
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

381

Abstract—Load balancing is the process of improving the

performance of a parallel and distributed system through a
redistribution of load among the processors [1] [5]. In this paper we
present the performance analysis of various load balancing
algorithms based on different parameters, considering two typical
load balancing approaches static and dynamic. The analysis indicates
that static and dynamic both types of algorithm can have
advancements as well as weaknesses over each other. Deciding type
of algorithm to be implemented will be based on type of parallel
applications to solve. The main purpose of this paper is to help in
design of new algorithms in future by studying the behavior of
various existing algorithms.

Keywords—Load balancing (LB), workload, distributed systems,
Static Load balancing, Dynamic Load Balancing

I. INTRODUCTION
N parallel and distributed systems more than one processors
processing parallel programs. The amount of processing

time needed to execute all processes assigned to a processor is
called workload of a processor. A system [2] [3] of distributed
computers with tens or hundreds of computers connected by
high speed networks has many advantages over a system that
has the same standalone computers. A distributed system
provide the resource sharing as one of its major advantages,
which provide the better performance and reliability than any
other traditional system in the same conditions. One of the
research issues in parallel and distributed systems is the
development of effective techniques for distributing workload
on multiple processors. The main goal is to distribute the jobs
among processors to maximize throughput, maintain stability,
resource utilization and should be fault tolerant in nature.
Local scheduling performed by the operating system consists
of the distribution of processes to the time-slices of the
processor. On the other hand Global scheduling is the process
of deciding where to execute a process in a multiprocessor
system. Global scheduling may be carried out by a single

S. Sharma is with the Department of Computer Science and Engineering,

Guru Nanak Dev University, Amritsar – 143001, Punjab, India (Phone: +91-
98555-90815; e-mail: Sandeep_gndu@ yahoo.com).

S. Singh is with the Department of Computer Science and IT, DAV
College, Amritsar – 143001, Punjab, India (e-mail: sarabjit_gndu@
yahoo.com).

M. Sharma is with the Department of Computer Science and Engineering,
Sai Engineering College, Pathankot – 145001, Punjab, India (e-mail:
meenu_ddit@yahoo.com).

central or master processing element, or it may be distributed
among the processing elements. Global scheduling is further
classified into static and dynamic scheduling categories. In
static scheduling processes are assigned to processors before
the executions starts. On the other hand dynamic scheduling
can reassign the processes to the processors during the
execution. Load sharing and load balancing are the further
classifications of dynamic scheduling. Load sharing struggle
to avoid the unshared state in processors which remain idle
while tasks compete for service at some other processor.
Load balancing also do the same but it goes one step ahead of
load sharing by attempting to equalize the loads at all
processors. Load balancing is to ensure that every processor in
the system does approximately the same amount of work at
any point of time. Processes may migrate from one node to
another even in the middle of execution to ensure equal
workload. Algorithms for load balancing have to rely on the
assumption that the on hand information at each node is
accurate to prevent processes from being continuously
circulated about the system without any progress. Load
balancing is one of prerequisites to utilize the full resources of
parallel and distributed systems. Load balancing may be
centralized in a single processor or distributed among all the
processing elements that participate in the load balancing
process.

Several tasks are scheduled for separate processors, based
on the current load on each CPU. Many researches have been
carried out on load balancing for many years with the aim is to
find the load balancing schemes with overhead as low as
possible.

II. PAPER ORGANIZATION
In our paper we have carried out the study of six load

balancing algorithms, various parameters are used to check the
results. In this paper first Introduction is given then in III brief
introduction of static load balancing algorithms, IV gives
introduction of dynamic load balancing algorithms, in V we
have given parameters we selected to analyze algorithms VI
gives the study of results with the help of table I and
conclusion is given in VII.

III. STATIC LOAD BALANCING
In this method the performance [3] [6] of the processors is

determined at the beginning of execution. Then depending
upon their performance the work load is distributed in the start

Performance Analysis of Load Balancing
Algorithms

Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

382

by the master processor. The slave processors calculate their
allocated work and submit their result to the master. A task is
always executed on the processor to which it is assigned that
is static load balancing methods are non-preemptive. The goal
of static load balancing method is to reduce the overall
execution time of a concurrent program while minimizing the
communication delays. A general disadvantage of all static
schemes is that the final selection of a host for process
allocation is made when the process is created and cannot be
changed during process execution to make changes in the
system load.

A. Round Robin and Randomized Algorithms
In the round robin [5] processes are divided evenly between

all processors. Each new process is assigned to new processor
in round robin order. The process allocation order is
maintained on each processor locally independent of
allocations from remote processors. With equal workload
round robin algorithm is expected to work well. Round Robin
and Randomized schemes [6] work well with number of
processes larger than number of processors.

Advantage of Round Robin algorithm is that it does not
require inter-process communication. Round Robin and
Randomized algorithm both can attain the best performance
among all load balancing algorithms for particular special
purpose applications. In general Round Robin and
Randomized are not expected to achieve good performance in
general case.

B. Central Manager Algorithm
In this algorithm [10], A central processor selects the host

for new process. The minimally loaded processor depending
on the overall load is selected when process is created. Load
manager selects hosts for new processes so that the processor
load confirms to same level as much as possible. From the on
hand information on the system load state central load
manager makes the load balancing judgment. This information
is updated by remote processors, which send a message each
time the load on them changes. This information can depend
on waiting of parent’s process of completion of its children’s
process, end of parallel execution

The load manager makes load balancing decisions based on
the system load information, allowing the best decision when
of the process created. High degree of inter-process
communication could make the bottleneck state. This
algorithm is expected to perform better than the parallel
applications, especially when dynamic activities are created by
different hosts.

C. Threshold Algorithm
According to this algorithm, the processes are assigned

immediately upon creation to hosts. Hosts for new processes
are selected locally without sending remote messages. Each
processor keeps a private copy of the system’s load. The load
of a processor can characterize by one of the three levels:
underloaded, medium and overloaded. Two threshold
parameters tunder and tupper can be used to describe these

levels.
Under loaded - load < tunder
Medium - tunder ≤ load ≤ tupper
Overloaded - load > tupper

Initially, all the processors are considered to be under
loaded. When the load state of a processor exceeds a load
level limit, then it sends messages regarding the new load state
to all remote processors, regularly updating them as to the
actual load state of the entire system.

If the local state is not overloaded then the process is
allocated locally. Otherwise, a remote under loaded processor
is selected, and if no such host exists, the process is also
allocated locally. Thresholds algorithm have low inter process
communication and a large number of local process
allocations. The later decreases the overhead of remote
process allocations and the overhead of remote memory
accesses, which leads to improvement in performance. A
disadvantage of the algorithm is that all processes are
allocated locally when all remote processors are overloaded. A
load on one overloaded processor can be much higher than on
other overloaded processors, causing significant disturbance
in load balancing, and increasing the execution time of an
application.

IV. DYNAMIC LOAD BALANCING
It differs from static algorithms in that the work load is

distributed among the processors at runtime. The master
assigns new processes to the slaves based on the new
information collected [2] [7]. Unlike static algorithms,
dynamic algorithms allocate processes dynamically when one
of the processors becomes under loaded. Instead, they are
buffered in the queue on the main host and allocated
dynamically upon requests from remote hosts.

A. Central Queue Algorithm
Central Queue Algorithm [12] works on the principle of

dynamic distribution. It stores new activities and unfulfilled
requests as a cyclic FIFO queue on the main host. Each new
activity arriving at the queue manager is inserted into the
queue. Then, whenever a request for an activity is received by
the queue manager, it removes the first activity from the queue
and sends it to the requester. If there are no ready activities in
the queue, the request is buffered, until a new activity is
available. If a new activity arrives at the queue manager while
there are unanswered requests in the queue, the first such
request is removed from the queue and the new activity is
assigned to it.

When a processor load falls under the threshold, the local
load manager sends a request for a new activity to the central
load manager. The central load manager answers the request
immediately if a ready activity is found in the process-request
queue, or queues the request until a new activity arrives.

B. Local Queue Algorithm
Main feature of this algorithm [12] is dynamic process

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

383

migration support. The basic idea of the local queue algorithm
is static allocation of all new processes with process migration
initiated by a host when its load falls under threshold limit, is
a user-defined parameter of the algorithm. The parameter
defines the minimal number of ready processes the load
manager attempts to provide on each processor.

Initially, new processes created on the main host are
allocated on all under loaded hosts. The number of parallel
activities created by the first parallel construct on the main
host is usually sufficient for allocation on all remote hosts.
From then on, all the processes created on the main host and
all other hosts are allocated locally.

When the host gets under loaded, the local load manager
attempts to get several processes from remote hosts. It
randomly sends requests with the number of local ready
processes to remote load managers. When a load manager
receives such a request, it compares the local number of ready
processes with the received number. If the former is greater
than the latter, then some of the running processes are
transferred to the requester and an affirmative confirmation
with the number of processes transferred is returned.

V. PARAMETERS
The performance of various load balancing algorithms is

measured by the following parameters.

A. Overload Rejection
If Load Balancing is not possible additional overload

rejection measures are needed. When the overload situation
ends then first the overload rejection measures are stopped.
After a short guard period Load Balancing is also closed
down.

B. Fault Tolerant
This parameter gives that algorithm is able to tolerate

tortuous faults or not. It enables an algorithm to continue
operating properly in the event of some failure. If the
performance of algorithm decreases, the decrease is
proportional to the seriousness of the failure, even a small
failure can cause total failure in load balancing.

C. Forecasting Accuracy
Forecasting is the degree of conformity of calculated results

to its actual value that will be generated after execution. The
static algorithms provide more accuracy than of dynamic
algorithms as in former most assumptions are made during
compile time and in later this is done during execution.

D. Stability
Stability can be characterized in terms of the delays in the

transfer of information between processors and the gains in
the load balancing algorithm by obtaining faster performance
by a specified amount of time.

E. Centralized or Decentralized
Centralized schemes store global information at a

designated node. All sender or receiver nodes access the

designated node to calculate the amount of load-transfers and
also to check that tasks are to be sent to or received from. In a
distributed load balancing, every node executes balancing
separately. The idle nodes can obtain load during runtime
from a shared global queue of processes.

F. Nature of Load Balancing Algorithms
Static load balancing assigns load to nodes probabilistically

or deterministically without consideration of runtime events. It
is generally impossible to make predictions of arrival times of
loads and processing times required for future loads. On the
other hand, in a dynamic load balancing the load distribution
is made during run-time based on current processing rates and
network condition. A DLB policy can use either local or
global information.

G. Cooperative
This parameter gives that whether processors share

information between them in making the process allocation
decision other are not during execution. What this parameter
defines is the extent of independence that each processor has
in concluding that how should it can use its own resources. In
the cooperative situation all processors have the accountability
to carry out its own portion of the scheduling task, but all
processors work together to achieve a goal of better
efficiency. In the non-cooperative individual processors act as
independent entities and arrive at decisions about the use of
their resources without any effect of their decision on the rest
of the system.

H. Process Migration
Process migration parameter provides when does a system

decide to export a process? It decides whether to create it
locally or create it on a remote processing element. The
algorithm is capable to decide that it should make changes of
load distribution during execution of process or not.

I. Resource Utilization
Resource utilization include automatic load balancing A

distributed system may have unexpected number of processes
that demand more processing power. If the algorithm is
capable to utilize resources, they can be moved to under
loaded processors more efficiently.

VI. COMPARISON
The comparison of various load balancing algorithms on

behalf of the different parameters is shown in Table
I.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

384

VII. CONCLUSION
Load balancing algorithms work on the principle that in

which situation workload is assigned, during compile time or
at runtime. The above comparison shows that static load
balancing algorithms are more stable in compare to dynamic
and it is also ease to predict the behavior of static, but at a
same time dynamic distributed algorithms are always
considered better than static algorithms.

REFERENCES
[1] G. R. Andrews, D. P. Dobkin, and P. J. Downey, "Distributed allocation

with pools of servers," in ACM SIGACT-SIGOPS Symp. Principles of
Distributed Computing, Aug. 1982, pp. 73-83.

[2] S. Malik, “Dynamic Load Balancing in a Network of Workstation”,
95.515 Research Report, 19 November, 2000.

[3] Derek L. Eager, Edward D. Lazowska , John Zahorjan, “Adaptive load
sharing in homogeneous distributed systems”, IEEE Transactions on
Software Engineering, v.12 n.5, p.662-675, May 1986.

[4] H.S. Stone, “Critical Load Factors in Two-Processor Distributed
Systems,” IEEE Trans. Software Eng., vol. 4, no. 3, May 1978.

[5] Zhong Xu, Rong Huang, "Performance Study of Load Balancing
Algorithms in Distributed Web Server Systems", CS213 Parallel and
Distributed Processing Project Report.

[6] R. Motwani and P. Raghavan, “Randomized algorithms”, ACM
Computing Surveys (CSUR), 28(1):33-37, 1996

[7] Y.Wang and R. Morris, "Load balancing in distributed systems," IEEE
Trans. Computing. C-34, no. 3, pp. 204-217, Mar. 1985.

[8] M. Zaki, W. Li, and S. Parthasarathy. “Customized dynamic load
balancing for a network of workstations”. Journal of Parallel and
Distributed Computing: Special Issue on Performance Evaluation,
Scheduling, and Fault Tolerance, June 1997.

[9] S.P. Dandamudi, “Sensitivity evaluation of dynamic load sharing in
distributed systems”, IEEE Concurrency 6 (3) (1998) 62-72.

[10] P. L. McEntire, J. G. O'Reilly, and R. E. Larson, Distributed Computing:
Concepts and Implementations. New York: IEEE Press, 1984.

[11] L. Rudolph, M. Slivkin-Allalouf, E. Upfal. A Simple Load Balancing
Scheme for Task Allocation in Parallel Machines. In Proceedings of the
3rd ACM Symposium on Parallel Algorithms and Architectures, pp.
237-245, July 1991.

[12] William Leinberger, George Karypis, Vipin Kumar, "Load Balancing
Across Near-Homogeneous Multi-Resource Servers", 0-7695-0556-
2/00, 2000 IEEE.

TABLE I
PARAMETRIC COMPARISON OF LOAD BALANCING ALGORITHMS

Parameters Round
Robin Random Local

Queue
Central
Queue

Central
Manager Threshold

Overload Rejection No No Yes Yes No No
Fault Tolerant No No Yes Yes Yes No
Forecasting Accuracy More More Less Less More More
Stability Large Large Small Small Large Large
Centralized/Decentralized D D D C C D
Dynamic/Static S S Dy Dy S S
Cooperative No No Yes Yes Yes Yes
Process Migration No No Yes No No No
Resource Utilization Less Less More Less Less Less

