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Abstract—The Proton Exchange Membrane Fuel Cell (PEMFC) 

control system has an important effect on operation of cell. 
Traditional controllers couldn’t lead to acceptable responses because 
of time- change, long- hysteresis, uncertainty, strong- coupling and 
nonlinear characteristics of PEMFCs, so an intelligent or adaptive 
controller is needed. In this paper a neural network predictive 
controller have been designed to control the voltage of at the 
presence of fluctuations of temperature. The results of 
implementation of this designed NN Predictive controller on a 
dynamic electrochemical model of a small size 5 KW, PEM fuel cell 
have been simulated by MATLAB/SIMULINK. 
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I. INTRODUCTION 
S one of the most promising power supply in the future, 
fuel cell is drawing the attention of the governments all 

over the world, for it has a lot of excellent characteristics such 
as high efficiency, low energy consumed, friendly to 
environment and so on [1]. Especially for the PEMFC (Proton 
Exchange Membrane Fuel Cell), it has high ratio power and 
high ratio energy, and can start up quickly in room 
temperature, with no electrolyte leaking and convenient 
draining. The PEMFC therefore has been applied into electric 
vehicle, portable power supply; disperse power station and 
other fields. So it has shown a great future [2]. 

Because of amending of PEMFC’s performance and 
increasing safety and reliability a satisfying control on 
PEMFC must be done. Traditional controllers couldn’t lead to 
acceptable responses because of time- change, Long-
hysteresis, uncertainty, strong-coupling and nonlinear 
characteristics of PEMFCs. So an intelligent or adaptive 
controller is needed. In this paper a neural network predictive 
controller have been designed to control the voltage of fuel 
cell with varying load, temperature at the presence of 
fluctuations. 

The considered model in this paper predicts the FC stack 
performance against situations commonly encountered in 
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electrical power generation systems, like insertion and 
rejection of loads [3]. The voltage of cell is output and 
pressure of oxygen, pressure of hydrogen, temperature and the 
load current are inputs. This paper focuses on temperature and 
control affect of it on output voltage of cell. The input 
fluctuations affect the output voltage greatly and these 
fluctuations must be controlled. 

This paper is arranged as follows: the next section reviews 
the considered PEMFC’s model, simulates fuel cell by 
MATLAB/SIMULINK and shows polarization curve of 
simulated cell, section III introduces NN predictive controller 
and it’s justification with the PEMFC’s considered model, 
section IV shows the results of implementation of this 
designed NN Predictive controller. Section V is conclusions. 

II. AN ELECTROCHEMICAL-BASED FUEL CELL 

Operation of PEMFC is described by polarization curve that 
shows voltage against current. Main parameters affect 
polarization curve are: Pressure of hydrogen , Pressure of 
oxygen, Temperature, Amount of humor 

The PEMFC internal electrochemical reaction is the process 
that combines hydrogen and oxygen over a platinum catalyst 
to produce water, heat and electricity. The PEMFC 
mechanism is shown in Figure1. 

 

 
 

Fig. 1 Schematic diagram of PEMFC mechanism 
 
In the presence of the activator-platinum, the molecules of 

2H in anode of PEMFC discharge electrons to lines and 

become H-ions, meanwhile the molecules of 2O in the 
cathode receive the electrons from lines as well as protons 
from PEM, and so the molecules of water are produced. The 
electrode reaction equations are as follows: 
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Different mathematical models   have been devised to 

simulate the behavior of PEMFC. Some are based on curve-
fitting experiments [4], others are semi-empirical models that 
combine experimental data with parametric equations adjusted 
by comparison with cells physical variables like pressure and 
temperature [5].In both cases, the concentration over-potential 
phenomenon, which is crucial in describing the dynamical 
behavior of such systems, is not adequately modeled. The 
work developed in [6] correctly considers this effect, and for 
this reason has been adopted as a benchmark for the 
simulation described in the following. 

The output voltage FCV of a single cell can be written as: 

conohmicactNenstFc VVVEV −−−=                            (3) 
Where Enenst is the thermodynamic potential of the cell, 

which represents the reversible voltage;  Vact is the activation 
over-potential, (a measure of the voltage drop associated with 
the electrodes); Vohm is the concentration over-potential, 
which takes into account the resistances during conduction of 
the protons through the solid electrolyte and the electrons 
through their path; Vcon is the concentration over-potential, 
which considers the voltage drop caused by the reduction of 
concentration of reactants gases or, alternatively, by the 
transport of masses of oxygen and hydrogen. 
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Where T is the cell operation temperature in [K], 2HP and 

2OP are respectively the hydrogen and oxygen partial 
pressures in [atm]. 

)]ln()ln([ 42321 FcOact iTCTTV ζζζζ +++−=            (5) 

Where FCi is the cell load current in [A], andζ ’s are the 
parametric coefficients defined on the basis of kinetic, 
thermodynamic and electrochemical phenomena [7].  

2OC  is the concentration of oxygen in the catalytic 
interface of the cathode (mol/cm3), determined by: 
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Where Rc represent the resistance to the transfer of protons 
through the membrane, usually considered constant. Rm is the 
equivalent resistance of the membrane, calculated as: 

A
l

RM Mρ
=

                                                                   (8) 

Where Mρ is the specific resistivity of the membrane for 

the electron flow (Ω.cm), A is the cell active area )( 2cm  and l 
is the thickness of the membrane (cm), which serves as the 
electrolyte of the cell. 
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Where the ψ  is an adjustable parameter depending on the 

relative humidity and stochiometric relation of the anode gas. 
 

)1ln(
maxJ
JBVcon −−=

                          (10)                   

Where B is a parametric coefficient, that depends on the 
cell and its operation and J represents the actual current 
density of the cell (A/cm2). 

Using the membrane Nafion 117 with 178µm width the 
parameters of the stack was used to simulate the control 
algorithm and the operation conditions are shown in 
nomenclature. 

Fig 2. Shows polarization curve of PEMFC model 
described in the paper. The comparison between real data and 
simulation data confirms correctness of simulation [8]. 

 
Fig. 2 Polarization curve of simulated cell (line) Actual 

polarization curve (nods) 
 
The considered model in this paper predicts the FC stack 

performance against situations commonly encountered in 
electrical power generation systems, like insertion and 
rejection of loads. The voltage of fuel cell is output and the 
pressure of hydrogen, pressure of oxygen, temperature and the 
load current are inputs. 
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Fig 3 Model of PEMFC in Simulink 

 

III. NEURAL NETWORK PREDICTIVE CONTROLLER 

NN Predictive Controller is one of the promising strategies 
for complex FC system. No matter how complicated the 
system is and in spite of the fluctuations, its desired output can 
be designated to follow the output of a reference model with 
specified dynamic. The neural network predictive controller 
strategy includes the specification of reference model with 
desired dynamic, on-line parameters estimation and 
calculation of control signals. The first step in model 
predictive control is to determine the neural network plant 
model (system identification). In this stage the prediction error 
between the plant output and the neural network output is 
used as the neural network training signal. The process is 
represented by figure3. 

 

 
 

Fig4. Process of NN identification 
 
The neural network plant model uses previous inputs and 

previous plant outputs to predict future values of the plant 
output. This feed forward network has one hidden layer and 
can be trained offline in batch mode, using data collected from 
the operation of the plant, any of training algorithms in Back 
Propagation can be used for network training but since our 
problem is a function approximation and our network has less 
than a few hundred weights, the Levenberg-Marquardt 
algorithm will have the fastest convergence. This algorithm is 
especially noticeable because a very accurate training is 
required. Levenberg-Marquardt algorithm (trainlm) [9] is able 
to obtain lower mean square errors and faster convergence 
than other algorithm tested. (See table II). 

Levenberg-Marquardt uses a nonlinear least squares 

algorithm to the batch training of the network like other back 
Propagation algorithms. The performance index for must be 
minimized is  

∑
=

=
N

i
i xexV

1

2 )()(
                                                       (11) 

Where  )(xei  is the error between the plant output (yp) 
and the network output (ym) for the ith input and x is a 
parameter vector includes all weights and biases that must be 
updated. For minimizing the performance index with respect 
to the parameter vector, the Newton’s method would be  

[ ] )()( 12 xVxVx ∇∇−=Δ
−

                                          
(12) 

Where )(2 xV∇  is the Hessian matrix and )(xV∇ is the 
gradient. It can be shown that 

)()()( xexJxV T=∇                                                  (13) 
)()()()(2 xSxJxJxV T +=∇                                  (14) 

Where J(x) is the Jacobin matrix and  

∑
=

∇=
N

i
ii xexexS

1

2 ).()()(
                                          (15) 

For the Gauss-Newton method it is assumed that S(x)=0 
and the update becomes 

[ ] ).()()()( 1 xexJxJxJx TT −
=Δ                             (16) 

The Marquardt-Levenberg modification to the Gauss-
Newton method is   

[ ] ).()()()( 1 xexJIxJxJx TT −
+=Δ μ                    (17) 

The parameter µ is multiplied by some factor (β) whenever 
a step would result in an increased V(x).  When a step reduces 
V(x), µ is divided by β. 

The following table compares the performance of different 
algorithms for modeling the PEMFC by a feed forward Neural 
Network includes  one hidden layer with size=7 and 4000 
training data.µ for the starting of trainlm considered 0.01 and 
β=10. 

The Marquardt-Levenberg algorithm can be considered a 
modification to Gauss-Newton [10]. 

 
TABLE  I  

COMPARISON BETWEEN DIFFERENT ALGORITHMS FOR NETWORK 
TRAINING TO IDENTFY PEMFC 

Type Trainbfg train
rp 

Traingd
x 

trainl
m 

Numb
er of 

epochs 

34 22 28 18 

Perfor
mance  
index 

91033.1 −×
 

0.10
43 

91035.1 −×
 

10109.4 −×
 

 
The model predictive control method is based on the 
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receding horizon technique. The neural network model 
predicts the plant response over a specified time horizon. The 
predictions are used by a numerical optimization program to 
determine the control signal that minimizes the following 
performance criterion over the specified horizon 

∑ ∑= =
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j
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          (18)                                                                         

Where N1,N2 and Nu define the horizons. The 
tu variable 

is the tentative control signal, yr is the desired response and 
ym is the network model response.  

 

IV. SIMULATION RESULTS 

In this section Robustness of proposed controller is proved 
by simulation of controller in noisy condition. The voltage of 
cell is output and the pressure of hydrogen, the pressure of 
oxygen, the load current and temperature are inputs but 
controller variable is temperature. The voltage is a function of 
temperature of the environment. So a controller is needed to 
fix voltage at a constant amount. 

In the first experiment the control of output voltage and its 
tracking is tested (figure4). Using the data generated from the 
electrochemical model of PEMFC, a Neural Network 
described in section III and the predictive controller with cost 
horizon N2=7, control horizon Nu=2, control weighting factor 
ρ=0.05 and search parameter α=0.001 results of figure5 are 
concluded. 

 

 
Fig. 5 Control of PEMFC voltage 

By NN Predictive Controller 
 

 
 

Fig. 6 Comparing of tracking operation between PID and 
NN Predictive Controller: 1-Setpoint Reference, 

2-NN predictive response 

 
Results show that with NN predictive controller output 

voltage can lead preference value. 
In the other experiment, the NN predictive controller is 

used as a filter to reduce the effect of noise and fluctuations in 
the input hydrogen valve. 

In noise cancellation, the Neural Network is used to remove 
noise from signal in a real time. The structure of this method 
is shown in fig 6.Here, the desired signal d(n) the one to clean 
up, combines noise and desired information. To remove the 
noise, a signal n’(n) are fed to the NN filter that represents 
noise that is correlated to the noise to remove from the desired 
signal. So long as the input noise to the filter remains 
correlated to the unwanted noise accompanying the desired 
signal, the adaptive filter adjusts its coefficients to reduce the 
value of the difference between y(n) and d(n),removing the 
noise and resulting in a clean signal in e(n). Notice that in this 
application, the error signal actually converges to the input 
data signal, rather than converging to zero. 

 

 
 

Fig. 7  NN as an adaptive filter 
 
Fig 7 shows the output voltage of PEMFC in presence of 

noise in the pressure of input hydrogen with and without the 
NN as a filter. It can clearly be seen that the NN filter can 
reduce the effect of noise in output voltage. 

 

 
Fig. 8 The output voltage of PEMFC in presence of noise 

and fluctuations: 1-with NN filter, 2-without filter 
 

V. CONCLUSIONS  
This paper discussed the application of Neural Network 

Predictive controller to control the output voltage and 
reduction of noise and fluctuation effects. The dynamic 
electrochemical model of PEMFC was expressed and used to 
generate data with temperature as input and voltage as output. 
The identification approach was used, based on the single 

2 

1 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:2, 2011

172

 

 

layer feed forward neural network with Levenberg-Marqurdt 
training algorithm. Simulation results indicate that the 
performance of NN predictive controller is adequate. Results 
also show that this controller can reduce the effect of noise as 
an adaptive filter.  

NOMENCLATURE 
Paramete
rs 

Value param
eters 

Value 

T 343[k] 1ζ  -0.948 
A ][6.50 2cm  2ζ  

)Cln(.

)Aln(..

H 2
51034

0002000280
−×+

+

 
2HP  1[atm] 3ζ  

51067 −×.  
2OP  1[atm] 4ζ  

410931 −×− .  
B 0.016[v] ψ  23 

Rc 0.0003[Ω] Jmax 1.5A/cm2 
L 178[µm] Jn 1.2mA/cm2 
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