
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:11, 2010

1626

Real-Time Digital Oscilloscope Implementation in
90nm CMOS Technology FPGA

Nasir Mehmood, Jens Ogniewski and Vinodh Ravinath

Abstract—This paper describes the design of a real-time audio-
range digital oscilloscope and its implementation in 90nm CMOS
FPGA platform. The design consists of sample and hold circuits,
A/D conversion, audio and video processing, on-chip RAM, clock
generation and control logic. The design of internal blocks and
modules in 90nm devices in an FPGA is elaborated. Also the key
features and their implementation algorithms are presented.
Finally, the timing waveforms and simulation results are put
forward.

Keywords—CMOS, VLSI, Oscilloscope, Field Programmable

Gate Array (FPGA), VHDL, Video Graphics Array (VGA)

I. INTRODUCTION

 digital oscilloscope is required in modern laboratories
to analyze the various parameters of any sort of input
signal. It may consist of pre-processing circuits, analog

to digital conversion, logic controller circuits, level
generating circuits, video controlling circuits, clock
generation circuits and memory circuits [1]. Digital
oscilloscope is the basic instrument for testing and
measurement. It may have the functions of waveform
display in horizontal and vertical axes, timing measurement,
voltage level adjustment, and zoom-in and out and other
special functions.

FPGA stands for field programmable gate array and is a
new technology to devise digital integrated circuits which
are pre-fabricated using standard VLSI fabrication methods
[1]. In FPGA-based design, the designer has the possibility
to modify and re-design using a user-friendly programming
language like Verilog or VHDL[1]. FPGAs are widely used
in prototype circuit development for test and trial purpose.
They contain a fabric structure in which programmable logic
elements are connected together through programmable
interconnects. A typical FPGA may contain thousands of
logic gates and millions of transistors arranged in a specified
manner. FPGA programming takes place in a user-friendly
environment, in which a software code is transformed into
hardware connections using FPGA built-in programmable
fabric [2].

 In this paper we will present the design of a real-time
audio range digital oscilloscope and its implementation in an
FPGA using 90nm CMOS transistors. This oscilloscope will
not require any computer for its working. The oscilloscope
operates in real-time to acquire the analog audio data stream
generated by the PC sound card. The analog data is
converted in digital format using on-board ADC chip.
Further processing is performed upon digital data to
reproduce the audio stereo signal, display its waveform on
VGA screen to control the parameters of these signals. This
oscilloscope is very cheap and its functions are controlled
through keyboard.

Authors are with Air University, Islamabad, Pakistan
e-mail:mehnasir@gmail.com

Various keys are assigned for specific functions like
volume up and down, x-axis and y-axis control, balance
control, freezing; zooming etc. the design of this
oscilloscope can be loaded into any FPGA and used in
conjunction with keyboard and VGA monitor.

II. SYSTEM DESIGN AND OPERATION

The figure 1 shows the overall digital oscilloscope system
block diagram.

Fig. 1: Oscilloscope System Block Diagram

The system consists of audio input/output interface,

keyboard interface and VGA interface. The input signal is
the stereo audio signal in digital format. The keyboard acts
as a controlling device for the hardware. The function of the
system is to control the volume of the input signal, control
the balance of both channels, process the input signal to
display on VGA screen and generate the output signal to
speakers [3].

The figure 2 comprehensively explains the various
functional modules of the system.

Fig. 2: Oscilloscope Functional Diagram

A. Sound Interface (SI)

This block takes the audio signal as input from the on-
board codec. The input sound data consists of a serial row of
20 bits. The ’LRCK’ clock is used to split the data into ‘left’
and ‘right’ channels. Left channel is sampled on the rising
edge of ‘LRCK’ and the right channel is sampled on the
falling edge of ‘LRCK’. The ‘SCLK’ clock is used to receive
and transmit the serial stream of sound data. The data is
received by the system on the rising edge of ‘SCLK’ and the
processed data is transmitted to the codec at the falling edge
of ‘SCLK’. A ‘ch_select’ signal is generated which toggles

A

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:11, 2010

1627

whenever the sampling of 20 bit sound data is over. Figure 3
explains the above mentioned operation [3].

Fig. 3: Codec clock and data triggering

The following code is an extract from the SI block

behavioral description.
process(clk,rst)
begin
if rst='0' then old_sc <= '0';
sel_tmp <= '0';data_out_tmp <=
"00000000000000000000";
elsif(clk'event and clk='1' and clk'last_value='0') then
old_sc<= sclk; if(sclk='1' and old_sc ='0') then
if(bit_cntr=19 and lrck='1') then data_out_tmp <=reg;
sel_tmp <= '1'; elsif(bit_cntr=19 and lrck='0') then
data_out_tmp <= reg; sel_tmp <= '0'; else
data_out_tmp <= data_out_tmp; sel_tmp <= sel_tmp;
end if; else data_out_tmp <= data_out_tmp;
sel_tmp <= sel_tmp; end if; end if;
end process;

B. Sound Processing (SP)

This block processes the sound signal for volume and
balance control upto 10 levels. The control signals for
volume and balance are generated by the keyboard interface
block ‘VOL’ and ‘BAL’ respectively. The volume is
controlled by continuous right shift operations based on the
current volume level. The volume of both the channels is
independent of the ‘ch_select’ signal. An extract form the
code of volume control is shown below.
right_vol <= right_vol_tmp; left_vol <= left_vol_tmp;
proc_sgns : process (clk, rst)
begin
if (rst='0') then left_vol_tmp <= 10; right_vol_tmp <=
10;

 elsif (clk'event and clk = '1') then
 if (ch_vol = '1') then
 if (new_vol = '0') then
 if (left_vol_tmp > 0) then
 left_vol_tmp <= left_vol_tmp + 2;
 else
 left_vol_tmp <= 0;

 end if;
 The data processed by the ‘volume_control’ block is fed

to the ‘balance_control’ block. The balance of the sound
channels is controlled by using continuous shift operations
based on the status of ‘ch_select’ signal. If ‘ch_select’ is
high and the balance level is less than 5 the right channel
data is shifted right according to the balance level, otherwise
the volume of both channels remains equal. The vice versa
condition is applied for left channel if ‘ch_select’ signal is
low and balance is greater than 5 [3].

C. Sound Output (SO)

This block performs two basic functions:
1) Transmitting the processed sound data to codec. The

data is first converted into a serial stream of 20 bits left
and right channel data and then each bit is sent to the
codec on every falling edge of ‘SCLK’ clock. The
channel selection is made by ‘LRCK’ clock. When high
the left channel data is sent out, otherwise right channel
data. Only the first 20 bits are valid for both channels.
Another control signal ‘ch_select’ gives indication of
when the data of one channel is ready to transmit.

2) Generating clocks required for the proper reception and
transmission of sound data. These clocks include
‘MCLK’, ‘SCLK’ and ‘LRCK’.

The VHDL code for the generation of these clocks is shown
below.
process (clk,rst)
begin

 if rst='0' then cntr <="00000000";
elsif(clk'event and clk='1') then cntr <=cntr+1;
end if;
end process;
sclk <=cntr(1);
counter <=cntr(6 downto 2);
lrck <=cntr(7);
mclk <=clk;

D. Keyboard Control (KC)

The ‘Keyboard Control’ consists of a Keyboard Interface
(KI) and Keyboard Decoder (KD).

Fig. 4: Keyboard Controller

The function of this unit is to read the scan code

generated by the keyboard keys and to set various control
signals according to control block. The KI accepts the
keyboard data serially along with keyboard clock and reads
the scan code. This block will set the different control
signals reference to the character scan code. The control
signals for volume and balance control are ‘vol’ and ‘bal’
respectively. These are 4 bit control signals. When key ‘M’
is pressed the value of control signal is generated such that
the volume increases and vice versa for ‘N’ key. A similar
procedure exists for balance control. When key ‘W’ is
pressed, the balance shifts towards left channel and when
key ‘Q’ pressed the balance shifts towards right channel.

E. Signal Visualization (SV)

This block is responsible for the display of sound signal
and the volume level indicator on the VGA screen. It
consists of 4 sub-blocks named as (1) Volume Visualization,
(2) Special Functions, (3) Waveform Function and (4)
Image Creation. Figure 5 shows the interconnections
between these sub-blocks. An extract from the waveform
function VHDL code is shown below.

if (clk'event and clk = '1') then
 if (wf_x_in < 793 and sound_left_en ='1') then
 wf_x_in <= wf_x_in + 1;

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:11, 2010

1628

 wf_x <= conv_std_logic_vector(wf_x_in,10);
 wf_y <= sound_left(18 downto 10);
 wf_col <= "01";
 wf_en <= '1';
 elsif (wf_x_in <793 and sound_right_en ='1') then
 wf_x_in <= wf_x_in + 1;
 wf_x <= conv_std_logic_vector(wf_x_in,10);
 wf_y <= sound_right(18 downto 10);
 wf_col <= "10";
 wf_en <= '1';
 else
 wf_x <= (others => '0');
 wf_y <= (others => '0');
 wf_en <= '0';
 wf_col <= "11";

 end if;

Fig. 5: Signal Visulization Block

The signal visualization is done in several steps. The first

step is the sampling of the signal. The VHDL-block
‘waveform_function’ takes care of that. Another block
‘wf_ctrl’ creates the enable signals for that block according
to that ‘waveform_function’ will save the signal in a Xilinx
block RAM. Later it loads the signal from the RAM and
passes it to the block ‘sig_alias’. The function of ‘sig_alias’
is to create pixels representing the different samples. In
parallel, ‘vol_bal_gen’ creates the output for the
visualization of the volume-level and the balance, and
‘RAM-Interface’ loads the picture samples stored in the
flash RAM.

The last block ‘sel_col’ selects the parts which will be
displayed. The highest priority goes to the display of the
input audio signals, then the visualization of volume and
balance, and finally the background picture.

To fully understand how the visualization of signals
works, it is important to know how the sampling is done. In
normal operation, 64 successive samples will be taken. Let's
call this one Megasample. One Megasample will be taken
every 40 ms, representing the 25 Hz which the screen’s
refresh rate. It is possible to adjust the time between 2
Megasamples as well as the time between two samples
inside the Megasamples. By doing so it is possible to filter
out the higher frequency signals.

The Volume Visualization (VV) block takes the ‘volume
level’ and ‘balance level’ as input and transforms them into
the VGA control signal values and then displays the volume
bar accordingly on the screen.

The Special Function (SF) block implements the complex
DSP functions like Fast Fourier Transform (FFT) and the
Power Spectrum. The Waveform Function block transforms
the input sound signal into pixel co-ordinates. It takes input

from SI block and gives the (x, y) coordinates of the pixel
value to be displayed on the screen.

The Image Creation block controls the communication of
system with RAM Interface block. It takes the (x,y)
coordinates from the other functional blocks and generates a
set of control signals which includes address to be fed to the
RAM Interface.

F. RAM Interface (RI)

This part regulates the access to the RAM for the signal
visualization (SV) block. It takes address input from SV
block as well as the pixel data to be written at that address.
It generates a 'write_done' signal whenever a byte of data
has been written to the RAM. The RI code extract is shown
below.

get_pix : process(clk, rst)
begin
 if (rst = '0') then
 pix_byte_tmp <= "00000000";
 elsif (clk'event and clk='1') then
 if (x_tmp(1 downto 0) = "01") then
 pix_byte_tmp <= data;
 else
 pix_byte_tmp(5 downto 0)<= pix_byte_tmp(7 downto

2);
 end if;
 end if;

 end process get_pix;

G. Screen Control (SC)

This block formats the processed audio data and displays
it on the VGA screen. It takes the pixel values for each
channel and displays them with different colors and at the
proper locations on the screen. The process of screen control
is facilitated by the generation of sync ('hsync' and 'vsync')
and blanking pulses [4]. The VGA signal timings are
explained in figure 6.

Fig. 6: VGA signals timing waveforms

The following code explains the creation of blanking and

sync pulses.
crt_blank : process(clk) begin
if (clk'event and clk='1') then
blank <= h_blank or v_blank; end if;
end process crt_blank;
crt_hsync : process(clk, rst) begin
if (rst = '0') then hsync <= '1'; h_blank <= '0';
elsif (clk'event and clk='1') then

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:11, 2010

1629

if (x > 593 and x < 689) then hsync <= '0'; else
hsync <= '1'; end if;
if (x > 512) then h_blank <= '1'; else
h_blank <= '0'; end if; end if;
end process crt_hsync;

III. SYSTEM FEATURES AND SPECIFICATIONS

The features and specifications of the system are as
mentioned in table 1.

TABLE I DESIGN FEATURES AND SPECIFICATIONS
S.No Features Specifications

1 Digital volume control 10 levels volume control
2 Digital balance control 10 levels balance control
3 Display of sound signal Both channels simultaneously. Left

or right channel separately
4 Display of volume 10 levels per volume value
5 Display of balance 10 levels per balance value
6 Zoom in and out Upto 8X
7 Sampling frequency

control
Increasing or decreasing X2

8 Color coding Channels have distinct colors. Blue
for Left and Green for right

9 Freezing of sound signal The signal is freeze as per toggle
key

10 Aliasing Connects the adjacent pixels on the
screen

IV. SIMULATION RESULTS

The oscilloscope project is performed in VHDL language
using Mentor Graphics’ FPGA Advantage software. The
hardware design is split into various interconnected modules
and sub-modules. Each module is then simulated and tested
separately. A final simulation is performed after integration
of all modules and sub-modules. Figure 7 shows the timing
waveforms for some of the variables and outputs.

Fig. 7: Simulation waveforms

V. CONCLUSIONS

A real-time digital oscilloscope in audio range frequency
has been designed and implemented in 90nm FPGA device.
All the design work has been performed in VHDL and
implementation is done on NEXYS2 board containing
Spartan-III SC3S500E FPGA device. The oscilloscope
needs FPGA board, keyboard and VGA screen to operate
properly. The input data is sampled, digitized and processed
and the audio signal is displayed on the screen. All the
features mentioned in table 1 have been implemented. The
synthesis summary shows that only 50 I/Os, 1321 function
generators, 661 CLBs, 603 flip flops or latches and 02 block
RAMs have been utilized.

ACKNOWLEDGMENTS

We are thankful to Dr. Kent Palmkvist and Kenny
Johansson belonging to Division of Electronic Systems,
Institute of Technology, LinkÖping University, Sweden, for
their support and cooperation during the research work.

REFERENCES
[1] He Zhiqiang, Zeng Wenxian, Li Jianke, The Eighth International

Conference on Electronic Measurement and Instruments ICEMI’2007
“An Embedded Virtual Digital Storage Oscilloscope with 1GSPS”.

[2] Wyne Wolf “ FPGA Based System Design” Pearson publisher Printice
Hall.

[3] Nasir Mehmood, Jens Ogneewski, Vinodh Ravinath, Project Report
“Digital Oscilloscope” Group 02, Year 2005/First Semester
ISY/LiTH.

[4] Project Report by Amr Mohamed, Fady, Kareem, Gamal, Mazen and
Sherief , “VHDL implementation of oscilloscope usig FPGA”,
Alexandria University.

