
Rabin algorithm. A formal verification of the Miller-Rabin
algorithm is described in VI. Besides, this paper contains
formal definitions of functions describing the Miller-Rabin
algorithm, computer verified properties of these functions, and

Formal Frame

Properties

Formal Basis

(Logic, Functional Programming)

=⇒ Computer
=⇒ (formally) verified properties

Fig. 2. Construction pattern in Isabelle/HOL described in II-B

further explanations. In VII some conclusions, as well as some
comments on future work are given.

II. FORMAL FRAME

A formal frame usually provides a formal language where
formal objects, as well as relations between these objects
formally are described. That means, a formal property can
be proven by using formally defined proof constructions.
Consequently, a formal proof provides a clear structure that
can be analyzed to minimize the number of errors. UML,
Petri-nets, automata theory or logic are examples for formal
frameworks used in computer science.

A. Formal Proof Systems

Formal proof systems provide computer support for formal
verification. But the correctnes of a formal proof using a
formal proof system relies on the correctness of the applied
computer system. A formal proof system works on automated
or interactive proof constructions. In the following, the inter-
active formal proof system Isabelle/HOL is described.

B. The Isabelle System

In the following, we give a short description of the verifi-
cation tool Isabelle/HOL. For the reason of a better under-
standing of our formal version of (conditional) probability
distributions, Bayes’ Formula, cryptographic application of
probability, and implemented version of the Miller-Rabin
algorithm, which are formulated and verified in the formal
language of Isabelle/HOL, we want to explain the main
structures of the Isabelle proof system. It is a proof assistant
for higher-order logic, which can be used for interactive proof
constructions, formal specifications, as well as verification in
higher-order logic and functional programming.

The formal language that consists of higher-order logic and
functional programming, is used to give definitions and lem-
mata, which are based on a large database. These definitions
and (proven) lemmata can be used to prove further lemmata
and theorems, which results in an augmented data base for the
purpose of building up new theories (compare to Figure II-B).

More information about Isabelle/HOL (that is successfully
applied in the Verisoft project (http://www.verisoft.de)) are

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

391

given in [7], which describes constructions with this tool.
A further useful reference is [9]. There, parts of the large
database are mapped. Besides [9] contains other references
about Isabelle/HOL.

III. FORMAL PROBABILITY THEORY AND BAYES’
FORMULA

In this part some fundamental definitions and properties
about probability distributions are described. These definitions
and properties are often necessary for proofs in the area of
provable security. Below, we present a formal description of
the uniform distribution. Furthermore we describe formalized
probability distibutions in general, and properties of probabil-
ity distributions, which are needed to formally prove a useful
lemma for the purpose of cryptography (Section IV).

A. Introduction

In the following, we give a computer proven version of
Bayes’ Formula that is formalized in the formal proof language
of the used formal proof system. Bayes’ Formula is a useful
lemma to compute probabilities (for example computation of
probabilities in cryptography). That means, a formalized ver-
sion of this lemma is useful for formal proofs in cryptography.

In order to computer prove Bayes’ Formula we explore
formal definitions of basic mathematical concepts (σ-algebra,
probability space, conditional probability).

Review: A probability space (Ω,A, P) is built up of a set
Ω (set of results), a σ-algebra A of Ω (system of possible
events) and a probability distribution P : Ω → [0, 1]. A σ-
algebra A of Ω is a system of carriers from Ω (A ⊆ P(Ω)).
In the following these components of a probability space (i.e.
their formal description) are presented (compare [1], [3], [5],
[6] for more mathematical background).

B. Classical Probability Theory

The following lines contain a description of the uniform
distribution and its formal specification in the proof language
of Isabelle/HOL.

1) The Uniform Distribution: The uniform distribution P :
P(Ω) → [0, 1] is given as follows,

P (A) = |A|
|Ω| ,

A ⊆ Ω, and Ω is a finite non-empty set, i.e. (Ω,P(Ω), P)
is the corresponding probability space.

For a given probability space (Ω,P(Ω), P) many properties
are well known and are well described in the literature about
probability theory. But verification of corresponding formal
properties needs further investigation.

2) Formal Specification: The uniform distribution and its
properties are well known. As mentioned before, the main
reason for its presentation in this aricle is to give a formalized
version of the uniform distribution and some of its properties.

This formal specification given in the proof language of
Isabelle/HOL is based on a function prb representing the
uniform distribution. A function in this proof language is
declarated as constant with arguments of given datatypes.
Moreover, a function can be defined in a mathematical way.

consts
prb :: ” ’a set => ’a set => real”

defs
prb def: ”prb E A == real (card A) / real (card E)”;

Besides the datatype real representing the real numbers,
there is a function real, which converts an argument of a
type describing natural numbers to the type representing real
numbers. The function card returns the cardinality of its
argument of type set.

In addition to this definition of the uniform distribution,
we formalized and proved several properties of the uniform
distribution within the proof language of Isabelle/HOL. The
verification of these properties needed further proven proper-
ties, e.g. properties about real numbers or sets.

C. Axiomatic Probability Theory

Below our formalized version of some fundamental def-
initions, lemmata and theorems from probability theory is
described. This formal description is given in a mathematical
notation, furthermore examples given in the Isabelle proof
language are added.

The following formal description of a σ-algebra, probability
space, conditional probability and some related properties are
based on the Isabelle theory Main, and Isabelle theories about
real numbers and sets, respectively. These Isabelle theories
contain many basic properties about number theory, real
numbers and sets.

1) Probability Distributions: We formalized a σ-algebra A
of a set E as a predicate sigma algebra with a set of a fixed
type and a set of sets of the same type as arguments. The
declaration and definition of this predicate (constant) in the
formal language of the Isabelle system is given as follows.

consts sigma algebra :: ”[’a set, ’a set set] => bool”;

defs
sigma algebra def:
” sigma algebra E A == E : A ∧ (ALL K : A. E-K : A)
∧ (ALL B. ALL (i::nat). (B i) : A −→ (

⋃

i. B i) : A)”;

This constant describes a predicate, which holds, if and only
if the second argument A is a σ-algebra of the set E (first
argument).

Moreover, we described a probability space through the
declaration and definition of another predicate.

consts
pr space :: ”[’a set, ’a set set, (’a set => real)] => bool”;

defs
pr space def:
”pr space E F Pr == (sigma algebra E F ∧ E �= {}
∧ (ALL A : F. 0 ≤ (Pr A))
∧ (Pr E) = 1 ∧ (ALL A : F. ALL B : F. ((A ∩ B = {})
−→ (Pr (A ∪ B)) = (Pr A) + (Pr B))))”;

This predicate holds, if and only if its arguments form a
probability space.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

392

Besides we formalized the term of conditional probability
in the formal language of Isabelle. Therefore the following
predicate describes conditional probabilities.

consts cond pr :: ”[’a set, ’a set set, (’a set => real),
([’a set, ’a set] => real)] => bool”;

defs
cond pr def:
”cond pr E Alg Pr CoPr == pr space E Alg Pr
∧ (ALL A : Alg. ALL Z : Alg. 0 < Pr Z
−→ CoPr A Z = Pr (A ∩ Z) / Pr Z)”;

D. Fundamental Lemmata and Bayes’ Formula

In the following fundamental lemmata about probability
distributions and our version of Bayes’ Formula are presented.

1) Fundamental Lemmata: Because our aim of formalizing
σ-algebras, probability distributions and conditional probabil-
ities was to build up a data base of useful (proven) properties
for their application in proofs about cryptography, we for-
mulated and proved fundamental lemmata about probability
spaces. Our formal definition of a predicate describing a
probability space is based on a formal definiton of a σ-algebra,
i.e. formal proofs about probability spaces need lemmata
about σ-algebras. Consequently, we formulated and proved the
needed properties.

Example:

A σ-algebra of E, A0 ∈ A, A1 ∈ A =⇒ A1 \ A0 ∈ A.

In the proof language of Isabelle this property is formalized
as follows.

lemma ”[| sigma algebra E A; A0 ∈ A; A1 ∈ A |] ==>

(A1 - A0) ∈ A”;

With this lemma and further lemmata we were able to prove
fundamental properties of probability distributions. While
some of these properties are formal consequences of our
definition of a probability space, the others need more care
to be proven formally. In the lines below a formal description
of these properties within the proof language of Isabelle is
given.

lemma ”[| pr space E A Pr; A0 ∈ A |] ==> Pr (E-A0)”;

lemma ”[| pr space E A Pr; A0 ∈ A |] ==> Pr A0 ≤ 1”;

lemma ” pr space E A Pr ==> Pr {} = 0 ”;

lemma ”[| pr space E A Pr; A0 ∈ A; A1 ∈ A; A1 ⊆ A0 |]
==> Pr (A0-A1) = Pr A0 - Pr A1”;

lemma ”[| pr space E A Pr; A0 ∈ A; A1 ∈ A; A1 ⊆ A0 |]
==> Pr A1 ≤ Pr A0”;

2) Bayes’ Formula: Besides a formal definition of condi-
tional probabilities, we have formalized some lemmata and
Bayes’ Formula.

A σ-algebra of E, A0 ∈ A, A1 ∈ A, and 0 < Pr(A0), 0 <

Pr(A1)

=⇒ Pr(A0|A1) = Pr(A1|A0)·Pr(A0)
Pr(A1)

.

Fig. 3. Proof in Cryptography: mb ∈ {m0, m1}, encryption of mb −→

attacker tries to find out, if b = 0 or b = 1

Our formalized version of Bayes’ Formula within the proof
language of Isabelle is given below.

lemma: ”[| cond pr E A Pr CoPr;
A0 ∈ A; A1 ∈ A; 0 < Pr A0; 0 < Pr A1 |] ==>

CoPr A0 A1 = (CoPr A1 A0) ∗ (Pr A0) / (Pr A1)”;

IV. CRYPTOGRAPHIC APPLICATION

In the lines below, we describe an application of the
above presented formal framework to cryptography. Besides
the explored application of formalized probability theory to
cryptography, there are further possibilities of application
(the term of perfect secrecy and related proofs provide an
interesting area of application in provable security, but a deeper
discussion won’t be given at this place).

A. Bellare-Rogaway

In [2] a well known proof technique is described (Bellare-
Rogaway model, 1993; compare Figure 3). The following
lines give a definition of semantical security against chosen
ciphertext attack (IND-CCA).

1) IND-CCA:
Definition 4.1: IND-CCA
A given encryption scheme with security parameter z is

IND-CCA in the Bellare-Rogaway model, if the following
holds for all polynomial time algorithms A and for all f ∈ Z

with f > 0.
For f there is x, for all z > x:

IND-CCA: | 2 ·Pr(A finds correct bit)− 1 |= Adv(A) < 1
zf ,

where the adversary is represented by A.

In this definition, the term Pr(A finds correct bit) specifies
the probability an algorithm A has to learn, whether a certain
bit is equal to 0 or 1, if it attacks a cryptosystem with security
parameter z.

Below we want to define the term of IND-CCA in the formal
language of Isabelle/HOL.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

393

2) Formal Definition of IND-CCA: The following formal
definition of IND-CCA depends on our version of formalized
probability theory (which is based on the theory Main and on
theories about real numbers and sets).

consts IND CCA ::
”[’a set, ’a set set, (’a set => real), ‘a set] => bool”;

defs IND CCA def:
” IND CCA E Alg Pr A == pr space E Alg Pr
∧ ∀ (f::int). 0 < f −→ (∃ (x::int). 0 < x −→
(∀ (z::int). x < z −→ | 2 ∗ (Pr A) - 1 | < 1/zˆf))”;

In the lines above IND CCA represents a predicate, that
describes the dependencies between the probability of A
(represented by the term Pr A) and the value of zf .

B. Application of Formal Probability Theory

Below we describe a useful lemma for the purpose of
cryptography, which we formalized and proved in the proof
language of Isabelle/HOL. For this purpose, several properties
of sets, σ-algebras, probability distributions, and conditional
probabilities, respectively, are proven with the Isabelle system.

Lemma 4.1: A0, A1 ∈ A (where A is a σ-Algebra of E),
and Pr(A0 | E − A1) = 1

2 implies that the following holds:
Pr(A0) ≤ 1

2 + Pr(A1).

A consequence from the definition of IND-CCA is, that
Pr(A0) = 1

2 + Adv(A)
2 , if Pr(A0) ≥ 1

2 (A0: A finds correct
bit).

Even, if this lemma covers only a small part of a proof
about semantic security of an encryption scheme, it is a
step towards computer verification of cryptographic primitives.
Further studies in that direction, could complete the computer
support. Hence, they improve proving in the area of cryptog-
raphy.

V. MILLER-RABIN ALGORITHM

In this section we present the Miller-Rabin primality test.
That presentation will be the basis of the Isabelle/HOL imple-
mentation described in the next section.

A. Primality or Compositeness

In general, a primality test is an algorithm that reveals,
whether a given integer number k is prime or composite.
In this context, a concrete prime factor decomposition of a
composite number is not discussed.

Public-key cryptography often uses large prime numbers,
consequently efficient algorithms are needed. A well known
algorithm is division by possible factors, but because of its
complexity (O(

√
k)) this algorithm is not used for large

numbers. More efficient algorithms are the Fermat algorithm
and the Miller-Rabin algorithm ([3] or [10]), but their results
are incorrect with a certain (small) probability.

B. Miller-Rabin Algorithm – Overview

In order to test an odd positive integer k for primality, the
Miller-Rabin test proceeds as follows. As a precomputation
the Miller-Rabin test determines the decomposition

k − 1 = 2z · v,

where z ∈ N≥1 and v is an odd positive integer. Functions
that compute these two numbers are given in VI.

The Miller-Rabin test looks for witnesses that attest the
compositeness of k. Such a witness is a number x ∈
{0, . . . , k−1}, gcd(x, k) = 1, such that the following property
holds.

Theorem (1).

For k ∈ N prime, z = max{r ∈ N : 2r | k − 1}, v =
(k− 1)/2z (k− 1 = 2z · v), and x ∈ {0, . . . , k− 1} randomly
chosen with gcd(x, k) = 1 the following holds:

(1.1)
xv ≡ 1 mod k

or there is a number r ∈ {0, . . . , z − 1} with

(1.2)
x2r ·v ≡ −1 mod k

If (1.1) and (1.2) do not hold for a given k, x is a witness
for the compositeness of k. Theorem (1) can be used to
implement an algorithm that looks for witnesses that attest
the compositeness of k (compare [3]).

C. Miller-Rabin Algorithm – Implementation

In this section we describe an implementation of the Miller-
Rabin test. We use Theorem (1) to implement Algorithm (1)
that looks for witnesses that attest the compositeness of k. If
no such witness is found, primality of k is assumed.

Algorithm (1) uses the precomputation introduced above,
i.e. input of Algorithm (1) are an odd positive integer k (the
primality/compositeness of k is tested), a randomly chosen
number x ∈ {0, . . . , k − 1} with gcd(x, k) = 1, and the
decomposition k − 1 = 2z · v. Output of Algorithm (1) is
composite or prime. We use the two functions prim1 : N4 →
N and f1 : N

3 → N that are based on Theorem (1) for a
search for witnesses. These functions are defined as follows.

prim1(x, k, z, v) = if xv ≡ 1 mod k then 1
else f1(z − 1, xv mod k, k)

uses f1, where

f1(z, x, k) = if 0 < z then
if x ≡ −1 mod k then 1
else f1(z − 1, x2, k)

else 0.

prim1 and f1 are applied to x, k, z, and v as described in
the following lines.

Algorithm (1).

Input: k ∈ N, x ∈ {0, . . . , k−1} with gcd(x, k) = 1, k−1 =
2z · v with properties given above

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

394

Fig. 4. Function prim

Output: composite or prime

If prim1(x, k, z, v) = 1 then return prime

else return composite

For some technical reasons we use the functions prim :
N

4 → N, prim0 : N
4 → N, f : N

3 → N, and exp2 :
N

3 → N to implement and verify the Miller-Rabin test with
Isabelle/HOL. These functions are defined as follows (compare
Figure 4)

prim(x, k, z, v) = if z = 1 then exp2(x, k, v)
else prim0(x, k, z, v)

prim provides a case split, i.e. for z = 1 the function exp2

computes a corresponding output value, while the function
prim0 looks for witnesses otherwise. This case distinction
results from an abbreviation used in f that corresponds to
f1.

prim0(x, k, z, v) = if xv mod k ≡ 1 or xvmod k ≡ −1
then 1
else f(z − 1, xv mod k, k)

f(z, x, k) = if 0 < z then
if xv mod k ≡ −1 then 1
else if xv mod k ≡ 1 then 0

else f(z − 1, x2 mod k, k)
else 0

exp2(x, k, v) = if xv mod k ≡ 1 or xvmod k ≡ −1
then 1
else if x2·v mod k ≡ −1

then 1
else 0

A version of the Miller-Rabin test that uses similar case
distinctions is given in [10].

D. Miller-Rabin Algorithm – Correctness

Up to now we gave no justification why the described search
for witnesses for compositeness of odd positive integer k

should be successful. But there are sufficient many witnesses,
if k is composite, what is explained in Theorem (2), that
describes the probability of correctness.

Theorem (2).

For k ∈ N, k ≥ 3 odd, composite number, the set
{1, . . . , k − 1} contains at most (k − 1)/4 numbers x, where
gcd(x, k) = 1 and (1.1), (1.2) hold.

That means, if an integer number is composite, there are
sufficient many witnesses to attest the compositeness of this
number (compare [3]).

VI. VERIFICATION OF THE MILLER-RABIN ALGORITHM

Algorithm (1) (with prim instead of prim1) is the main
foundation of a formal description of the Miller-Rabin algo-
rithm with Isabelle/HOL. This computer representation, that is
based on functional programming and logic (of higher order),
is a direct implementation of the functions prim, prim0, exp2

and f given in (3).

A. Formalized Mathematical Properties

In the following, we give a formalized version of Theorem
(1) that can be verified with Isabelle/HOL.

lemma ”[| (k::int) ∈ zprime; zgcd((x::int),k) = 1; 2 < k; x
< k |] =⇒ (∃ (z::num). z < (f 02 (number k)) ∧ (xˆ ((2ˆ
z) * (mult2 value (number k)))) mod k = k − (1::int) | (xˆ
(mult2 value (number k))) mod k = 1”;

In the lines below some Isabelle/HOL code examples are
explained.

Remark: (Isabelle/HOL code)

• int: integer number datatype
• num: natural number datatype
• ˆz: exponent z
• zprime: set of (integer) prime numbers
• zgcd: (integer) greatest common divisor
• f 02 and mult2 value compute a decomposition of x−1 =

2(f 02x) · (mult2 valuex), if x ∈ N is odd ((f 02x) =
max{r ∈ N : 2r | x − 1}, (mult2 valuex) = (x −
1)/2(f 02x)).

• function number describes the type change of an integer
number z to a natural number corresponding to z

The presentation of this lemma not only shows that the
implementation of the Miller-Rabin test given below was
computer proven. Furthermore, the underlying mathematical
theory can be verified with Isabelle/HOL.

B. Implementation

In this formal description, the functions prim, prim0, exp2

and f are implemented by recovered value01 and primality,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

395

recovered value0, recovered value2, and rep operator, respec-
tively. Moreover, some auxiliary functions are used. These
auxiliary functions are given below.

Auxiliary Functions:

We implemented the two auxiliary functions f 02 and
mult2 value as follows.

consts f 02 :: ”num ⇒ num”;

defs
f 02 def: ”f 02 x ≡ (GREATEST (z::num). (2ˆ z dvd
(x−(1::num)))”;

consts mult2 value :: ”num ⇒ num”;

defs
mult2 value def: ”mult2 value x ≡ (x−(1::num)) div
(2ˆ f 02 x))”;

These two functions compute a decomposition of x − 1 =
2(f 02x) · (mult2 valuex), if x ∈ N is odd. That means
(f 02x) = max{r ∈ N : 2r | x − 1} and (mult2 valuex) =
(x − 1)/2(f 02x).

Functions describing the Miller-Rabin algorithm:

We directly implemented the functions prim (recov-
ered value01 and primality), prim0 (recovered value0), exp2

(recovered value2), f (rep operator).

consts rep operator :: ”(int × int × int) ⇒ int”;

recdef rep operator ”measure (λ (z,x,k). (number z))”
rep operator def: ”rep operator (z,x,k) = (if (0 < z) then
(if ((xˆ 2 mod k) = (k − (1 :: int))) then (1 :: int)
else (if ((xˆ 2 mod k) = 1) then (0 :: int)
else (rep operator ((z − (1 :: int)), (xˆ 2 mod k), k))))

else 0)”
(hints recdef simp: number lemma);

consts primality :: ”[int, int, int, int] ⇒ int”;

defs
primality def: ”primality x k z v ≡ (if ((xˆ (number v) mod
k) = 1)
| ((xˆ (number v) mod k) = (k − (1 :: int)) then (1 :: int)
else (rep operator ((z − (1 :: int)), (xˆ number v)k, k))))”;

consts recovered value0 :: ”int ⇒ int ⇒ int”;

defs
recovered value0 def: ”recovered value0 x k ≡ primality x k
(int (f 02 (number k))) (int (mult2 value (number k)))”;

consts recovered value2 :: ”int ⇒ int ⇒ int”;

defs
recovered value2 def: ”recovered value2 x k ≡ (if
((xˆ (number v) mod k) = 1)
| ((xˆ (number v) mod k) = (k − (1 :: int)) then (1 :: int)
else if (xˆ (number v) mod k) = k−(1 :: int) then (1 :: int)
else (0 :: int)”;

consts recovered value01 :: ”int ⇒ int ⇒ int”;

defs
recovered value01 def: ”recovered value01 x k ≡ (if (f 02
(number k) = 1)

then (recovered value2 x k)
else (recovered value0 x k)”;

In this description we used the function number. This
function describes the type change of an integer number z

to a natural number corresponding to z.

C. Verification

The new functional and logically compiled description as
well as its implementation (formal and machinery description)
of the Miller-Rabin algorithm given above, illustrate that
formalized mathematical knowledge can improve verification
of correctness of primality tests or other (cryptographic) algo-
rithms. This improvement is reached by using Isabelle/HOL as
computer verification tool. We interactively proved the follow-
ing main results that we give in a mathematical description).

Theorem (3). x, k ∈ Z, k ∈ Prime, gcd(x, k) = 1, 2 < k,
x < k, 0 < f 02(k), 0 < mult2 value(k) =⇒ prim(x, k) = 1.

(If an integer number k is prime and some preconditions
hold, the function prim outputs 1 (what indicates that the
Miller-Rabin test is passed).)

Theorem (4). x, k ∈ Z, x < k, 2 < k, 0 < f 02(k),
0 < mult2 value(k) =⇒ ((∃z ∈ N.z ≤ f 02(k) ∧
x2z ·mult2 value(k) mod k = k − 1) ∨ (xmult2 value(k) mod
1)) = (prim(x, k) = 1).

(Under some preconditions, ((∃z ∈ N.z ≤ f 02(k) ∧
x2z ·mult2 value(k) mod k = k − 1) ∨ (xmult2 value(k) mod
k = 1)) is equivalent to the fact that prim outputs 1.)

In the following, we illustrate a computer verification of
these results by giving some examples of properties we proved
with Isabelle/HOL.

After the implementation of the above introduced functions
describing the Miller-Rabin algorithm, we started the proof
construction with interactive proofs of some easy lemmata.

Example: (For a better reading we skipped the data types
(e.g.int) of the variables)

lemma ”[| 2 < k; k−1 = 2ˆ (number z) ∗ v; x < k; xˆ (number
v) mod k = k−1 |] =⇒ (primality x k z v) = 1”;
apply (unfold primality def);
apply (auto);
done;

(lemma with computer proof script)

Many lemmata of that kind and further lemmata of increas-
ing difficulty lead us to a proof of the following property.

lemma ”[| 0 < z; ∃ i. (∀ j. j < i −→ (xˆ (2ˆ j) mod k)ˆ 2 mod
k �= k−1) ∧ (∀ j. j < i −→ (xˆ (2ˆ j) mod k)ˆ 2 mod k �= 1) ∧
((xˆ (2ˆ i) mod k)ˆ 2 mod k = k−1) ∧ 0 < i ∧ 0 < z−(int i)
∧ ∀ j. j < i −→ 0 < z−(int j) |] =⇒ (rep operator (z,(x mod
k),k)) = 1”;

Consequently, we were able to prove the following lemma.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

396

lemma ”[| 2 < k; k−1 = 2ˆ (number z) ∗ v; x < k; 0 < z−1;
(xˆ (number v) mod k) = k−1) ∨ (xˆ (number v) mod k) =
1) ∨ (∃ i. (∀ j. j < i −→ (xˆ (2ˆ j) mod k)ˆ 2 mod k �= k−1)
∧ (∀ j. j < i −→ (xˆ (2ˆ j) mod k)ˆ 2 mod k �= 1) ∧ ((xˆ (2ˆ
i) mod k)ˆ 2 mod k = k−1) ∧ 0 < i ∧ (int i) < z−1) |] =⇒
(primality x k z v) = 1”;

For a complete formal verification, we introduced the fol-
lowing facts to the formal proof system:

• ”((k::int) − (1::int)) = ((2ˆ (number (int (f 02 (number
k))))) ∗ (int (mult2 value (number k))))”

• ”[| 2 < k; x < k; 0 < f 02 (number k); 0 < mult2 value
(number k); recovered value01 x k = 1 |]”

Fact 1 was used to proof the following properties.

lemma ”[| k ∈ zprime; zgcd(x,k) = 1; 2 < k; x < k; 0
< f 02 (number k)−1; 0 < mult2 value (number k) |] =⇒
recovered value0 x k = 1”;

(correctness of auxiliary function recovered value0)

lemma ”[| k ∈ zprime; zgcd(x,k) = 1; 2 < k; x < k; f 02
(number k) = 1 |] =⇒ recovered value2 x k = 1”;

(correctness of auxiliary function recovered value2)

lemma ”[| k ∈ zprime; zgcd(x,k) = 1; 2 < k; x < k; 0
< f 02 (number k); 0 < mult2 value (number k) |] =⇒
recovered value01 x k = 1”;

(correctness of recovered value01 (implementation of
prim) (Theorem (3))

More (proven) lemmata and Fact 2 were used to verify the
property below.

lemma ”[| x < k; 2 < k; 0 < f 02 (number k); 0 < mult2 value
(number k) |] =⇒ ((∃ z. z < (f 02 (number k)) ∧ (xˆ ((2ˆ z) ∗
(mult2 value (number k)))) mod k = k−1) ∨ (xˆ (mult2 value
(number k))) mod k = 1) = (recovered value01 x k = 1)”;

(Theorem (4))

Altogether we implemented a functional/logic version of
the Miller-Rabin primality test, that means we are able to
computer verify the correctness of our algorithm. Besides, the
used functions can be applied to integer numbers, what results
in a applicable computer program for primality tests. In the
following lines this result is illustrated.

Example: Application of ML code of
recovered value0 x k

yields 0 or 1 corresponding to the values of x, k ∈ Z, x < k.

VII. CONCLUSION

We explored formalized probability distributions (σ-
algebras, probability spaces as well as conditional probabil-
ities). These are given in the formal language of the formal
proof system Isabelle/HOL. Moreover, we computer proved a
formalized version of Bayes’ Formula. Besides, we described
an application of the presented formalized probability dis-
tributions to cryptography. Furthermore, this paper showed
that computer proofs of complex cryptographic functions are
possible by presenting an implementation of the Miller-Rabin
primality test that admits formal verification. In this paper we

gave a new description of a well known algorithm, that means
we implemented the Miller-Rabin algorithm with computer
support. Our new functional/logic implementation is computer
verified and applicable as ML code. Moreover, we are able to
computer verify the correctness of our algorithm. This paper
is a further step towards a formalized basis of cryptographic
algorithms. In cryptographic applications large prime numbers
are often needed and therefore efficient correct algorithms
for primality tests must be implemented and verified. Formal
verification is a appropriate account to achieve correct algo-
rithms. Moreover, cryptographic research can gain profit from
formalized knowledge and formal verification. Formal proofs
of security may support verification of cryptographic protocols
or algorithms like encryption schemes. For that purpose,
further mathematical knowledge must be implemented in a
formal proof system.

REFERENCES

[1] Heinz Bauer. Wahrscheinlichkeitstheorie. Walter de Gruyter Verlag, 5
edition, 2001.

[2] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm
for designing efficient protocols. In proceedings of the First ACM
Conference on Computer and Communication Security, 1993.

[3] Johannes Buchmann. Einführung in die Kryptographie. Springer-Verlag,
2 edition, 2001.

[4] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is
secure under the RSA assumption. In proceedings of CRYPTO 2001,
2001.

[5] Hans-Otto Georgii. Stochastik. Walter de Gruyter Verlag, 1 edition,
2002.

[6] B.W. Gnedenko. Lehrbuch der Wahrscheinlichkeitstheorie. Verlag Harri
Deutsch, 10 edition, 1997.

[7] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL
– A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture
Notes in Computer Science. Springer-Verlag, 2002.

[8] V. Shoup. OAEP Reconsidered. In Advances in Cryptology – CRYPTO
2001, volume 2139 of Lecture Notes of Computer Science, pages 239–
259. Springer-Verlag, 2001.

[9] http://isabelle.in.tum.de.
[10] Dietmar Wätjen. Kryptographie – Grundlagen, Algorithmen, Protokolle.

Spektrum Akademischer Verlag, 2004.

