
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:1, 2008

77

Abstract—This paper presents an efficient method of obtaining a
straight-line motion in the tool configuration space using an
articulated robot between two specified points. The simulation results
& the implementation results show the effectiveness of the method.

Keywords—Bounded deviation algorithm, Straight line motion,
Tool configuration space, Joint space, TCV.

I. INTRODUCTION

TRAIGHT line motion is defined as the motion along a
straight line or movement of a rigid body along a straight

line and represents the shortest distance between the two
points in the 3D workspace of any robot. The straight line
motion from the source (pick) to the goal (place) covered in
a specific amount of time is known as the straight line
trajectory, i.e., if temporal information is added to the straight
line path by specifying the times at where the gripper or tool-
tip is along the straight line path, then the straight line path
gets converted into a straight line trajectory [1].

Straight-line motion is always required in TCS R6. By
controlling all the joints in a coordinated manner, the tool-tip
can be made to move along a straight-line path. If the distance
between the adjacent points in the joint space Rn is
approximately small, then a straight-line path or trajectory in
the TCS R6 can be designed. How we get straight-line motion
is to use the IK equations. In these paragraphs, we give info
about the trajectory in joint space, which generates a straight-
line trajectory in TCS by using the IK equations [3].

The applications of straight line motions are listed as
follows.
(a) Conveyor belt operations.
(b) Straight line seam arc welding.
(c) Inserting peg into a hole.
(d) Threading a nut onto a bolt.
(e) Performing screw transformations.
(f) For inserting electronic components onto PCB.

(g) Doing robotic manipulation from above the object (used

T.C. Manjunath, a Ph.D. from IIT Bombay is currently, Professor
& Head in Electronics and Communications Engg. Dept. of New
Horizon College of Engg., Bangalore-87, Karnataka, India.

 E-mail: tcmanjunath@rediffmail.com ; tcmanjunath@gmail.com.

C. Ardil is with the National Academy of Aviation, AZ 1056
Baku, Azerbaijan.

 where exact perpendicularity is required).
(h) Inspection of manufactured components which are

coming on a conveyor belt (using computer / robot
vision).

 The paper is organized in the following sequence. A brief
introduction about the straight line motion was presented in
the previous paragraphs along with the applications. A review
of the straight line motion theory is presented in the section 2.
The bounded deviation algorithm used in the paper is
discussed in section 3. A mathematical formulation of the
simulation study is depicted in section 4 followed by the
simulation results in section 5. Section 6 gives the .C code
used to develop the straight line path. This section is followed
by the conclusions in section 7 and then the references.

II. REVIEW OF STRAIGHT LINE MOTION THEORY

Consider the Fig. 1. Let w0 and w1 be the two points in the
space between which the robot has to draw a straight line.
Here, we use the following parameters as [2];

 w0 : is the source point (initial point) ; i.e., the
TCV at the point 0 ;

 w1 : is the goal point (final point) ; i.e., the
TCV at the point 1 ;

 w0 and w1 : both are (6 1) vectors in TCS, R6.
 T : is the total time taken to move from w0

to w1, i.e., the total time taken to traverse
the path, obviously T > 0.

 = { w0, w1 } = path taken by tool.

The equation for SL path / straight line trajectory w(t) of the
tool as shown in the Fig. 1 is represented by an equation of 1st

degree or of 1st order, i.e., no squared terms in the expression,
i.e., we are writing an expression for the straight line path or
trajectory in terms of the SDF and the TCV [2].
 w (t) = [1 – S(t)] w0 + s(t) w1 ; 0 t T (1)
where s(t) is a differentiable Speed Distribution mapping
Function [SDF] which maps (0 , T) into (0 , 1) & is given
by [2]

ts(t)=
T

 (2)

At the start of the trajectory, t = 0 ;
i.e., s (0) = 0 (start ; initial ; pick ; source point)

, w(t) = [1 – 0] w0 + 0 w1 = w0 (3)
........ corresponds to start of the path [2].

At the end of the trajectory, t = T,
i.e., s (T) = 1

Optimal Straight Line Trajectory Generation in
3D Space using Deviation Algorithm

T.C.Manjunath Ph.D. (IIT Bombay) & Fellow IETE , C. Ardil

S

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:1, 2008

78

i.e., the end ; goal ; destination ; place ; final point.
, w(t) = [1 – 1] w0 + 1 w1 = w1 (4)

......... corresponds to end of the path [2].
Hence, it is verified that the Eqn (1) is of the first order or

first degree, i.e., a straight line equation of the form y = mx +
c, where c is the intercept, m is the slope.

III. BOUNDED DEVIATION ALGORITHM [BDA] AND ITS BASIC
WORKING PRINCIPLE

BDA is an algorithm, which is used to obtain an
approximated straight-line motion in TCS R6 by using an
articulated robot by selecting the number of knot points
properly [4], minimizing them and distributing them along the
trajectory in an optimal manner [2].

w1

mi
dd

le
of

 th
e

pa
th

/ t
ra

jec
tor

y
0 <

 s(
t)

< T
0

<
t <

 T
v,

a =
 fin

ite
, e

xis
ts

ca
nn

ot
be

 in
fin

ity

w0

g go
al

de
sti

na
tio

n
s(T

) =
 1

v,
a =

 0
t =

 T

s
so

ur
ce

s(0
) =

 1
v,

a =
 0

t =
 0

sta
rt of pa

th
/

tra
jec

tor
y

en
d of pa

th
/

tra
jec

to
ry

T
se

cs

Fig. 1 Straight line motion, a graphical representation

A. Principle of BDA
It is easier to produce a straight line motion (SL path or SL

trajectory) in case of xyz, PTP, cylindrical, polar or spherical
or SCARA or Stanford robots. But, in case of articulated
robots, it is very difficult to obtain a straight line motion in the
TCS. All the joints has to be activated simultaneously in a
coordinated manner in order to make the tool-tip to move in a
straight line. For achieving a straight line motion in the TCS,
the following procedure is used [2].

A straight line path in joint space Rn will not produce a
straight line path in tool configuration space R6. Hence, the
straight line path in TCS is obtained by using approximation

techniques using an algorithm called as the Bounded
Deviation Algorithm [BDA].

BDA was proposed by Taylor and it gives the deviation or
the error between the actual straight line trajectory and the
trajectory generated by straight line motion in joint space.
Deviation is likely to be maximum somewhere near the mid-
point of the joint space trajectory [5]. Check the error or
deviation at this mid-point of the joint space trajectory [2].

If it exceeds a prescribed tolerance limit, then the exact
mid-point is added as knot point. Repeat the test recursively
on the newly generated segments until all the knot points and
the mid point deviations are within tolerance limit. If the error
or deviation is minimum and bounded (within the tolerance
limit of) ; then, we get a approximated straight line path
between w0 and w1 [6].

If distance between adjacent points in JS (joint space) is
small, a straight line path segment in JS can be approximated
to a straight line path in TCS. Therefore, we can approximate
a straight line path by visiting a number of closely spaced knot
points in proper sequence in joint space as shown in Fig. . The
result is the straight line trajectory in TCS. Since there is no
direct control over the tool-tip and the only thing that we can
control is the joint (since motor / piston is connected to it), an
approximated joint space trajectory can be used to obtain a
straight line trajectory in the TCS [7].

2
w1

1
7
5
6
2

3
4

Path traced
by

tool-tip
p

w0 ()q0

()q1

z0

x0

Fig. 2 Interpolation of joint space approximation
to the straight line motion

Inverse kinematics equations [2] have to be solved at each
point after minimizing the number of knot points on the
trajectory and distributing them along the trajectory in an
optimal manner. The flow-chart of the BDA algorithm used is
shown in the Fig. 3.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:1, 2008

79

B. Bounded Deviation Algorithm for Obtaining Straight Line
Motion [2]

1. Select a tolerance limit (called as threshold value) for
straight line motion as > 0 [8].

2. Given, the start point and end point of trajectory as w0

and w1 [TCV’s at the starting and ending points], use the
inverse kinematics equations to compute q0, q1 ; i.e., the
joint vectors associated with {w0, w1}.

 w0 IKP q0 ;
 w1 IKP q1.
3. Compute the joint space mid-point as

0 1
m

q +qq =
2

4. Use the information from qm and tool configuration
vector w to find the equivalent TC space mid-point as

 wm = w(qm)
 i.e., using qm, find the TCV, w(qm) ; substitute qm in the
 TCV of that particular robot which is used to obtain the
 straight line motion and obtain wm.
5. Find the exact TCS mid-point as

0 1
M w + ww =

2
6. If the error or deviation wm – wM ; then, stop.
7. Else, insert wM as a exact knot point between w0 and w1.

Now, the trajectory is broken up into two parts, viz., {w0,
wM} and {wM, w1}.

8. Repeat the steps (1 to 6) recursively to the newly
generated trajectory segments {w0, wM} and {wM, w1} till
all the newly generated trajectory segments are within
limit of .

Bounded deviation algorithm does not distribute knot points
uniformly over the interval {w0, w1}. Instead, it places where
they are most needed to reduce the deviation between the
exact trajectory and the joint space trajectory [9]. Distribution
of knot points is not uniform and depends on , geometry of
robot, the limitations of the joints and its constraints, straight
line path and location, w0 and w1 [2].

Referring to the Fig. 2, we get the joint space interpolated
motion between {w0, w1} deviates outside the cylinder of
radius [10]. Therefore, insert knot point 1 as mid-point.
Again, joint space interpolated motion between {w0, 1} is
outside the cylinder of radius . Therefore, insert knot point 2
as mid-point [2].

Again, joint space interpolated motion between {w0, 2} is
outside the cylinder of radius . Therefore, insert knot point 3
as the mid point. Now, joint space interpolated motion
between {w0, 3} is within the tolerance limit of [2].

Therefore, the path from w0 to 3 is a approximated straight
line path. Like this, continue till all the newly generated
paths are within the cylinder of radius . If is very very
small (0, i.e., 0.000001, say), then the number of knot points
will be very very close ; then, the path traced by the tool-tip
from w0 to w1 will be an exact straight line as the number of
iterations will be more [2].

Start

Is
deviation

<

Insert knot point

Calculate deviation
from straight line path

Is
deviation

<

Stop

No

Yes

Yes

No

Fig. 3 BDA flow chart

IV. A MATHEMATICAL FORMULATION OF THE SIMULATION
STUDY

A simulation is performed on a five axis articulated robot
which was designed and fabricated in the college laboratory as
shown in Fig. 4 [11].

Fig. 4 Photographic view of the designed robot

One pass of BDA is shown analytically here to find a joint
space knot point for approximating the following straight-line
trajectory [13]. We consider the tool configuration vectors at
the starting point and the ending point to be specified by the
user as [12]

 w0 = [600 , 0 , 250 , 0 , 0 , 2]T

 w1 = [600 , 0 , 50 , 0 , 0 , 2]T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:1, 2008

80

The physical dimensions of the designed system are as
follows.

 d = [495.2 0 0 0 368.2]T and
 a = [0 457.2 457.2 19 0]T ?
The tool configuration deviation at the joint-space midpoint

is obtained as follows [14]. The general inverse kinematic
equations [2] for any five axis articulated robot is [2]
Base angle 1 (rotary) :

 q1 = 1 2

1

wtan
w

GTP angle 234 :

 q234 = 1 4 1 51

6

C w +S w
tan

w

 = – arc tan 2 (–b0 , –w6)
Intermediate variables are :
 b1 = C1 w1 + S1 w2 – a4 C234 + d5 S234

 b2 = d1 – a4 S234 – d5 C234 – w3
Shoulder angle 2 (rotary) :

 q2 = 2 3 3 2 3 3 11

2 3 3 1 3 3 2

a + a C b a S b
tan

a + a C b a S b

Elbow angle 3 (rotary) :

 q3 =
2 2 2 2

1 1 2 2 3

2 3

b b a acos
2a a

Tool pitch angle 4 (rotary) :
 q4 = q234 – q2 – q3

Tool roll angle 5 (rotary) :

 q5 = 2 2 2
4 5 6n w +w +wl

Find the joint vectors q0 and q1 associated with w0

and w1 by using the above inverse kinematic equations.

Give w0 as the input to IK algorithm of a five axis
articulated robot and calculate q0 [15], [22]. We get the
parameters base angle, global tool pitch angle, intermediate
variables, elbow angle, shoulder angle, tool pitch angle & the
tool roll angle w.r.t. the TCV w0 [2], [21].

Then, give w1 as the input to IK algorithm of a five
axis articulated robot and calculate q1 [17], [20] We get the
parameters base angle, global tool pitch angle, intermediate
variables, elbow angle, shoulder angle, tool pitch angle & the
tool roll angle w.r.t. the TCV w1 [2].

Then, compute the joint space midpoint of the trajectory,
i.e., qm as the average of q0 and q1. The TCV w(q) of a five
axis articulated robot is then used to compute the tool
configuration vector at the actual mid point as wm [2].

1 2 2 3 23 4 234 5 234

1 2 2 3 23 4 234 5 234

1 2 2 3 23 4 234 5 234

5
1 234

5
1 234

5

...

() exp

exp

exp

C a C a C a C d S

S a C a C a C d S

d a S a S a S d C

qw q C S

q S S

q
234C

q1 = 0°
q234 = 0°
b1 = 581
b2 = 58.4
q3 = 201.24°
q2 = – 89.14 (assume q3 = + 201.24°)
q4 = –118.08°
q5 = 0°
w0 IKP q0 = [0 89.14 201.24 118.08 0]T degs

Give w1 as the input to IK algorithm of a five axis
articulated robot and calculate q1 [2].
q1 = 0°
q234 = 0°
b1 = 581
b2 = –141.6
q3 = 196.6°
q2 = – 127.7 (assume q3 = + 196.6°)
q4 = –71° ,
q5 = 0°
w1 IKP q1 = [0 125.6 196.6 71 0]T degs

The joint space midpoint of trajectory is [16]
0 1

m
q +qq =

2
=[0 107.2 198.8 91.6 0]T degs

The TCV of a five axis articulated robot is
Putting the value of qm , d1 , d5 , a2 , a3 , a4 in w(q) , we
get
wm = [609 0 148.8 0 0 2]T = w(qm)
The exact TCS midpoint is

0 1
M w + ww =

2
 = [600 0 150 0 0 2]T

, the midpoint deviation between wm and wM is
wm wM = [9 0 –1.2 0 0 0]T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:1, 2008

81

||wm wM|| = 9.08
Since the deviation is very much greater than the

threshold value , which is normally very small, insert wM

as a exact know point [18].
Now, the trajectory is divided into (w 0,wM) and (w M, w1).

Again, using wM as the input to the IK algorithm (use the
five IK equations), we get the joint angle vector qM at
the mid point as [19]
qM = [0 109 201.8 92.8 0]T degs

V.SIMULATION RESULTS

A graphical user interface program in C / C++ is developed
and the simulation results are shown in the Figs. 5 to 8
respectively.

Fig. 5 Input vectors to the algorithm

Fig. 6 Tool configuration vectors of the algo

Fig. 7 One pass of the algorithm

Fig. 8 Another pass of the algorithm

VI. GENERATION OF THE .C CODE

/***
DESCRIPTION: This program is designed to do bounded
deviation algorithm for 5 axis articulated robot. It calculates
the TCV. It also shows the final arm matrix & the shortest
path between two points in joint space.
**
#include <iostream.h>
#include <stdio.h>
#include <conio.h>
#include <math.h>
#include <graphvar.h>
#include<graphics.h>

const int DOF = 5;
const double PI = 4 * atan(1.0);
const char wait[] = "Press any key to continue";
const int PAUSE = 1;//indicates function should pause for
input

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:1, 2008

82

class Hctm //homogeeous coordiate trasformatio matrix
{
 private : double mat[4][4];

 public : Hctm();
 Hctm(double m[][4]);
 void initLctm(double ang[],double d[],double a[
],double alp[],int k);
 void initIdentity();//Initialise as identity matrix
 void printLctm(int k,int k1);
 void getvalues(double arm[][4]);
 Hctm operator * (Hctm a);
};

Hctm::Hctm()
{
 int i,j;
 for(i = 0;i < 4;i++)
 for(j = 0;j < 4;j++) mat[i][j] = 0;

}

Hctm::Hctm(double a[][4])
{
 int i,j;
 for(i = 0;i < 4;i++)
 for(j = 0;j < 4;j++)
 mat[i][j] = a[i][j];
}

void Hctm::initIdentity()
{
 for(int i = 0;i < 4;i++)
 mat[i][i] = 1;
}

void Hctm::getvalues(double arm[][4])
{
 int i,j;

 for(i = 0;i < 4;i++)
 for(j = 0;j < 4;j++)
 arm[i][j] = mat[i][j];

}

void Hctm::initLctm(double ang[],double d[],double
a[],double alp[],int l)
{//Initialises mat with Lctm T(k to k-1)
 int k = l - 1;
 double co = cos(ang[k]);
 double so = sin(ang[k]);
 double ca = cos(alp[k]);
 double sa = sin(alp[k]);

 mat[0][0] = co;

 mat[0][1] = -ca * so;
 mat[0][2] = sa * so;
 mat[0][3] = a[k] * co;
 mat[1][0] = so;
 mat[1][1] = ca * co;
 mat[1][2] = -sa * co;
 mat[1][3] = a[k] * so;
 mat[2][1] = sa;
 mat[2][2] = ca;
 mat[2][3] = d[k];
 mat[3][3] = 1;
}

void Hctm::printLctm(int k,int k1)
{
 int y = wherey(),i,j,x;

 gotoxy(10,y + 2);cout<<"T = ";
 gotoxy(11,y + 1);cout<<k;
 gotoxy(11,y + 3);cout<<k1;
 gotoxy(15,y);cout<<'Ú';
 gotoxy(15,y + 5);cout<<'À';

 for(i = 0;i < 4;i++)
 {
 gotoxy(15,y + i + 1);
 cout<<"³ ";
 for(j = 0;j < 4;j++)
 printf("%- 10.4f ",mat[i][j]);
 x = wherex();cout<<'³';
 }
 gotoxy(x,y);cout<<'¿';
 gotoxy(x,y + 5);cout<<'Ù';
 gotoxy(1,y + 6);
}

Hctm Hctm::operator * (Hctm a)
{
 Hctm res;
 int i,j,k;
 double sum = 0;

 for(i = 0;i < 4;i++)
 for(j = 0;j < 4;j++)
 {
 sum = 0;
 for(k = 0;k < 4;k++)
 sum += mat[i][k] * a.mat[k][j];
 res.mat[i][j] = sum;
 }

 return res;
}

double * IK(double arm[][4],double a[],double d[],double
tcv[],double ang2[]);

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:1, 2008

83

double * IK(double ak[],double dk[],double tcv[],double
ang2[]);
double *getTCV(double arm[][4]);
Hctm DK(double a[],double d[],double alp[],double ang[]);
void BDA(double w1[],double w2[],double ak[],double
dk[],double alpha[],double ep);
void getxy(double tcv[],int &x,int &y,int bx,int by);
void getcabinetxy(double tcv[],double &x,double &y);
double getDistance(double w1[],double w2[]);
void printLctm(double mat [][4],int k,int k1);
void printvector(double an[],int len = DOF,char *m =
"Q",char sym = 'é');
inline void pause(char *s = (char *)wait);
int gpause(const char *s,int color = YELLOW,int p =
PAUSE,int y = 465);
void line(char c = 'Í',int len = 78);
void swap(double &a,double &b);

int main(void)
{
 clrscr();
 double dk[DOF] = {26.04,0,0,0,16.83};
 double ak[DOF] = {0,22.86,22.86,.95,0};
 //double dk[DOF] = {50,0,0,0,25};
 //double ak[DOF] = {0,30,30,30,0};

 double alpha[DOF] = {-PI/2,0,0,-PI/2,0};
 double epsilon = 1; //THRESHOLD VALUE ASSUMED
 double arm[4][4];
 int i,j,k;

 cout.setf(ios::stdio);
 cout<<'É';line();cout<<'»';
 cout<<"º\t BOUNDED DEVIATION ALOGORITHM
FOR STRAIGHT LINE MOTION";
 gotoxy(80,wherey());cout<<'º';
 cout<<'È';line();cout<<"¼\n";
 double *w1 = NULL,*w2 = NULL;
 for(k = 0;k < 2;k++)
 {
 cout<<"\n\t\t\t Enter Arm Matrix For Point "<<(k +
1)<<"\n";
 cout<<"\t\t\t";line('Í',40);cout<<"\n\n";
 for(i = 0;i < 3;i++)
 {
 cout<<"\t\t Enter Row "<<(i + 1)<<" : ";
 for(j = 0;j < 4;j++)
 cin>>arm[i][j];
 }
 for(i = 0;i < 3;i++)
 arm[3][i] = 0;
 arm[3][3] = 1;
 if (k == 0) w1 = getTCV(arm);
 else w2 = getTCV(arm);
 }
 pause();
 clrscr();

 for(k = 0;k < 2;k++)
 {
 cout<<'É';line();cout<<'»';
 cout<<"º\t\t\t TOOL CONFIGURATION VECTOR FOR
POINT " <<(k + 1);
 gotoxy(80,wherey());cout<<'º';
 cout<<'È';line();cout<<"¼\n";
 if (k == 0) printvector(w1,6,"TCV",'W');
 else printvector(w2,6,"TCV",'W');
 }
 pause();
 clrscr();

 int gd = DETECT,gm,gerror;
 initgraph(&gd,&gm,"c:\\tc\\bgi\\");
 if ((gerror = graphresult()) < 0)
 {
 printf("\n\t Error in initialising graphics : %s",
 grapherrormsg(gerror));
 return 1;
 }

 char head1[] = "BOUNDED DEVIATION
ALOGORITHM";
 char head2[] = "FOR STRAIGHT LINE MOTION";
 int c,d,d1;

 cleardevice();
 setcolor(YELLOW);setbkcolor(BLACK);
 settextstyle(SMALL_FONT,HORIZ_DIR,7);
 setlinestyle(SOLID_LINE,0,THICK_WIDTH);
 c = textwidth(head1); d = textheight(head1);
 d1 = textheight(head2);
 gprintf(150,10,head1);
 gprintf(170,15 + d,head2);
 setcolor(LIGHTCYAN);rectangle(125,5,170 + c,30 + d +
d1);

settextstyle(SMALL_FONT,HORIZ_DIR,5);setcolor(LIGHT
MAGENTA);
 getch();
 BDA(w1,w2,ak,dk,alpha,epsilon);
 gpause("Press Any Key To Continue");

 return 0;
}

double *getTCV(double arm[][4])
{
 int i;
 double *tcv = new double[6];
 double a1,t1,t2,a5;

 for(i = 0;i < 3;i++)
 tcv[i] = arm[i][3];
 a1 = atan2(tcv[1],tcv[0]);

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:1, 2008

84

 double s1 = sin(a1);
 double c1 = cos(a1);
 t1 = s1 * arm[0][0] - c1 * arm[1][0];
 t2 = s1 * arm[0][1] - c1 * arm[1][1];
 a5 = atan2(t1,t2);

 for(i = 0;i < 3;i++)
 tcv[i + 3] = -exp(a5/PI) * arm[i][2];

 return tcv;
}

double * IK(double arm[][4],double ak[],double dk[],double
tcv[],double ang2[])
{
 int i;
 double *ang = new double[DOF];
 double t1,t2,q234,b1,b2,modb;

 for(i = 0;i < 3;i++) tcv[i] = arm[i][3];
 ang[0] = atan2(tcv[1],tcv[0]);
 ang2[0] = ang[0];

 double s1 = sin(ang[0]);
 double c1 = cos(ang[0]);
 t1 = s1 * arm[0][0] - c1 * arm[1][0];
 t2 = s1 * arm[0][1] - c1 * arm[1][1];
 ang[DOF - 1] = atan2(t1,t2);
 ang2[DOF - 1] = ang[DOF - 1];

 for(i = 0;i < 3;i++)
 tcv[i + 3] = -exp(ang[DOF - 1]/PI) * arm[i][2];

 q234 = atan2((c1 * tcv[3] + s1 * tcv[4]),tcv[5]);

 double c234 = cos(q234);
 double s234 = sin(q234);

 b1 = c1 * tcv[0] + s1 * tcv[1] - ak[3] * c234 + dk[DOF - 1]
* s234;
 b2 = dk[0] - ak[3] * s234 - dk[DOF - 1] * c234 - tcv[2];
 modb = b1 * b1 + b2 * b2;
 t1 = modb - ak[1] * ak[1] - ak[2] * ak[2];
 t2 = 2 * ak[1] * ak[2];
 ang[2] = acos(t1 / t2);
 ang2[2] = -acos(t1 / t2);

 double s3 = sin(ang[2]);
 double c3 = cos(ang[2]);

 t1 = (ak[1] + ak[2] * c3) * b2 - b1 * ak[2] * s3;
 t2 = (ak[1] + ak[2] * c3) * b1 + b2 * ak[2] * s3;

 ang[1] = atan2(t1,t2);
 ang2[1] = ang[1];
 ang[3] = q234 - ang[2] - ang[1];

 ang2[3] = q234 - ang2[2] - ang2[1];

 return ang;
}

double * IK(double ak[],double dk[],double tcv[],double
ang2[])
{
 double *ang = new double[DOF];
 double t1,t2,q234,b1,b2,modb;

 ang[0] = atan2(tcv[1],tcv[0]);
 ang2[0] = ang[0];

 double s1 = sin(ang[0]);
 double c1 = cos(ang[0]);
 t1 = sqrt(tcv[3] * tcv[3] + tcv[4] * tcv[4] + tcv[5] * tcv[5]);
 ang[DOF - 1] = PI * log(t1);
 ang2[DOF - 1] = ang[DOF - 1];

 q234 = atan2((c1 * tcv[3] + s1 * tcv[4]),tcv[5]);
 //cout<<"q234 = "<<q234;
 double c234 = cos(q234);
 double s234 = sin(q234);

 b1 = c1 * tcv[0] + s1 * tcv[1] - ak[3] * c234 + dk[DOF - 1]
* s234;
 b2 = dk[0] - ak[3] * s234 - dk[DOF - 1] * c234 - tcv[2];
 modb = b1 * b1 + b2 * b2;
 t1 = modb - ak[1] * ak[1] - ak[2] * ak[2];
 t2 = 2 * ak[1] * ak[2];
 //cout<<"t1 / t2"<<(t1 / t2);
 ang[2] = acos(t1 / t2);
 ang2[2] = -acos(t1 / t2);

 double s3 = sin(ang[2]);
 double c3 = cos(ang[2]);

 t1 = (ak[1] + ak[2] * c3) * b2 - b1 * ak[2] * s3;
 t2 = (ak[1] + ak[2] * c3) * b1 + b2 * ak[2] * s3;

 ang[1] = atan2(t1,t2);
 ang2[1] = ang[1];
 ang[3] = q234 - ang[2] - ang[1];
 ang2[3] = q234 - ang2[2] - ang2[1];

 return ang;
}

Hctm DK(double ak[],double dk[],double alpha[],double
angle[])
{
 int i;
 Hctm rhino[DOF];
 Hctm arm;
 arm.initIdentity();

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:1, 2008

85

 for(i = 0;i < DOF;i++)
 {
 rhino[i].initLctm(angle,dk,ak,alpha,i + 1);
 //rhino[i].printLctm(i + 1,i);
 //if (i == 2) { pause();clrscr(); }
 arm = arm * rhino[i];
 }
 return arm;
}

void BDA(double w1[],double w2[],double ak[],double
dk[],double alpha[],double ep)
{
 double
*ang2=NULL,*w1ang,*w2ang,*wmid,*w12,*w12mid;
 int i;

 w1ang = IK(ak,dk,w1,ang2);//getch();
 w2ang = IK(ak,dk,w2,ang2);//getch();
 wmid = new double[DOF];

 for(i = 0;i < DOF;i++)
 wmid[i] = (w1ang[i] + w2ang[i]) / 2;
 Hctm arm = DK(ak,dk,alpha,wmid);
 double armmat[4][4];
 arm.getvalues(armmat);
 w12 = getTCV(armmat);
 setlinestyle(SOLID_LINE,0,NORM_WIDTH);
 setfillstyle(SOLID_FILL,LIGHTCYAN);
 int x1,y1,x2,y2,x3,y3,x4,y4;
 getxy(w1,x1,y1,320,280);
 getxy(w2,x2,y2,320,280);
 getxy(w12,x3,y3,320,280);
 setcolor(LIGHTCYAN);

 double ax3,ay3,ax1,ay1,ax2,ay2;
 getcabinetxy(w1,ax1,ay1);
 getcabinetxy(w2,ax2,ay2);
 ax3 = (ax1 + ax2) / 2;
 ay3 = (ay1 + ay2) / 2;
 x4 = ceil(ax3 + 320);
 y4 = ceil(280 - ay3);

 fillellipse(x1,y1,3,3);
 fillellipse(x2,y2,3,3);//getch();
 fillellipse(x4,y4,3,3);
 setcolor(RED);
 circle(x1,y1,1);
 circle(x2,y2,1);
 circle(x4,y4,1);
 //setcolor(LIGHTCYAN);
 //circle(x1,y1,2);
 //circle(x2,y2,2);
 //circle(x3,y3,2);

 //getcabinetxy(w12,ax3,ay3);

 double d = sqrt((ax3 - ax1) * (ax3 - ax1) + (ay3 - ay1) * (ay3
- ay1));
 //circle(x4,y4,1);
 gprintf(20,400,"x1 = %4.2f y1 = %4.2f x2 = %4.2f y2 =
%4.2f x3 = %4.2f y3 = %4.2f",ax1,ay1,ax2,ay2,ax3,ay3);
 if (ay2 < ay1) {
 swap(ax1,ax2);
 swap(ay1,ay2);
 //for(i = 0;i < 6;i++)
 // swap(w1[i],w2[i]);
 }
 double angxy = atan2(ay2 - ay3,ax2 - ax3);
 angxy = angxy * 180 / PI;
 setcolor(LIGHTMAGENTA);
 if (ax1 > 0) arc(x4,y4,angxy + 180,angxy,ceil(d));
 else arc(x4,y4,180 - angxy,360 - angxy,ceil(d));
 getch();
 setcolor(BLACK);
 gprintf(20,400,"x1 = %4.2f y1 = %4.2f x2 = %4.2f y2 =
%4.2f x3 = %4.2f y3 = %4.2f",ax1,ay1,ax2,ay2,ax3,ay3);

 if (getDistance(w1,w2) > ep)
 {
 for(i = 0;i < 3;i++)
 w12[i] = (w1[i] + w2[i]) / 2;
 BDA(w1,w12,ak,dk,alpha,ep);
 BDA(w12,w2,ak,dk,alpha,ep);
 }

}

void getcabinetxy(double tcv[],double &x,double &y)
{
 //x = 2 * (tcv[0] + tcv[1] * cos(PI/4));
 //y = tcv[2] + tcv[1] * cos(PI/4);
 x = 2 * (tcv[0]);
 y = tcv[2];

}

void getxy(double tcv[],int &x,int &y,int bx,int by)
{
 double a1,b1;
 getcabinetxy(tcv,a1,b1);
 x = bx + (int)ceil(a1);
 y = by - (int)ceil(b1);

}

double getDistance(double w1[],double w2[])
{
 double t = 0;

 for(int i = 0;i < 3;i++)
 t += (w1[i] - w2[i]) * (w1[i] - w2[i]);
 return (sqrt(t));
}

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:1, 2008

86

void swap(double &a,double &b)
{
 double c = a;
 a = b;
 b = c;
}

void printLctm(double mat [][4],int k,int k1)
{
 int y = wherey(),i,j,x;

 gotoxy(10,y + 2);cout<<"T = ";
 gotoxy(11,y + 1);cout<<k;
 gotoxy(11,y + 3);cout<<k1;
 gotoxy(15,y);cout<<'Ú';
 gotoxy(15,y + 5);cout<<'À';

 for(i = 0;i < 4;i++)
 {
 gotoxy(15,y + i + 1);
 cout<<"³ ";
 for(j = 0;j < 4;j++)
 printf("%- 10.4f ",mat[i][j]);
 x = wherex();cout<<'³';
 }
 gotoxy(x,y);cout<<'¿';
 gotoxy(x,y + 5);cout<<'Ù';
 gotoxy(1,y + 6);
}

void printvector(double an[],int len,char *m,char sym)
{
 int y = wherey(),i,x;

 gotoxy(20,y + 2);cout<<m<<" = ";x = wherex();
 gotoxy(x,y);cout<<'Ú';
 gotoxy(x,y + len + 1);cout<<'À';

 for(i = 0;i < len;i++)
 {
 gotoxy(x,y + i + 1);
 printf("³ %c%-4d = %- 12.4f ³",sym,i + 1,an[i]);
 }

 x = wherex() - 1;
 gotoxy(x,y);cout<<'¿';
 gotoxy(x,y + len + 1);cout<<'Ù';
 gotoxy(1,y + len + 2);
}

void line(char c,int len)
{
 for(;len;len--)
 cout<<c;
}

void pause(char s[])

{
 gotoxy(30,25);
 cout<<s;getch();
}

int gpause(const char *s,int color,int p,int y)
{
 struct textsettingstype old;//In graphics.h

 gettextsettings(&old);
 settextstyle(SMALL_FONT,HORIZ_DIR,4);
 int c = getcolor(),d = textwidth(s);

 setcolor(color);
 outtextxy((getmaxx() - d)/2,y,s);
 settextstyle(old.font,old.direction,old.charsize);setcolor(c);
 if ((color == getbkcolor()) || p != PAUSE) return 0;
 else return getch();

VII. CONCLUSION

A simulation of an efficient method of the BDA was
demonstrated in this paper using an articulated robot which
was designed and fabricated in the college laboratory. A
method of computing the straight line motion between two
given points in a 3D space using an articulated robot is
demonstrated in this paper. Analytical method is also shown
here for convenience along with the simulation study. The
real time implementation of the same was also carried out
using an indigenously developed 5 axis articulated robot in the
college. The mathematical results & the experimental results /
simulated results show the effectiveness of the developed
method [2].

REFERENCES

[1] Craig J, Introduction to Robotics : Mechanics, Dynamics & Control,
Addison Wessely, USA, 1986.

[2] Robert, J. Schilling, Fundamentals of Robotics - Analysis and Control,
PHI, New Delhi.

[3] Klafter, Thomas and Negin, Robotic Engineering, PHI, New Delhi.
[4] Fu, Gonzalez and Lee, Robotics: Control, Sensing, Vision and

Intelligence, McGraw Hill.
[5] Groover, Weiss, Nagel and Odrey, Industrial Robotics, McGraw Hill.
[6] Ranky, P. G., C. Y. Ho, Robot Modeling, Control & Applications, IFS

Publishers, Springer, UK.
[7] Crane, Joseph Duffy, Kinematic Analysis of Robotic Manipulators,

Cambridge Press, UK.
[8] Manjunath, T.C., (2005), Fundamentals of Robotics, Fourth edn., Nandu

Publishers, Mumbai.
[9] Manjunath, T.C., (2005), Fast Track to Robotics, Second edn., Nandu

Publishers, Mumbai.
[10] Dhananjay K Teckedath, Image Processing, Third edn., Nandu

Publishers, Mumbai.
[11] Gonzalvez and Woods, Digital Image Processing, Addison Wesseley

Publishers.
[12] Anil K Jain, Digital Image Processing, Prentice Hall, Englewood Cliffs,

New Jersey, USA.
[13] http://www.wikipedia.org
[14] Michael Dipperstein, Run Length Encoding (RLE) Discussion and

Implementation.
[15] Flusser, J.; Suk, T.; Saic, S., Recognition of blurred images by the

method of moments, Image Processing, IEEE Transactions.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:1, 2008

87

[16] Bob Bailey, Moments in Image Processing, Nov. 2002.
[17] Phillip Coiffette, (1995), Robotics Series, Volume I to VIII, Kogan

Page, London, UK.
[18] William Burns and Janet Evans, (2000), Practical Robotics - Systems,

Interfacing, Applications, Reston Publishing Co.
[19] Yoshikawa T., (1984), “Analysis and Control of Robot Manipulators

with Redundancy”, Proc. First Int. Symp. on Robotics Research,
Cambridge, MIT Press, pp. 735-748.

[20] Whitney DE., (1972), “The Mathematics of Coordinated Control of
Prosthetic Arms and Manipulators”, Trans. ASM J. Dynamic Systems,
Measurements and Control, Vol. 122, pp. 303-309.

[21] Lovass Nagy V, R.J. Schilling, (1987), “Control of Kinematically
Redundant Robots Using {1}-inverses”, IEEE Trans. Syst. Man,
Cybernetics, Vol. SMC-17 (No. 4), pp. 644-649.

[22] Lovass Nagy V., R J Miller and D L Powers, (1978), “An Introduction
to the Application of the Simplest Matrix-Generalized Inverse in
Systems Science”, IEEE Trans. Circuits and Systems, Vol. CAS-25 (No.
9), pp. 776.

T.C.Manjunath, born in Bangalore, Karnataka,
India on Feb. 6, 1967 received the B.E. Degree in
Electrical Engineering from the University of
Bangalore in 1989 in First Class and M.E. in
Electrical Engineering with specialization in
Automation, Control and Robotics from the
University of Gujarat in 1995 in First Class with
Distinction and Ph.D. from the Interdisciplinary
Programme in Systems and Control Engineering
Department of Indian Institute of Technology

Bombay in the year 2007, respectively. He has got a teaching experience of
nearly 20 long years in various engineering colleges all over the country and is
currently working as Professor and Head of the Department of Electronics and
Communication Engineering in New Horizon College of Engineering in
Bangalore, Karnataka, India. He also worked as a Research Engineer in the
Systems and Control Engineering (IIT Bombay, India) and worked on control
of space launch vehicles using FOS feedback technique. He has published a
number of papers in the various National, International journals and
Conferences and published two textbooks on Robotics. He also published a
research monograph in the International level from the Springer-Verlag
publishers based on his Ph.D. thesis topic titled, “Modeling, Control and
Implementation of Smart Structures”, Vol. 350, LNCIS, costing 79.95 Euros.
He was a student member of IEEE for 6 years, SPIE student member and IOP
student member for 4 years, life member of ISSS (India), life member of the
ISTE (India), life member of ISOI (India), life member of SSI (India) and life
member of the CSI (India) and a fellow of the IETE (India). He has visited
Singapore, Russia, United States of America and Australia for the presentation
of his research papers in various international conferences. His biography was
published in 23rd edition of Marquis’s Who’s Who in the World in the 2006
issue. He has also guided more than 2 dozen undergraduate and post-graduate
projects. Many of his guided projects, interviews have appeared in various
national newspapers and magazines. He has also presented a number of guest
lectures and various seminars and participated in more than a dozen CEP /
DEP courses, seminars, workshops, symposiums in the various parts of the
country in different institutions and also conducted a few courses. His current
research interests are in the area of Robotics, Smart Structures, Control
systems, Network theory, Mechatronics, Process Control and Instrumentation,
Electromagnetic fields and waves, MATLAB, Signals and systems (CT and
DT), Industrial automation, Artificial intelligence, Digital signal processing,
Digital Image Processing, Periodic output feedback control, Fast output
feedback control, Sliding mode control of SISO and multivariable systems and
many of the control related subjects and its allied labs and their various
applications.

