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Abstract—This paper presents an efficient method of obtaining a 
straight-line motion in the tool configuration space using an 
articulated robot between two specified points. The simulation results 
& the implementation results show the effectiveness of the method.

Keywords—Bounded deviation algorithm, Straight line motion, 
Tool configuration space, Joint space, TCV. 

I. INTRODUCTION

TRAIGHT line motion is defined as the motion along a 
straight line or movement of a rigid body along a straight 

line and represents the shortest distance between the two 
points in the 3D workspace of any robot. The straight line 
motion from the source ( pick ) to the goal ( place ) covered in 
a specific amount of time is known as the straight line 
trajectory,  i.e., if temporal information is added to the straight 
line path by specifying the times  at where the gripper or tool-
tip is along the straight line path,  then the straight line path 
gets converted into a straight line trajectory [1].   

Straight-line motion is always required in TCS R6. By 
controlling all the joints in a coordinated manner, the tool-tip 
can be made to move along a straight-line path. If the distance 
between the adjacent points in the joint space Rn is 
approximately small, then a straight-line path or trajectory in 
the TCS R6 can be designed. How we get straight-line motion 
is to use the IK equations. In these paragraphs, we give info 
about the trajectory in joint space, which generates a straight-
line trajectory in TCS by using the IK equations [3].   

The applications of straight line motions are listed as 
follows.  
(a) Conveyor belt operations. 
(b) Straight line seam arc welding. 
(c) Inserting peg into a hole. 
(d) Threading a nut onto a bolt. 
(e) Performing screw transformations. 
(f) For inserting electronic components onto PCB. 

(g) Doing robotic manipulation from above the object (used 
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 where exact perpendicularity is required). 
(h) Inspection of manufactured components which are 

coming on a conveyor belt (using computer / robot 
vision). 

 The paper is organized in the following sequence.  A brief 
introduction about the straight line motion was presented in 
the previous paragraphs along with the applications.  A review 
of the straight line motion theory is presented in the section 2.  
The bounded deviation algorithm used in the paper is 
discussed in section 3.   A mathematical formulation of the 
simulation study is depicted in section 4 followed by the 
simulation results in section 5.  Section 6 gives the .C code 
used to develop the straight line path.  This section is followed 
by the conclusions in section 7 and then the references.  

II. REVIEW OF STRAIGHT LINE MOTION THEORY

Consider the Fig. 1.  Let w0 and w1 be the two points in the 
space between which the robot has to draw a straight line.  
Here, we use the following parameters as [2]; 

 w0  : is the source point (initial point) ; i.e., the 
TCV at the point 0 ; 

 w1  : is the goal point (final  point) ; i.e., the 
TCV at the point 1 ; 

 w0 and w1  : both are ( 6  1 ) vectors in TCS, R6.
 T  : is  the total  time taken to move from w0

to w1, i.e., the total time taken to traverse 
the path, obviously T > 0.  

   = { w0, w1 } = path taken by tool. 

The equation for SL path / straight line trajectory w(t) of the 
tool as shown in the Fig. 1 is represented by an equation of 1st

degree or of 1st order, i.e., no squared terms in the expression, 
i.e., we are writing an expression for the straight line path or 
trajectory in terms of the SDF and the TCV [2].  
 w (t)  =  [ 1 – S(t) ] w0 + s(t) w1 ; 0  t  T (1) 
where s(t) is a differentiable Speed Distribution mapping 
Function [SDF] which maps ( 0 , T ) into ( 0 , 1 ) & is given 
by [2] 

ts(t)=
T

  (2) 

At the start of the trajectory, t = 0 ;  
i.e., s (0) =  0 ( start ; initial ; pick ; source point )  

,                    w(t) = [ 1 – 0 ] w0 + 0 w1 = w0  (3)  
........ corresponds to start of the path [2].     

At the end of the trajectory, t = T,
i.e.,   s (T)  = 1  
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i.e., the end ; goal ; destination ; place ; final point. 
,                    w(t) = [ 1 – 1 ] w0 + 1 w1 = w1  (4)

......... corresponds to end of the path [2].   
Hence, it is verified that the Eqn (1) is of the first order or 

first degree, i.e., a straight line equation of the form y = mx + 
c, where c is the intercept, m is the slope.  

III. BOUNDED DEVIATION ALGORITHM [BDA] AND ITS BASIC
WORKING PRINCIPLE

BDA is an algorithm, which is used to obtain an 
approximated straight-line motion in TCS R6 by using an 
articulated robot by selecting the number of knot points 
properly [4], minimizing them and distributing them along the 
trajectory in an optimal manner [2].   
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Fig. 1 Straight line motion, a graphical representation 

A. Principle of BDA 
It is easier to produce a straight line motion (SL path or SL 

trajectory) in case of xyz, PTP, cylindrical, polar or spherical 
or SCARA or Stanford robots.  But, in case of articulated 
robots, it is very difficult to obtain a straight line motion in the 
TCS. All the joints has to be activated simultaneously in a 
coordinated manner in order to make the tool-tip to move in a 
straight line. For achieving a straight line motion in the TCS, 
the following procedure is used [2].  

A straight line path in joint space Rn will not produce a 
straight line path in tool configuration space R6. Hence, the 
straight line path in TCS is obtained by using approximation 

techniques using an algorithm called as the Bounded 
Deviation Algorithm [BDA].  

BDA was proposed by Taylor and it gives the deviation or 
the error between the actual straight line trajectory and the 
trajectory generated by straight line motion in joint space. 
Deviation is likely to be maximum somewhere near the mid-
point of the joint space trajectory [5]. Check the error or 
deviation at this mid-point of the joint space trajectory [2].

If it exceeds a prescribed tolerance limit, then the exact 
mid-point is added as knot point. Repeat the test recursively 
on the newly generated segments until all the knot points and 
the mid point deviations are within tolerance limit. If the error 
or deviation is minimum and bounded (within the tolerance 
limit of ) ; then, we get a approximated straight line path 
between w0 and w1 [6].   

If distance between adjacent points in JS (joint space) is 
small, a straight line path segment in JS can be approximated 
to a straight line path in TCS. Therefore, we can approximate 
a straight line path by visiting a number of closely spaced knot 
points in proper sequence in joint space as shown in Fig. . The 
result is the straight line trajectory in TCS. Since there is no 
direct control over the tool-tip and the only thing that we can 
control is the joint (since motor / piston is connected to it), an 
approximated joint space trajectory can be used to obtain a 
straight line trajectory in the TCS [7].  
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Fig. 2 Interpolation  of joint space approximation 
to the straight line motion 

Inverse kinematics equations [2] have to be solved at each 
point after minimizing the number of knot points on the 
trajectory and distributing them along the trajectory in an 
optimal manner.  The flow-chart of the BDA algorithm used is 
shown in the Fig.  3.
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B. Bounded Deviation Algorithm for Obtaining Straight Line 
Motion [2] 

1. Select a tolerance limit (called as threshold value) for 
straight line motion as  > 0 [8]. 

2. Given, the start point and end point of trajectory as w0

and w1 [ TCV’s at the starting and ending points ], use the 
inverse kinematics equations to compute q0, q1 ; i.e., the 
joint vectors  associated with {w0, w1}.

 w0  IKP  q0 ;
 w1  IKP  q1.
3. Compute the joint space mid-point as 

0 1
m

q +qq =
2

4. Use the information from qm and tool configuration 
vector w to find the equivalent TC space mid-point as 

 wm = w(qm)
  i.e., using qm, find the TCV, w(qm) ; substitute qm in the 
 TCV of that particular robot which is used to obtain the 
 straight line motion and obtain wm.
5. Find the exact TCS mid-point as 

0 1
M w + ww =

2
6. If the error or deviation  wm – wM  ; then, stop.
7. Else, insert wM as a exact knot point between w0 and w1.

Now, the trajectory is broken up into two parts, viz., {w0,
wM} and {wM, w1}.

8. Repeat the steps ( 1 to 6 ) recursively to the newly 
generated trajectory segments {w0, wM} and {wM, w1} till 
all the newly generated trajectory segments are within  
limit of .

Bounded deviation algorithm does not distribute knot points 
uniformly over the interval {w0, w1}.  Instead, it places where 
they are most needed to reduce the deviation between the 
exact trajectory and the joint space trajectory [9].  Distribution 
of knot points is not uniform and depends on , geometry of 
robot, the limitations of the joints and its constraints, straight 
line path and location, w0 and w1 [2]. 

Referring to the Fig. 2, we get the joint space interpolated
motion between {w0, w1} deviates outside the cylinder of 
radius  [10].  Therefore, insert knot point 1 as mid-point.  
Again, joint space interpolated motion between {w0, 1} is
outside the cylinder of radius .  Therefore, insert knot point 2 
as mid-point [2]. 

Again, joint space interpolated motion between {w0, 2} is 
outside the cylinder of radius .  Therefore, insert knot point 3 
as the mid point.  Now, joint space interpolated motion 
between {w0, 3} is within the tolerance limit of  [2]. 

Therefore, the path from w0 to 3 is a approximated straight 
line path.   Like this, continue till all the newly generated 
paths are within the cylinder of radius .  If  is very very 
small (  0, i.e., 0.000001, say), then the number of knot points 
will be very very close ; then, the path traced by the tool-tip 
from w0 to w1 will be an exact straight line as the number of 
iterations will be more [2]. 
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Fig. 3  BDA flow chart 

IV. A MATHEMATICAL FORMULATION OF THE SIMULATION
STUDY

A simulation is performed on a five axis articulated robot 
which was designed and fabricated in the college laboratory as 
shown in Fig. 4 [11]. 

Fig. 4  Photographic view of the designed robot 

One pass of BDA is shown analytically here to find a joint 
space knot point for approximating the following straight-line 
trajectory [13].  We consider the tool configuration vectors at 
the starting point and the ending point to be specified by the 
user as  [12] 

    w0 =  [ 600 ,  0 ,  250 ,  0 ,  0 ,  2]T

    w1 =  [ 600 ,  0 ,  50 ,  0 ,  0 ,  2]T
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The physical dimensions of the designed system are as 
follows.  

      d =  [495.2   0   0   0   368.2 ]T and
      a  =  [ 0   457.2   457.2    19   0 ]T ? 
The tool configuration deviation at the joint-space midpoint 

is obtained as follows [14]. The general inverse kinematic 
equations [2] for any five axis articulated robot is [2] 
Base  angle   1   ( rotary ) : 

 q1  =  1 2

1

wtan  
w

GTP  angle   234  : 

 q234 =  1 4 1 51

6

C w +S w
tan

w

  =  – arc tan 2 ( –b0 , –w6)
Intermediate variables are : 
     b1 =  C1 w1  +  S1 w2  –  a4 C234  +  d5 S234

  b2 =  d1  –  a4 S234  –  d5 C234  –  w3   
Shoulder  angle   2   ( rotary ) : 

 q2  =  2 3 3 2 3 3 11

2 3 3 1 3 3 2

a + a C b a S b
tan  

a + a C b a S b

Elbow  angle   3   ( rotary ) : 

 q3  =  
2 2 2 2

1 1 2 2 3

2 3

b b a acos  
2a a

Tool  pitch  angle   4   ( rotary ) : 
 q4  =  q234  –  q2  –  q3

Tool  roll  angle   5   ( rotary ) : 

 q5  =  2 2 2
4 5 6n w +w +wl

Find  the  joint  vectors  q0  and  q1  associated  with  w0

and  w1  by  using  the  above   inverse  kinematic equations. 

Give  w0  as  the  input  to  IK  algorithm  of  a  five  axis  
articulated  robot  and  calculate q0 [15], [22].  We get the 
parameters base angle, global tool pitch angle, intermediate 
variables, elbow angle, shoulder angle, tool pitch angle & the 
tool roll angle w.r.t. the TCV w0 [2], [21]. 

Then, give w1  as  the  input  to  IK  algorithm  of  a  five  
axis  articulated  robot  and  calculate q1 [17], [20]  We get the 
parameters base angle, global tool pitch angle, intermediate 
variables, elbow angle, shoulder angle, tool pitch angle & the 
tool roll angle w.r.t. the TCV w1 [2].  

Then, compute the  joint  space  midpoint  of  the trajectory, 
i.e., qm as the average of q0 and q1.  The  TCV w(q) of  a  five  
axis  articulated  robot  is then used to compute the tool 
configuration vector at the actual mid point as wm [2]. 

1 2 2 3 23 4 234 5 234

1 2 2 3 23 4 234 5 234

1 2 2 3 23 4 234 5 234

5
1 234

5
1 234

5

.......................................................

( ) exp

exp

exp

C a C a C a C d S

S a C a C a C d S

d a S a S a S d C

qw q C S

q S S

q
234C

q1 = 0°     
q234 = 0°      
b1  = 581     
b2  =  58.4    
q3  =  201.24°
q2  =  – 89.14  ( assume q3 = +  201.24°)      
q4 =  –118.08°  
q5  =  0° 
w0  IKP  q0 =  [ 0 89.14   201.24 118.08   0 ]T degs 

Give  w1  as  the  input  to  IK  algorithm  of  a  five  axis  
articulated  robot  and  calculate q1 [2]. 
q1 = 0°     
q234 = 0°      
b1  =  581  
b2  =  –141.6    
q3  = 196.6°
q2  =  – 127.7  ( assume q3 = + 196.6°)      
q4 =  –71° ,   
q5  =  0° 
w1  IKP  q1  = [ 0   125.6  196.6 71   0 ]T degs 

The  joint  space  midpoint  of  trajectory  is [16] 
0 1

m
q +qq =

2
=[ 0 107.2   198.8 91.6   0 ]T degs 

The  TCV  of  a  five  axis  articulated  robot  is 
Putting   the   value  of   qm , d1 , d5 , a2 , a3 , a4  in   w(q) ,  we
get 
wm = [ 609    0   148.8    0    0 2 ]T  =  w(qm)
The  exact  TCS  midpoint  is  

0 1
M w + ww =

2
 =  [ 600    0    150    0    0 2 ]T

,  the  midpoint  deviation  between  wm  and  wM  is 
wm  wM   = [ 9    0    –1.2    0    0    0 ]T



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:1, 2008

81

||wm  wM|| =  9.08 
Since  the  deviation  is  very  much  greater  than  the  

threshold  value  , which  is  normally  very  small, insert  wM

as  a  exact  know  point [18].   
Now, the trajectory is divided into (w 0,wM ) and (w M, w1).

Again, using  wM  as  the  input  to the  IK  algorithm (use  the  
five  IK  equations), we  get  the  joint  angle  vector  qM at
the  mid  point  as  [19] 
qM =  [ 0 109    201.8 92.8    0 ]T degs 

V.SIMULATION RESULTS 

A graphical user interface program in C / C++ is developed 
and the simulation results are shown in the Figs. 5 to 8 
respectively.

Fig. 5 Input vectors to the algorithm 

Fig. 6 Tool configuration vectors of the algo 

Fig. 7  One pass of the algorithm 

Fig. 8  Another pass of the algorithm 

VI. GENERATION OF THE .C CODE

/*********************************************** 
DESCRIPTION: This program is designed to do bounded 
deviation algorithm for 5 axis articulated robot.  It calculates 
the TCV.   It also shows the final arm matrix & the shortest 
path between two points in joint space.
************************************************
#include <iostream.h> 
#include <stdio.h> 
#include <conio.h> 
#include <math.h> 
#include <graphvar.h> 
#include<graphics.h> 

const int DOF = 5; 
const double PI = 4 * atan(1.0); 
const char wait[] = "Press any key to continue"; 
const int PAUSE = 1;//indicates function should pause for 
input 
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class Hctm         //homogeeous coordiate trasformatio matrix 
{
   private : double mat[4][4]; 

   public :  Hctm(); 
      Hctm(double m[ ][4]); 
      void initLctm(double ang[ ],double d[ ],double a[ 
],double alp[ ],int k); 
      void initIdentity();//Initialise as identity matrix 
      void printLctm(int k,int k1); 
      void getvalues(double arm[][4]); 
      Hctm operator * (Hctm a); 
};

Hctm::Hctm() 
{
  int i,j; 
  for(i = 0;i < 4;i++) 
      for(j = 0;j < 4;j++) mat[i][j] = 0; 

}

Hctm::Hctm(double a[][4]) 
{
  int i,j; 
  for(i = 0;i < 4;i++) 
      for(j = 0;j < 4;j++) 
 mat[i][j] = a[i][j]; 
}

void Hctm::initIdentity() 
{
   for(int i = 0;i < 4;i++) 
     mat[i][i] = 1; 
}

void Hctm::getvalues(double arm[][4]) 
{
   int i,j; 

   for(i = 0;i < 4;i++) 
 for(j = 0;j < 4;j++) 
  arm[i][j] = mat[i][j]; 

}

void Hctm::initLctm(double ang[],double d[],double 
a[],double alp[],int l) 
{//Initialises mat with Lctm T(k to k-1) 
 int k = l - 1; 
 double co = cos(ang[k]); 
 double so = sin(ang[k]); 
 double ca = cos(alp[k]); 
 double sa = sin(alp[k]); 

 mat[0][0] = co; 

 mat[0][1] = -ca * so; 
 mat[0][2] = sa * so; 
 mat[0][3] = a[k] * co; 
 mat[1][0] = so; 
 mat[1][1] = ca * co; 
 mat[1][2] = -sa * co; 
 mat[1][3] = a[k] * so; 
 mat[2][1] = sa; 
 mat[2][2] = ca; 
 mat[2][3] = d[k]; 
 mat[3][3] = 1; 
}

void Hctm::printLctm(int k,int k1) 
{
   int y = wherey(),i,j,x; 

   gotoxy(10,y + 2);cout<<"T  = "; 
   gotoxy(11,y + 1);cout<<k; 
   gotoxy(11,y + 3);cout<<k1; 
   gotoxy(15,y);cout<<'Ú'; 
   gotoxy(15,y + 5);cout<<'À'; 

   for(i = 0;i < 4;i++) 
   { 
 gotoxy(15,y + i + 1); 
 cout<<"³   "; 
 for(j = 0;j < 4;j++) 
    printf("%- 10.4f   ",mat[i][j]); 
 x = wherex();cout<<'³'; 
   } 
   gotoxy(x,y);cout<<'¿'; 
   gotoxy(x,y + 5);cout<<'Ù'; 
   gotoxy(1,y + 6); 
}

Hctm Hctm::operator * (Hctm a) 
{
  Hctm res; 
  int i,j,k; 
  double sum = 0; 

  for(i = 0;i < 4;i++) 
     for(j = 0;j < 4;j++) 
     { 
 sum = 0; 
 for(k = 0;k < 4;k++) 
     sum += mat[i][k] * a.mat[k][j]; 
 res.mat[i][j] = sum; 
     } 

  return res; 
}

double * IK(double arm[][4],double a[],double d[],double 
tcv[],double ang2[]); 
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double * IK(double ak[],double dk[],double tcv[],double 
ang2[]); 
double *getTCV(double arm[][4]); 
Hctm DK(double a[],double d[],double alp[],double ang[]); 
void BDA(double w1[],double w2[],double ak[],double 
dk[],double alpha[],double ep); 
void getxy(double tcv[],int &x,int &y,int bx,int by); 
void getcabinetxy(double tcv[],double &x,double &y); 
double getDistance(double w1[],double w2[]); 
void printLctm(double mat [][4],int k,int k1); 
void printvector(double an[],int len = DOF,char *m = 
"Q",char sym = 'é'); 
inline void pause(char *s = (char *)wait); 
int gpause(const char *s,int color = YELLOW,int p = 
PAUSE,int y = 465); 
void line(char c = 'Í',int len = 78); 
void swap(double &a,double &b); 

int main(void) 
{
  clrscr(); 
  double dk[DOF] = {26.04,0,0,0,16.83}; 
  double ak[DOF] = {0,22.86,22.86,.95,0}; 
  //double dk[DOF] = {50,0,0,0,25}; 
  //double ak[DOF] = {0,30,30,30,0}; 

  double alpha[DOF] = {-PI/2,0,0,-PI/2,0}; 
  double epsilon = 1; //THRESHOLD VALUE ASSUMED 
  double arm[4][4]; 
  int i,j,k; 

  cout.setf(ios::stdio); 
  cout<<'É';line();cout<<'»'; 
  cout<<"º\t BOUNDED DEVIATION ALOGORITHM 
FOR STRAIGHT LINE MOTION"; 
  gotoxy(80,wherey());cout<<'º'; 
  cout<<'È';line();cout<<"¼\n"; 
  double *w1 = NULL,*w2 = NULL; 
  for(k = 0;k < 2;k++) 
  { 
   cout<<"\n\t\t\t      Enter Arm Matrix For Point "<<(k + 
1)<<"\n";
   cout<<"\t\t\t";line('Í',40);cout<<"\n\n"; 
   for(i = 0;i < 3;i++) 
   { 
      cout<<"\t\t Enter Row "<<(i + 1)<<" : "; 
      for(j = 0;j < 4;j++) 
        cin>>arm[i][j]; 
   } 
   for(i = 0;i < 3;i++) 
  arm[3][i] = 0; 
   arm[3][3] = 1; 
   if (k == 0)  w1 = getTCV(arm); 
   else w2 = getTCV(arm); 
  } 
  pause(); 
  clrscr(); 

  for(k = 0;k < 2;k++) 
  { 
 cout<<'É';line();cout<<'»'; 
 cout<<"º\t\t\t   TOOL CONFIGURATION VECTOR FOR 
POINT " <<(k + 1); 
 gotoxy(80,wherey());cout<<'º'; 
 cout<<'È';line();cout<<"¼\n"; 
 if (k == 0) printvector(w1,6,"TCV",'W'); 
  else printvector(w2,6,"TCV",'W'); 
  } 
  pause(); 
  clrscr(); 

   int gd = DETECT,gm,gerror; 
   initgraph(&gd,&gm,"c:\\tc\\bgi\\"); 
   if ((gerror = graphresult() ) < 0) 
   { 
    printf("\n\t Error in initialising graphics : %s", 
    grapherrormsg(gerror)); 
    return 1; 
   } 

   char head1[] = "BOUNDED DEVIATION 
ALOGORITHM"; 
   char head2[] = "FOR STRAIGHT LINE MOTION"; 
   int c,d,d1; 

   cleardevice(); 
   setcolor(YELLOW);setbkcolor(BLACK); 
   settextstyle(SMALL_FONT,HORIZ_DIR,7); 
   setlinestyle(SOLID_LINE,0,THICK_WIDTH); 
   c = textwidth(head1); d = textheight(head1); 
   d1 = textheight(head2); 
   gprintf(150,10,head1); 
   gprintf(170,15 + d,head2); 
   setcolor(LIGHTCYAN);rectangle(125,5,170 + c,30 + d + 
d1); 

settextstyle(SMALL_FONT,HORIZ_DIR,5);setcolor(LIGHT
MAGENTA); 
   getch(); 
   BDA(w1,w2,ak,dk,alpha,epsilon); 
   gpause("Press Any Key To Continue"); 

   return 0; 
}

double *getTCV(double arm[][4]) 
{
   int i; 
   double *tcv = new double[6]; 
   double a1,t1,t2,a5; 

   for(i = 0;i < 3;i++) 
 tcv[i] = arm[i][3]; 
   a1 = atan2(tcv[1],tcv[0]); 
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   double s1 = sin(a1); 
   double c1 = cos(a1); 
   t1 = s1 * arm[0][0] - c1 * arm[1][0]; 
   t2 = s1 * arm[0][1] - c1 * arm[1][1]; 
   a5 = atan2(t1,t2); 

   for(i = 0;i < 3;i++) 
 tcv[i + 3] = -exp(a5/PI) * arm[i][2]; 

   return tcv; 
}

double * IK(double arm[][4],double ak[],double dk[],double 
tcv[],double ang2[]) 
{
   int i; 
   double *ang = new double[DOF]; 
   double t1,t2,q234,b1,b2,modb; 

   for(i = 0;i < 3;i++) tcv[i] = arm[i][3]; 
   ang[0] = atan2(tcv[1],tcv[0]); 
   ang2[0] = ang[0]; 

   double s1 = sin(ang[0]); 
   double c1 = cos(ang[0]); 
   t1 = s1 * arm[0][0] - c1 * arm[1][0]; 
   t2 = s1 * arm[0][1] - c1 * arm[1][1]; 
   ang[DOF - 1] = atan2(t1,t2); 
   ang2[DOF - 1] = ang[DOF - 1]; 

   for(i = 0;i < 3;i++) 
 tcv[i + 3] = -exp(ang[DOF - 1]/PI) * arm[i][2]; 

   q234 = atan2((c1 * tcv[3] + s1 * tcv[4]),tcv[5]); 

   double c234 = cos(q234); 
   double s234 = sin(q234); 

   b1 = c1 * tcv[0] + s1 * tcv[1] - ak[3] * c234 + dk[DOF - 1] 
* s234; 
   b2 = dk[0] - ak[3] * s234 - dk[DOF - 1] * c234 - tcv[2]; 
   modb = b1 * b1 + b2 * b2; 
   t1 = modb - ak[1] * ak[1] - ak[2] * ak[2]; 
   t2 = 2 * ak[1] * ak[2]; 
   ang[2] = acos(t1 / t2); 
   ang2[2] = -acos(t1 / t2); 

   double s3 = sin(ang[2]); 
   double c3 = cos(ang[2]); 

   t1 = (ak[1] + ak[2] * c3) * b2 - b1 * ak[2] * s3; 
   t2 = (ak[1] + ak[2] * c3) * b1 + b2 * ak[2] * s3; 

   ang[1] = atan2(t1,t2); 
   ang2[1] = ang[1]; 
   ang[3] = q234 - ang[2] - ang[1]; 

   ang2[3] = q234 - ang2[2] - ang2[1]; 

   return ang; 
}

double * IK(double ak[],double dk[],double tcv[],double 
ang2[]) 
{
   double *ang = new double[DOF]; 
   double t1,t2,q234,b1,b2,modb; 

   ang[0] = atan2(tcv[1],tcv[0]); 
   ang2[0] = ang[0]; 

   double s1 = sin(ang[0]); 
   double c1 = cos(ang[0]); 
   t1 = sqrt(tcv[3] * tcv[3] + tcv[4] * tcv[4] + tcv[5] * tcv[5]); 
   ang[DOF - 1] = PI * log(t1); 
   ang2[DOF - 1] = ang[DOF - 1]; 

   q234 = atan2((c1 * tcv[3] + s1 * tcv[4]),tcv[5]); 
   //cout<<"q234 = "<<q234; 
   double c234 = cos(q234); 
   double s234 = sin(q234); 

   b1 = c1 * tcv[0] + s1 * tcv[1] - ak[3] * c234 + dk[DOF - 1] 
* s234; 
   b2 = dk[0] - ak[3] * s234 - dk[DOF - 1] * c234 - tcv[2]; 
   modb = b1 * b1 + b2 * b2; 
   t1 = modb - ak[1] * ak[1] - ak[2] * ak[2]; 
   t2 = 2 * ak[1] * ak[2]; 
   //cout<<"t1 / t2"<<(t1 / t2); 
   ang[2] = acos(t1 / t2); 
   ang2[2] = -acos(t1 / t2); 

   double s3 = sin(ang[2]); 
   double c3 = cos(ang[2]); 

   t1 = (ak[1] + ak[2] * c3) * b2 - b1 * ak[2] * s3; 
   t2 = (ak[1] + ak[2] * c3) * b1 + b2 * ak[2] * s3; 

   ang[1] = atan2(t1,t2); 
   ang2[1] = ang[1]; 
   ang[3] = q234 - ang[2] - ang[1]; 
   ang2[3] = q234 - ang2[2] - ang2[1]; 

   return ang; 
}

Hctm DK(double ak[],double dk[],double alpha[],double 
angle[]) 
{
  int i; 
  Hctm rhino[DOF]; 
  Hctm arm; 
  arm.initIdentity(); 
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  for(i = 0;i < DOF;i++) 
  { 
     rhino[i].initLctm(angle,dk,ak,alpha,i + 1); 
     //rhino[i].printLctm(i + 1,i); 
     //if (i == 2) { pause();clrscr(); } 
     arm = arm * rhino[i]; 
  } 
  return arm; 
}

void BDA(double w1[],double w2[],double ak[],double 
dk[],double alpha[],double ep) 
{
  double 
*ang2=NULL,*w1ang,*w2ang,*wmid,*w12,*w12mid; 
  int i; 

  w1ang = IK(ak,dk,w1,ang2);//getch(); 
  w2ang = IK(ak,dk,w2,ang2);//getch(); 
  wmid = new double[DOF]; 

  for(i = 0;i < DOF;i++) 
 wmid[i] = (w1ang[i] + w2ang[i]) / 2; 
  Hctm arm = DK(ak,dk,alpha,wmid); 
  double armmat[4][4]; 
  arm.getvalues(armmat); 
  w12 = getTCV(armmat); 
  setlinestyle(SOLID_LINE,0,NORM_WIDTH); 
  setfillstyle(SOLID_FILL,LIGHTCYAN); 
  int x1,y1,x2,y2,x3,y3,x4,y4; 
  getxy(w1,x1,y1,320,280); 
  getxy(w2,x2,y2,320,280); 
  getxy(w12,x3,y3,320,280); 
  setcolor(LIGHTCYAN); 

  double ax3,ay3,ax1,ay1,ax2,ay2; 
  getcabinetxy(w1,ax1,ay1); 
  getcabinetxy(w2,ax2,ay2); 
  ax3 = (ax1 + ax2) / 2; 
  ay3 = (ay1 + ay2) / 2; 
  x4 = ceil(ax3 + 320); 
  y4 = ceil(280 - ay3); 

  fillellipse(x1,y1,3,3); 
  fillellipse(x2,y2,3,3);//getch(); 
  fillellipse(x4,y4,3,3); 
  setcolor(RED); 
  circle(x1,y1,1); 
  circle(x2,y2,1); 
  circle(x4,y4,1); 
  //setcolor(LIGHTCYAN); 
  //circle(x1,y1,2); 
  //circle(x2,y2,2); 
  //circle(x3,y3,2); 

  //getcabinetxy(w12,ax3,ay3); 

  double d = sqrt((ax3 - ax1) * (ax3 - ax1) + (ay3 - ay1) * (ay3 
- ay1)); 
  //circle(x4,y4,1); 
  gprintf(20,400,"x1 = %4.2f y1 = %4.2f x2 = %4.2f y2 = 
%4.2f x3 = %4.2f y3 = %4.2f",ax1,ay1,ax2,ay2,ax3,ay3); 
  if (ay2 < ay1) { 
   swap(ax1,ax2); 
   swap(ay1,ay2); 
   //for(i = 0;i < 6;i++) 
       // swap(w1[i],w2[i]); 
   } 
  double angxy = atan2(ay2 - ay3,ax2 - ax3); 
  angxy = angxy * 180 / PI; 
  setcolor(LIGHTMAGENTA); 
  if (ax1 > 0)  arc(x4,y4,angxy + 180,angxy,ceil(d)); 
   else arc(x4,y4,180 - angxy,360 - angxy,ceil(d)); 
  getch(); 
  setcolor(BLACK); 
  gprintf(20,400,"x1 = %4.2f y1 = %4.2f x2 = %4.2f y2 = 
%4.2f x3 = %4.2f y3 = %4.2f",ax1,ay1,ax2,ay2,ax3,ay3); 

  if (getDistance(w1,w2) > ep) 
       { 
  for(i = 0;i < 3;i++) 
   w12[i] = (w1[i] + w2[i]) / 2; 
  BDA(w1,w12,ak,dk,alpha,ep); 
  BDA(w12,w2,ak,dk,alpha,ep); 
       } 

}

void getcabinetxy(double tcv[],double &x,double &y) 
{
  //x = 2 * (tcv[0] + tcv[1] * cos(PI/4)); 
  //y = tcv[2] + tcv[1] * cos(PI/4); 
  x = 2 * (tcv[0]); 
  y = tcv[2]; 

}

void getxy(double tcv[],int &x,int &y,int bx,int by) 
{
  double a1,b1; 
  getcabinetxy(tcv,a1,b1); 
  x = bx + (int)ceil(a1); 
  y = by - (int)ceil(b1); 

}

double getDistance(double w1[],double w2[]) 
{
     double t = 0; 

     for(int i = 0;i < 3;i++) 
 t += (w1[i] - w2[i]) * (w1[i] - w2[i]); 
     return (sqrt(t)); 
}
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void swap(double &a,double &b) 
{
  double c = a; 
  a = b; 
  b = c; 
}

void printLctm(double mat [][4],int k,int k1) 
{
   int y = wherey(),i,j,x; 

   gotoxy(10,y + 2);cout<<"T  = "; 
   gotoxy(11,y + 1);cout<<k; 
   gotoxy(11,y + 3);cout<<k1; 
   gotoxy(15,y);cout<<'Ú'; 
   gotoxy(15,y + 5);cout<<'À'; 

   for(i = 0;i < 4;i++) 
   { 
 gotoxy(15,y + i + 1); 
 cout<<"³   "; 
 for(j = 0;j < 4;j++) 
    printf("%- 10.4f   ",mat[i][j]); 
 x = wherex();cout<<'³'; 
   } 
   gotoxy(x,y);cout<<'¿'; 
   gotoxy(x,y + 5);cout<<'Ù'; 
   gotoxy(1,y + 6); 
}

void printvector(double an[],int len,char *m,char sym) 
{
   int y = wherey(),i,x; 

   gotoxy(20,y + 2);cout<<m<<"  =  ";x = wherex(); 
   gotoxy(x,y);cout<<'Ú'; 
   gotoxy(x,y + len + 1);cout<<'À'; 

   for(i = 0;i < len;i++) 
   { 
 gotoxy(x,y + i + 1); 
 printf("³   %c%-4d =   %- 12.4f   ³",sym,i + 1,an[i]); 
   } 

   x = wherex() - 1; 
   gotoxy(x,y);cout<<'¿'; 
   gotoxy(x,y + len + 1);cout<<'Ù'; 
   gotoxy(1,y + len + 2); 
}

void line(char c,int len) 
{
   for( ;len;len--) 
 cout<<c; 
}

void pause(char s[]) 

{
  gotoxy(30,25); 
  cout<<s;getch(); 
}

int gpause(const char *s,int color,int p,int y) 
{
    struct textsettingstype old;//In graphics.h 

    gettextsettings(&old); 
    settextstyle(SMALL_FONT,HORIZ_DIR,4); 
    int c = getcolor(),d = textwidth(s); 

    setcolor(color); 
 outtextxy((getmaxx() - d)/2,y,s); 
    settextstyle(old.font,old.direction,old.charsize);setcolor(c); 
 if ((color == getbkcolor()) || p != PAUSE)  return 0; 
   else return getch(); 

VII. CONCLUSION

A simulation of an efficient method of the BDA was 
demonstrated in this paper using an articulated robot which 
was designed and fabricated in the college laboratory.  A 
method of computing the straight line motion between two 
given points in a 3D space using an articulated robot is 
demonstrated in this paper.  Analytical method is also shown 
here for convenience along with the simulation study.   The 
real time implementation of the same was also carried out 
using an indigenously developed 5 axis articulated robot in the 
college.  The mathematical results & the experimental results / 
simulated results show the effectiveness of the developed 
method [2]. 
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