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Periodic solutions of recurrent neural networks with
distributed delays and impulses on time scales

Yaping Ren and Yongkun Li

Abstract—In this paper, by using the continuation theorem of
coincidence degree theory, M —matrix theory and constructing some
suitable Lyapunov functions, some sufficient conditions are obtained
for the existence and global exponential stability of periodic solutions
of recurrent neural networks with distributed delays and impulses
on time scales. Without assuming the boundedness of the activation
functions g;, h;, these results are less restrictive than those given in
the earlier references.
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I. INTRODUCTION

T is well known that the recurrent neural networks are very

general and the architectures of recurrent neural networks
can take many different forms, such as Hopfield neural net-
works, cellular neural networks and BAM neural networks.
The fundamental feature of a recurrent neural network is that
the network contains at least one feed-back connection, so
activation can flow around in a loop. The networks are able
to do temporal processing and learn sequences (i.e. perform
sequence recognition, sequence reproduction, and temporal
association/prediction). The recurrent neural networks have
been successfully applied to signal and image processing,
pattern recognition and optimization. Hence, the problem
of the stability of the recurrent neural networks have been
intensive studied by numerous authors in recent years, see [1-
10] and the references cited therein.

However, most authors assumed the boundedness of the
activation functions. For examples, in Ref.[1] the authors
studied the global robust stability of the following delayed
recurrent neural network:

&i(t) = —ci(t)wi(t) + i

j=1

+§%U((

i (1) f(x;(t))
) 4 u,i=1,2,...,n,

where the activation functions satisfy the following assump-
tion:

(A1) fi(z)(i = 1,2,...

nondecreasing on R.

,n) is bounded and monotonically
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In Ref.[6], the authors got some new delay-dependent criterion
for the stability of recurrent neural networks with time-varying
delay as following

u;(t) = —azui(t) + > wii(t)g;(u;(t))

[\gE

7j=1

+ 30 wh(t)

Jj=1

\H |

where g;(u;(t)) and f;j(u;(t)) are the bounded activation
functions.

To the best of our knowledge, few results are available on
the existence and exponential stability of periodic solutions
for the recurrent neural networks with impulses and without
assuming the boundedness of the activation functions, while
the existence of periodic solutions plays an important role in
characterizing the behavior of nonlinear differential equations.
In [11], Li and Lu used the continuation theorem of coin-
cidence degree theory and Lyapunov functions to study the
existence and global exponential stability of periodic solutions
for the following neural network with impulses:

am>u+i%umm»
+Ji(t), t > o,t;étk,

(t]j) — T (t];) = _'szxz (tk)
=1,2,....m, k= .

@(t)

Axi (tk) =

where the activation functions are assumed to have the
following property:

(Hs) There exist positive constant M; > 0 such that | f;(z)] <
M; fort=1,2,...,m, x € R.

In this paper, these restrictions on the activation functions are
removed.

In fact, both continuous and discrete systems are very
important in implementing and applications. It is well known
that the theory of time scales has received a lot of attention
which was introduced by Stefan Hilger in order to unify
continuous and discrete analysis. Therefore, it is meaningful
to study dynamic system on time scales which can unify the
differential and difference system, see [12-23] and references
therein.

In this paper we apply the continuation theorem of coinci-
dence degree theory and constructing some suitable Lyapunov
functions to study the existence and global exponential stabil-
ity of periodic solutions solutions of recurrent neural networks
with distributed delays and impulses on time scales, without
assuming the boundedness of the activation functions g;, h;,

it —7@1)+Uii=1,2,...,n,
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in the form of

() = —at)m() + i i ()95 (5 (¢ = 735(1)))
+ Z bu fo 1] Tj(t - 9))A9 (1)
+rl(t) i=1,2,...,n, t €T+, t+ty,
Azi(ty) = zi(t)) — zi(ty) = Lin(zi(te)),
i=1,2,...,n,keN

with the initial values

zi(s) = ¢i(s), s

where T is an w-periodic time scale which has the subspace
topology inherited from the standard topology on R, for each
interval L of R we denote by Lt = LNT, Lt = LN[0,00), n
corresponds to the number of units in a neural network, z;(t)
corresponds to the state vector of the ¢-th unit at the time ¢,
a;(t) represents the amplification function, I;(¢) denotes the
external input at time ¢, 7;;(¢) > 0 is the transmission delay
and is an w-periodic function, g; and h; are the activation
functions which describe the manner in which the neurons
respond to each other, D = (d;;(t)) is the delayed feedback
matrix which represents the strengthen of the neuron inter-
connection within the network with bounded delay parameter
Tij(t), t — Tij(t) € (700,0]']1‘ and t — 0 € [0,00)’]T, kij
is the delayed feedback matrix, r;(t) denotes the external
input at time ¢, ¢;(-) denotes continuous function defined on
(=00, 0]z, Azy(t) = zi(t]) —wi(ty ), @i(t)) and 2;(t; ) (i =
1,2,...,n) represent the right and left limit of x;(¢;) in the
sense of time scales, {¢;} is a sequence of real numbers such
that 0 < t1 <ty < ... < t; — 00 as [ — oo. There exists
a positive integer ¢ such that ;4 = ¢ + w, Ligyq) = —ILiks
l e Z,i=1,2,...,n. Without lossing generality, we also
assume that [0,w)r N {t; : 1 € Z} = {t1,t2,..., ¢4}
Throughout this paper, we assume that:

S (—O0,0]']T,

(H1) a;, bij, dij, ri € C(TT,R) are w-periodic functions and
there exist positive numbers g, @;, such that a; < a;(+) <
i i, j,=1,...,n.

(Hs) The activation functions g = (g1,...,9,)7 € C(R,R)
and h = (hy,...,h,)T € C(R,R) are Lipschitz func-
tions, that is, there exist positive numbers «;, (; such that
|hi(x) —hi(y)| < ailz—yl, [gi(z) —gi(y)| < Bilz—yl,
z,yeR, i=1,...,n

(Hs3) Fori,j =1,...,n, the delay kernels k;; : T™ — R are
continuous and the integral fooo kij(0)A0 < K .

(Hy) Iy € C(R,R) and there exist positive numbers Ii],g
such that |Lix(z) — Lig(y)| < IM |z —y|, 2,y € R, i =
1,2,...,n, keN.

(Hs) For i = 1,2,...
L (x;(t)) satisfy

,n,k € N, the impulsive operators

Lin (i (th)) = —vinxi(t), 0 < v < 2.

For the sake of convenience, we denote

= . Jus(o)], HUH2:< / |u<t>|2At) ,
te[0,w 0

where w is an w-periodic function, and

[lzillo =, max fz:(®)]-

And we can choose constant 7, and 7 such that

r= e Ol 7= s mex ()

The paper is organized as follows: In Section 2, we make
some preparations. In Section 3, by using the continuation
theorem of coincidence degree theory, we obtain the existence
of periodic solutions of (1) without assuming the boundedness
of the activation functions g;, h;, these results are less restric-
tive than those given in the earlier references. In Section 4, by
constructing some suitable Lyapunov functions, we study the
global exponential stability of the periodic solutions of (1). In
Section 5, an example is provided to demonstrate the results
obtained in the previous sections. The conclusions are drawn
in Section 6.

II. PRELIMINARIES

In this section, we will cite some definitions and lemmas
which will be used in the proofs of our main results.

Let T be a nonempty closed subset (time scale) of R. The
forward and backward jump operators o,p : T — T and the
graininess y : T — R¥ are defined, respectively, by

o(t)=inf{seT:s>t}, pt)=sup{seT:s<t}

and
wu(t) =o(t) —t.

A point t € T is called left-dense if ¢ > inf T and p(t) = ¢,
left-scattered if p(¢) < t, right-dense if ¢t < sup T and o(t) =
t, and right-scattered if o(¢t) > ¢. If T has a left-scattered
maximum m, then T¥ = T\ {m}; otherwise T* = T. If T has
a right-scattered minimum m, then Tj, = T\{m}; otherwise
T, =T.

Let w € R, w > 0, T is an w-periodic time scale if T
is a nonempty closed subset of R such that ¢ + w € T and
w(t) = p(t + w) whenever ¢ € T.

A function f : T — R is right-dense continuous provided it
is continuous at right-dense point in T and its left-side limits
exist at left-dense points in T. If f is continuous at each right-
dense point and each left-dense point, then f is said to be a
continuous function on T. The set of continuous functions
f: T — R will be denoted by C(T).

Fory:T —Randt € T*, we define the delta derivative of
y(t), y™(t), to be the number (if it exists) with the property
that for a given € > 0, there exists a neighborhood U of ¢
such that

|ly(e (1)) — y(s)] =

for all s € U.

If y is continuous, then y is right-dense continuous, and y
is delta differentiable at ¢, then y is continuous at ¢.

Let y be right-dense continuous. If y*(t) = y(t), then we
define the delta integral by

// y(s)As = V(1) — Y (a).

yE (D)o (t) — s]| <elo(t) s,
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Definition 1. Function f=(f1,...,fn) is a lipschitz if it
satisfies |fi(x) — fi(y)| < L]z —y|, i = 1,...,n for any
z,y € T.

If y is continuous, then y is right-dense continuous, and if (

y is delta differentiable at ¢, then y is continuous at .

Definition 2. [22] If a € T,supT = oo, and [ is rd-
continuous on |a,00), then we define the improper integral
by

/ T At = Jim " Far

provided this limit exists, and we say that the improper integral
converges in this case. If this limit does not exist, then we say
that the improper integral diverges.

Definition 3. [23] For each t € T, let N be a neighborhood
of t, then, for V. € Cpq[T x R™,RT], define DTVA(t,z(t))
to mean that, given € > 0, there exists a right neighborhood
N, C N of t such that

[V(o(t),z(o(t)) — V(s,2(a(t))) — pult, s)f (¢ z(t))]
p(t, s)

< DTVA(t, 2(t)) + ¢,

for each s € N, s > t, where u(t,s) = o(t) —s. If t is rd
and V (t,x(t)) is continuous at t, this reduce to
V(e(t),z(a(t))) = V(t z(o(t)))
o(t)—t ’
Definition 4. [24] We say that a time scale T is a periodic
if there exists p > 0, such that if t € T then t = p € T. For

T # R, the smallest positive p is called the period of the time
scale.

DYVA(t, z(t) =

A function 7 : T — R is called regressive if
L+ p(t)r(t) # 0,

for all ¢ € T*.
If r is regressive function, then the generalized exponential
function e, is defined by

er(t,s) = exp { /t @L(T)(T(T))AT}, fors,t €T,

with the cylinder transformation

Log(1 + hz) ith £ 0

() = {
z if h=0.
Let p,q : T — R be two regressive functions, we define
p
L+pp’
Then the generalized exponential function has the following
properties.

POq:=p+q+upg, pOq:=p®(Sq), Sp:=

Lemma 1. [20] Assume that p, q: T — R are two regressive
functions, then

(1) eo(t,s) =1 and ep(t,t) =1;

(i) ep(a(t),s) = (1 + u(t)p(t))ep(t, s);

(ifi) ep(t,0()) = kG

Lemma 2. [25] Let t1,t2 € [O,w]r. If  : T — R is w-
periodic, then

() < x(t1)+/0w 122 (s)| As, 3(t) > :E(tg)—/ow 122 (5)| As.

Lemma 3. [?] (Cauchy-Schwarz inequality on time scale) Let
a,b € T. For rd-continuous functions f, g : [a,b] — R we have

/”'b Jnalae= </b o a) % (/b \g<t>|2m>

We know that if 6,7 € T are constants, then eg(t,—7) is
an w-periodic function.

Definition 5. Let x*(t) = (zi(t),z5(t),...,z5(t))T is
periodic solution of system (1) with initial value ¢(t)
(05 (), o5 (t), .., o1 (8))T. If there exist constants X >
and M > 1 such that for every solution x(t)
(x1(t), 22(t), .., w0 ()T of system (1) with any initial value
¢(t) = ((bl(t)v(b?(t)a ~~-7¢n(t))T € C([_Oovo]Tan)’

ol s

|zi(t)—x} (t)] < M||p—¢*[le_x(t,6),t € TT, i =1,2,...,n,

where

l¢—¢"l= sup max |¢i(s) — ¢;(s)|, 0 € (—o0,0]r.
s€(—00,0]p 0<i<n

Then z*(t) is said to be globally exponentially stable.

The following fixed point theorem of coincidence degree is
crucial in the arguments of our main results.

Lemma 4. [27] Let X, Y be two Banach spaces, 2 C X
be open bounded and symmetric with 0 € ). Suppose that
L:D(L) € X = Y is a linear Fredholm operator of index
zero with D(LYNQ # 0 and N : Q :— Y is L-compact.
Further, we assume that

(H) Lv — Nx # M—Lx — N(—x)) for all x € D(L)N

o0, A € (0,1].

Then equation Lx = Nz has at least one solution on D(L)N
0.

Definition 6. A real n x n matrix A = (a;;) is said to be a
non-singular M-matrix if a;; < 0,4 # j, i,j=1,...,n and
all successive principal minors of A are positive.

III. EXISTENCE OF PERIODIC SOLUTIONS
In this section, by using Lemma 4, we will study the
existence of at least one periodic solution of (1).

Theorem 1. Assume that the assumptions (Hy) — (Hs) are
satisfied and
(Hs) E = (€ij)nxn is a nonsingular M-matrix, where

) 8-y, =,
T W, i #
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q
P, = [aw ZI%—aw%z—awZI }

k=1

{ Z Jij[)’jw + Z Biijaj + a;w Z Jijﬁjw
j=1 j=1 j=1
+a;w Zl;iijaj},

i=1

=
[

fori,5 =1,2,...
periodic solution.

,n. Then system (1) has at least one w-

Proof: Let C*[0,w;ty,ta,... ty]r = {’L‘ 2 [0,w]r —
R™|xF(t)| is a piecewise continuous map with first-class
discontinuous points in [0,w]y N {¢; : | € N}} and at each
discontinuous point it is continuous on the left}, k=12

Take
X ={z e C0,w;t1,ta,...,tr : z(t+w) = z(t),t € [0,w]7}

and
Y =X x R™(a+D),

be two Banach spaces with the norms

n
lzllx = > llzillos Il = llelx + llyll, = € X, y € R™,
=1

in which ||z;]o = 11[1ax] lz:(t)], ¢ =1,2,...,n, ||.|| is any
t T
norm of R™*9. Set
L:DomLNX =Y, 2 — (22, Azx(t1), ..., Ax(t,)),
where Dom L = {z € CL[0,w;ty,t2,... tg)r : o(t + w) =
x(t), t € [0,w]r}, and N : X =Y,
Al(t) Al‘l(tl) Al’l(tg)
Nz = : ) : ; : e
An(t) AI?L(tl) AI’!L(t2)
Al’l(tq) 0
Azy(tq) 0
where
Ai(t) = —a;(t)i(t) + Zdi]‘ )i (2t = 7i(1)))
bis / iy (0)0; (2t — 6)) A6 + (1),
Obviously,

KerL = {z € X|z = h € R"},

ImL = {z:(f,Cth,...,Cq,d)eY

q
+> Cr+d= 0} =X x R™ @D » {0},

and then
dim Ker L = codimIm L = n.

So, Im L is closed in Y, L is a Fredholm mapping of index
zero. Define the continuous operators P : X — Ker L and
the averaging projector @ : Y — Y as

1 w
Pz = —/ x(t)At, z € X,
0

w
= Q(f,C1,Cs, ..., Cyd)
1 w q
(5[/0 f(s)As—k];C’k—&-d],O, ,0), zeY.

It is not difficult to show that P and () are continuous
projectors and satisfy

Im P=KerL, Im L=Ker @ =Im (I — Q).

Further, let Lp' : InL. — Dom N KerP the inverse of
L|Dom|"lKer p, WE have

/f JAs+ Y Cy

t>t
1 w t q
- f(s)AsAt — Cy,
= >
for all 1 <4 < g. Thus, the expression of QN is

1 f() A1 At+ Z ]1k(33'1(tk))

w q
LY AMAL+ 23 Le(2a(ty))
k=1
and then

Kp(I - Q)Ni
1 fO A8+ Z Ilk :El(tk))

t>tk

AS+ Z Ink(mn(tk))

t>tk

YJAsAt

S An
5 fo fo Ay(s

e A.n(s)AsAt

%) I fo Ay (s)AsAt

q
> Luk(n(tr))

k=1

Clearly, QN and Kp(I — Q)N are both continuous. Similar

to [12], it is easy to show that QN(Q), Kp(I — Q)N(Q)
are relatively compact for any open bounded set Q2 C X.
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Therefore, N is L- t on 1 f bounded set ~ [
: ZreX ore is L-compact on or any open bounded se +Z / di;1g;(0)| At
In order to apply Lemma 4, we need to find an appropriate n w oo
open bounded subset €2 in X. Corresponding to the operator + Zgij / / k;;(0)|h;(0)|AOAL
equation Lz — Nz = A\(—Lx — N(—x)), XA € (0,1], we have - o Jo
1 A . . n B n B
A _ _ 1 1
zi(t) = gy Bilte) — g Bilt, o), < aw? ||zill2 + w? Z(dwﬁj)\l%l\z +wzdij\9j(0)|
teTr t#£ty,i=1,2,...,n, j=1 j=1
1 A @ )
Aai(tr) = 7o L (a(te)) = 1+)\I,~k(—xi(tk)), +wa/ kij(0)ojw? ||zs][2A0
i=1,2,...,n, keN,
where £ e / ki (0) 1 (0)| A0
n j=1 0
Bi(t,w) = —a;(D)zi(t) + Y dij(t)g;(a; (¢ — 755(t))) a a
= +wr; + ||$Z||0 ZI% + Z ‘Iik(o)
n &S] k=1 k=1
F0050) [ kOt - DA Hr) o "
i=1 0 < aw? ||zl +w? Y (digBy)llwslla +w D dislg; (0)]
and =1 N 3=t
~ + b Kow? ||z iiwI | (
Bilt ) = ~a(0)(-l0) + Y s Ou5(-23(1 = () Z il iela 2 |
q
bij ( / ki (0)hy (—z;(t — 0)) A + r4(t), +wri + [|zi]lo Z ik T Z [Zix (0
k=1

. Integrating both sides of (2) from 0 to w, we have
for i = 172,...,n

Suppose that © = (z1, 22, ...,2,)7 is a solution of system /w {ai(t)xi(t) _ )\ai(t)(*%i(t))] At'
(2) for a certain A € (0,1], set tg = t§ = 0, ty41 = w, we 0 I+A L+ A
obtain “Tai)zi(t) | Aai(t)zi(t)
" = + At
/ w2 (1) At /Ow{ 1+ 1+ A } ’
0 = ai(t)zi(t)At
i/ 22 (1) A Zu ()| / ‘
= + ik\Ts
2 =[x [ [Zme o
< /w L Bita) = 2 By(t, )| A
~ )\ 1\by ¢ /\ \“ n o
0 1+1 1+ i 3 b / - e)hj(gcj(tfH))AHJrTi(t)} At
D [ (i) - mlik(—xi(tk))’ =
= +1+>\/ { Zd” ) (—5(t — 735(1)))
< |5 o] [ e B -
1 A - bt kij(0)hj(—x;(t — 0))A0
* {1 T 1?\} Z /
5y max{ | Lig (w: ()], [Tk (— 23 (£6))]} —ri(t }AtﬂL mzlﬂv i(tr))
k=1
~ w n w )\
< a,/ ‘Ti(t)|At+Zl/0 dijlg;(x;(t — 75(t))) —mkz:l]ik(—f”i(tk))’
n w (e} 1 A w n
0,018+ 3 b, [ e - o) < |5t o] e 3 oot =)

n

Lot — Ie(O) 3 b(®) /Oookme)hj(mj(t70>>Ae+m<t>\,

j=1
Z'Izk —T; tk } Z|]zk

—h;(0)|]AOAL + 7w + max {

MQ
»Q»—A

— Z dij(t)gj(_-rj(t — Tij (t)))
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n

R ) [ ks (ay e 0p20 - n-(t)]}m
1 q

+|:1+A+m:| max{; ik xz tk:

3 |Iik<—xi<tk>>\}

k=1

> / dislg; (5t — 75(1)))

+g / dijlg;(0)| At

+ 2k /0 /0 iy (8)1hs (¢ — 0)) — hy (0)| AOAE

5 i EOINOINN

7w + max{ Z | Lk (2(t)) — L (0)]

} Z |132:(0

IN

—9;(0)|At

Z |Izk —Z; tk
w? Z di;Billzjll2 + w Zcimj(m
j=1 j=1

n _ N n B
+> bijw? Kogllajlla + > bijwK|h;i(0)]

i=1 jl

+wri + |23l Zlk + Z Zi (0
k=1

IN

From Lemma 2, for any (;,7; € [0,w|r, i =1,2,...,n, we

have

/Ow a;(t)w;(t)At < /Ow a;(t)z; (&) At

w [Ca( [ wpoist)ae
and

/OW a;(t)x; (H) At > /Ow ai()as () At

- /ow ai(?) ( /Ow |2 () \At> AL (4)

Diving by fow a;(z;(t))At on the two sides of (3) and (4)

respectively, we have for i = 1,2, ... n,
(G) = {; /wa-(t)m-(t)At—/w |xA(t)|At}
Y= fow al(t)At 0 ! ! 0 g ’
(%)
and
<L [ e s
i) < | ooz [ wmaes [ (t)m}@

Let #;,t; € [0,w]r, such that z;(f;) = Ir[%)ax] x;i(t), z;(t;) =
te[0,w|r
min x;(t), ¢ = 1,2,...,n, by the arbitrariness of (;,7;, in
te[0,w]r

view of (5) and (6), we obtain

{fo a;(t)At / ai(t)e ()At*/owle(t)mt]
/ ‘—/Ow ERQIN:

—1II;

zi(t;)

A%

Y

and
1

ni(F) < [M [ atomoacs [Tatoiad]

1 w w

< / ai(t)xi(t)At‘-i-/ |z (t)| At
wa; | .Jo 0

< 5 i=1,2,...,n
wa;

So, we can obtain that

illo = a i (T
lzsllo = max |z:(t)

1
Ql-’-H“Z:LQ,,n (7)

In addition, we have that

1

fails = ([ hesrass)

1
S w? max \ﬂﬁz( )| = Vollzillo,
te[0,w
where i =1,2,...,n. By (7), we have

a;wlzillo < Qi + Lwa,
n n
1 - _
= w2y diiBillwslla +w Y dijlg; (0)
Jj=1 j=1

n n
o _
+> biw? Kajllaillz + > bijwK|h;(0)]

j=1 j 1

—+wr; + HCLQH() ZIA{ + Z |Izk
k=1
n

_ 1 1 -
taw {w lalls + w0t S (dus By 511
j=1
+w > dijlg;(0)
j=1

|+ biKajw? |z
j=1
+> biwK|h;(0)] + wr;
j=1
q q
el ST+ S \m(o»}
k=1 k=1
1N o 1 oL
< w2y dyBiwzlllo +w Y dijlg;(0)
j=1 j=1

n
+ Z Bijw%Kozjw%ijHo
j=1
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n q
+ biwK by (0)] + wFi + [lillo D LY

j=1 k=1

+Z|Lk \+aw{wwz|muo

n

1
'HUZZ Z]ﬂ] w2||x]\|0+w2dm\gj 0)]
j=1 ] 1
+Zb1]KaJw2w2||t]|‘0+ZbZ]wK|h (0)]
Jj=1 j=1

+wr; + ||z ]|o Zlk +Z|Izk }
= |‘T1HO{ZI]C +awaz+awz }
+||zj|\o{Zczijﬁjwzajwmj

Jj=1 Jj=1
n n
+a,w E dl-jﬁjw +a,w E biijOéj}
j=1 Jj=1

q n
n [wm 3 O]+ 03 diglgs (0)
k=1 j=1

+25ijwff|hj<o>|}

=1

q
+aw {m + > Lk (0)

k=1
“+w Z Jij|gj (0)| + Z i)i]‘a}KVLj (O)|:|
i=1 i
q
:HTZHO{ZI + a;w az+awz }
k=1
Hirslod 3 it + 3 bwices
Jj=1 j=1
+a;w Z dijBjw + a,w Z Biijaj}

Jj=1 Jj=1

+(1+ aq,w) {m + ) 1x(0)

k=1
oS dilg )+ @ij|@-<0>|} |
j=1

Jj=1

That is

q q
oo~ 321 —aen — ey 1|
k=1
n

lnlod 3 disi+ 3 b,

j=1 j=1

+a;w Z J’ijﬁjw + a,w Z BiijOéj}

=1 j=1

< (1+aqw) [wﬂ + > T (0)] +WZJU|!/J'(0)

k=1
Z jwK|h;(0 } = D;, ®)
where i = 1,2,...,n. Denote |z|lo = (||z1]o; [|z2]l0s - - -5
[#nllo)” and D = (D1, Dy, ..., Dy)"

Then (8) can be rewritten in the matrix form
Ellzllo < D.

From the conditions of Theorem 1, E is a nonsingular M
matrix, hence

lzllo < E7'D := (Ny, Ny, ..., N,)%.

n
Let N = Y N;+ Ny, where Ny is any positive constant. It is

i=1
clear that N is independent of A. Take Nx = {z € X|||z|lx <
N } Obviously, Nx satisfies all the requirement in Lemma 4
and the condition (H) satisfied. In view of all the discussion
above, we conclude from Lemma 4 that system (1) has at least
one w-periodic solution. This completes the proof. ]

IV. GLOBAL EXPONENTIAL STABILITY OF PERIODIC
SOLUTIONS

Suppose that *(t) = (z}(t), z5(t),..., x5 ()T is an w-
periodic solution of system (1). In this section, we will
construct some suitable Lyapunov functions to study the global
exponential stability of this periodic solution.

To prove the global exponential stability, we assume that

(H7) there exist constants 7 > 0,A > 0 and & > 0,i =

1,2,...,n, such that for all ¢ € T, there holds

(A —a;(t)& + Z |di;(t)|8;€ea(t t — 7i(1))
j=1
Y |bij(t)|/0 ks (0)|asE e (bt — B)A8 < 1 < 0.
j=1

Theorem 2. Assume that (Hy) — (Hy) hold. Let z*(t) =

(@3(t), 23(t), ..., x5 ()T is an w-periodic solution of system

(1) with initial value ¢*(t) = (¢5(t), d5(t), ..., &% (L)), for

every solution x(t) = (11(t), z2(t), ..., 2, (t))T of the system
) =

(1) with any initial value ¢(t) = (¢1(t ) 2(t), ..., On(t)). Then
there exist constants A > 0 and M > 1 such that

lz; (t)—zf(t)] < M||¢p—¢*|le—a(t,0),t € T, i=1,2,...,n.

That is, system (1) has a unique w-periodic solution which is
globally exponentially stable.

Proof: Let y;(t) = (z;(t) — z7(t)), from (1) we have
(wi(t) — 2} (6))2
= —ai(t)[zi(t) — 27 (1)] + Z] 1 i ()]g;(y; (¢

Jm;(t*TlJ(t))) 91( Gt —1i;())]
+Z?:1 35 ( fo i (0) [ (y; (¢ — 0) + 25 (t — ))

—75(t))

—hj(z;(t—0)|A0,t € TT t #ty, i =1,2,...,n,
Awi(te) — @4(t}))
= Lp(xi(ty) —2i(t})), i =1,2,...,n, k€N,
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where ¢ =1,2,...,n. And from (H5), we have < DY (Vi(t:)A
2 (t) — 2 (£])] < (A*ai( i)lyi(ti)lex(ti, 9)
= 1= yallas(te) =it +Z|dm DI CEEHENINCRY
< |wi(ty) —z:i(t5)], i =1,2,...,n
Now let us consider the Lyapunov functional + Z Ibi; (t:)] / ki3 (0) o |y (t: — 0)| Abex(t:, 5)
Vi(t) = lyi(t)lex(t, 9), 0 € (=00, 0)r i =1,2,...,n. (9) ' ’
= (A —a;(t:))]yi(t; ti, 0
For t € TT,t # ty, i = 1,2,...,n, the upper right Dini ( "a ()i (t3)lex(t:, 9)
derivative DTV} along the solutions of (1) is +Z dij (s:)18;|y; (ti — 7i;(t:))]
DH(Vi(t)* = 5
= D0 es(t8) + At xealts b = g ds)exlhs = 7y {8:),)
= ( )yi()lex(t, 6) + Alyi(t)[ex(t, 6) +Z|bij(ti)|/ i (0)lasly; (t: — 0)]
j=1 o
+Z i (095 (vt — 735 (1)) + 25 (¢ — 735())) xex(ti t; — 0)ex(t; — 0,5)A0

—gj(z;(t — 7i;(1)))] = [()‘ —a;(t:))&

n
+
j=1

—h;(zj(t - 0))|A0

6)\(t, 5)

+Z|dw )IBjex(ti ti — 7ij(£:))§;

bo(®) [ Rig@)lhaaye - 0) + 236 - 0)
0
6)\(t7(5) +Z|b2] |/ 7’] |O{]§7€>\( (2] ’L )Ae

< (A =ai(t)]yi(t)]ex(t, d)
n Thus
+ 3 1dig (1)1851y;(t = 755(1))lex(t, 6)
j=1
- Uy ) dz Ty z (%) ti J
£ bt I [ s @l (e - Dlestppag, aoy 0= Ol “Z' sElPsertts te = (1))
j=1
wherez:1,2,...,n. +Z|b”(tl)‘/ |kij(0)\aj£je)\(ti,ti79)A9,
Also, for i =1,2,...,n,t € T, j=1 0

Vith) = lyi(t)lea(ty, 6) _ . .
_ \li(tﬁ) g (tz)|e>\(tk+,6) Sych}ictllllactontradlcts (H7). Hence, (11) holds, Letting M > 1
< wi(te) — o (tk)|e(tr, 0) = Vi(te).

Let m > 1 denote an arbitrary real number such that

m& > [|¢ —¢*|| = sup  max [¢i(s) — §i(s)] > 0.
s€(—00,0]p 059

It follows from (9) that In view of (11) and (13), we get

L << — o ) = .
Org?;b{mfz}_MHcﬁ ¢*ll, i=1,2,...,n 13)

Vi(t) = |yi(t)|ex(t, 0) <m&;, t € (—o0,0]1, i =1,2,...,n.
fect) — 5 (O] = (D) < max {mEJex(1,5)

< Ml|¢ — ¢*|le-x(t,6),

We claim that
Vi(t) = |yi(t)lea(t,8) <mé&, t € TT,i=1,2,...,n. (11)
Otherwise, there exist ¢ € {1,2,...,n} and ¢; > 0 such that
Vi(t:) = m&;, V;(t) < m&;,t € (—oo,t)r,j =1,2,...,n

where i =1,2,...,n, t € TT. This completes the proof. W

(12)
That is
V. AN EXAMPLE
V;(tz) — m§l =0, V}(t) — méj <0,te (*OO,ti)']I‘,
where j = 1,2,...,n. From Lemma 1, together with (10) and . . .
. In this section, we give an example to demonstrate the
(12), we obtain . . ; . . .
results obtained in previous sections. Consider the following
0 < DT (Vi(t;) — m&)™ recurrent neural network with continuously distributed delays
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and impulses on time scales:

i) = —o1(t) + & (cost)g (et - 22)
1 (cos (el — 11))
+o(sint) [ [sinule™"hy (z1(t — u))du
+ 105 (sin t) fo | cosule ™ ho(zo(t — u))du
+ri(t),t € Tt # ty,
Azy(ty) = z1(tf) — 21(t;;) = 55 (cost), k€N, (14)
2(t) = —aa(t) + q5(cost)gi (w1 (t —6))
+o5 (cost)ga(za(t — 8))
+15 (sint) [° [cosule™"hy (21 (t — u))du
+og(sint) [,° [sinule™"hy (z1(t — u))du
Fro(t), t € T, t # t,
Azs(ty) = zo(tf) — 22(t;) = 2 (sint), k€N,

where g1(z) = ga(x) = sinz, hi(x) = ha(z) = 2, r1(t) =
i cost, ra(t) = £ sint.

Note that a1 = a2 = 1, a1—062—51—52—1 d;
b;;lozé, df, =bvf, = 36,d b21:% d22—b22—
Jo Fis( )A9 < 1, where 4,j = 1,2. d = sup;en+ dij(

and bj'j = sup,cr+ bi;(t). Then, we get

1
s-(1 %)
4

From the theory of M-matrix in [28], thus (Hg) is satisfied.
The system (14) has at least one 27-periodic solutions. We
can choose constants n = = and & = 1,41 = 1,2, such that
for all t € T, there holds

aiti+ Z 0,6+ Zb /

7a2£z+zd ﬁ]§]+zb Ct]f] —Q < 77<0

H-OO\»—A

()

DO =

kij(0)|o; AOE; <

where i = 1,2, Q1 =
_l =

Thus (H7) is satisfied. From Theorem 1 and Theorem 2, we
know that system (14) has at least one 27-periodic solutions

and it is globally exponentially stable.

3
108 <-g=-nand Q = -5 <

VI. CONCLUSION

Using the time scale calculus theory, coincidence degree
theory and the Liapunov functional method, some sufficient
conditions are obtained to ensure the existence and the global
exponential stability of periodic solutions for recurrent neural
networks with impulses and distributed delays on time scales.
The results obtained in this paper possess highly important
significance and are easily checked in practice. In addition, the
method in this paper can be applied to other neural networks
such as the BAM and DCNNs systems and so on.
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