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Abstract—The scientific community has invested a great deal of 

effort in the fields of discrete wavelet transform in the last few 
decades. Discrete wavelet transform (DWT) associated with the 
vector quantization has been proved to be a very useful tool for the 
compression of image. However, the DWT is very computationally 
intensive process requiring innovative and computationally efficient 
method to obtain the image compression. The concurrent 
transformation of the image can be an important solution to this 
problem. This paper proposes a model of concurrent DWT for image 
compression. Additionally, the formal verification of the model has 
also been performed. Here the Symbolic Model Verifier (SMV) has 
been used as the formal verification tool. The system has been 
modeled in SMV and some properties have been verified formally. 
 

Keywords—Computation Tree Logic, Discrete Wavelet 
Transform, Formal Verification, Image Compression, 
Symbolic Model Verifier.   

I. INTRODUCTION 
HE research in compression techniques has stemmed from 
the ever increasing need for efficient data transmission, 
storage and utilization of hardware resources. 

Uncompressed image data require considerable storage 
capacity and transmission bandwidth. Despite rapid 
progresses in mass storage density, processor speeds and 
digital communication system performance demand for data 
storage capacity and data transmission bandwidth continues to 
outstrip the capabilities of available technologies. The recent 
growth of data intensive multimedia based applications have 
not only sustained the need for more efficient ways to encode 
signals and images but have made compression of such signals 
central to signal storage and digital communication 
technology. 
     Compressing an image is significantly different from 
compressing raw binary data. Of course, general purpose 
compression programs can be used to compress images, but 
the result is less than optimal. This is because images have 
certain statistical properties which can be exploited by 
encoders specifically designed for them. Also, some of the 
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finer details in the image can be sacrificed for the sake of 
saving a little more bandwidth or storage space.  
     Lossless compression involves with compressing data 
which, when decompressed, will be an exact replica of the 
original data. This is the case when binary data such as 
executables documents etc. are compressed. They need to be 
exactly reproduced when decompressed. On the other hand, 
images need not be reproduced 'exactly'. An approximation of 
the original image is enough for most purposes, as long as the 
error between the original and the compressed image is 
tolerable.   
     The neighboring pixels of most of the images are highly 
correlated and therefore hold redundant information from 
certain perspective of view [1]. The foremost task then is to 
find out less correlated representation of the image. Image 
compression is actually the reduction of the amount of this 
redundant data (bits) without degrading the quality of the 
image to an unacceptable level [2] [3] [4]. There are mainly 
two basic components of image compression - redundancy 
reduction and irrelevancy reduction. The redundancy 
reduction aims at removing duplication from the signal source 
image while the irrelevancy reduction omits parts of the signal 
that is not noticed by the signal receiver i.e., the Human 
Visual System (HVS) [5] which presents some tolerance to 
distortion, depending on the image content and viewing 
conditions. Consequently, pixels must not always be 
regenerated exactly as originated and the HVS will not detect 
the difference between original and reproduced images.  
     The current standards for compression of still image (e.g., 
JPEG) use Discrete Cosine Transform (DCT), which 
represents an image as a superposition of cosine functions 
with different discrete frequencies [6]. The DCT can be 
regarded as a discrete time version of the Fourier Cosine 
series. It is a close relative of Discrete Fourier Transform 
(DFT), a technique for converting a signal into elementary 
frequency components. Thus, DCT can be computed with a 
Fast Fourier Transform (FFT) like algorithm of complexity 
O(nlog2 n).  
     More recently, the wavelet transform has emerged as a 
cutting edge technology within the field of image analysis. 
The wavelet transformations have a wide variety of different 
applications in computer graphics including radiosity [7], 
multiresolution painting [8], curve design [9], mesh 
optimization [10], volume visualization [11], image searching 
[12] and one of the first applications in computer graphics, 
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image compression. The Discrete Wavelet Transformation 
(DWT) provides adaptive spatial frequency resolution (better 
spatial resolution at high frequencies and better frequency 
resolution at low frequencies) that is well matched to the 
properties of an HVS. 
     This paper proposes a technique of concurrent DWT based 
image compression which has also been formally verified. 
Simulation and testing [13] are some of the traditional 
approaches for verifying the systems. Simulation and testing 
both involve making experiments before deploying the system 
in the field. While simulation is performed on an abstraction 
or a model of the system, testing is performed on the actual 
product. In both cases, these methods typically inject signals 
at certain points in the system and observe the resulting 
signals at other points. Checking all the possible interactions 
and finding potential pitfalls using simulation and testing 
techniques is not always possible. Formal verification [14], an 
appealing alternative to simulation and testing, conducts an 
exhaustive exploration of all possible behaviors of the system. 
Thus, when a design is marked correct by the formal method, 
it implies that all behaviors have been explored and the 
question of adequate coverage or a missed behavior becomes 
irrelevant. There are some robust tools for formal verification 
such as SMV, SPIN, COSPAN, VIS etc [14]. Our method has 
been modeled in SMV and the properties of the system have 
been verified formally. 

II. DWT IN IMAGE COMPRESSION 
Wavelet transform exploits both the spatial and frequency 

correlation of data by dilations (or contractions) and 
translations of mother wavelet on the input data. It supports 
the multiresolution analysis of data i.e. it can be applied to 
different scales according to the details required, which allows 
progressive transmission and zooming of the image without 
the need of extra storage. Another encouraging feature of 
wavelet transform is its symmetric nature that is both the 
forward and the inverse transform has the same complexity, 
building fast compression and decompression routines. Its 
characteristics well suited for image compression include the 
ability to take into account of Human Visual System’s (HVS) 
characteristics, very good energy compaction capabilities, 
robustness under transmission, high compression ratio etc.  
     The implementation of wavelet compression scheme is 
very similar to that of subband coding scheme: the signal is 
decomposed using filter banks. The output of the filter banks 
is down-sampled, quantized, and encoded. The decoder 
decodes the coded representation, up-samples and recomposes 
the signal.  
     Wavelet transform divides the information of an image into 
approximation and detail subsignals. The approximation 
subsignal shows the general trend of pixel values and other 
three detail subsignals show the vertical, horizontal and 
diagonal details or changes in the images. If these details are 
very small (threshold) then they can be set to zero without 
significantly changing the image. The greater the number of 
zeros the greater the compression ratio. If the energy retained 
(amount of information retained by an image after 
compression and decompression) is 100% then the 

compression is lossless as the image can be reconstructed 
exactly. This occurs when the threshold value is set to zero, 
meaning that the details have not been changed. If any value is 
changed then energy will be lost and thus lossy compression 
occurs. As more zeros are obtained, more energy is lost. 
Therefore, a balance between the two needs to be found out 
[15]. 
     The primary aim of any compression method is generally 
to express an initial set of data using some smaller set of data 
either with or without loss of information. As for an example, 
let we have a function )(xf  expressed as a weighted sum of 
basis function )(,),........(1 xuxu m as given below- 

                                      ∑
=

=
m

i
ii xucxf

1

)()(  

where mcc ......,,.........1 are some coefficients. We here will try 
to find a function that will approximate )(xf with smaller 
coefficients, perhaps using different basis. That means we are 
looking for- 

                                    ∑
=

=
m

i
ii xucxf

ˆ

1

)(ˆˆ)(ˆ  

with a user-defined error tolerance ε  ( ε = 0 for lossless 

compression) such that mm ˆ> and ε≤− )(ˆ)( xfxf . In 

general, one could attempt to construct a set of basis functions 
muu ˆ1 ˆ....,,.........ˆ  that would provide a good approximation in a 

fixed basis.  
     One form of the compression problem is to order the 
coefficients mcc ,........,1  so that for mm ˆ> , the first 
m̂ elements of the sequence give the best approximation 

)(ˆ xf to )(xf as measured in the 2L  form.  

     Let )(iπ be a permutation of m,.......,1 and )(ˆ xf be a 
function that uses the coefficients corresponding to the first 
m̂  numbers of the permutation :)(iπ    
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The square of the 2L  error in this approximation is given by- 
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Wavelet image compression using the 2L  norm can be 
summarized in the following ways: 

i) Compute coefficients mcc ,......,1   representing an 
image in a normalized two-dimensional Haar basis. 
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ii) Sort the coefficients in order of decreasing 
magnitude to produce the sequence )()1( .,,......... mcc ππ . 

iii) Given an allowable error ε and starting from 
mm =ˆ , find the smallest m̂  for which 
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≤
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)( επ                  

     The first step is accomplished by applying either of the 2D 
Haar wavelet transforms being sure to use normalized basis 
functions. Any standard sorting method will work for the 
second step and any standard search technique can be used for 
third step. However, for large images sorting becomes 
exceedingly slow. The procedure below outlines a more 
efficient method of accomplishing steps 2 and 3, which uses a 
binary search strategy to find a thresholdτ below which 
coefficients can be truncated.  
     The procedure takes as input a 1D array of coefficients c 
(with each coefficient corresponding to a 2D basis function) 
and an error toleranceε. For each guess at a threshold τ the 
algorithm computes the square of the 2L  error that would 
result from discarding coefficients smaller in magnitude 
thanτ . This squared error s is compared to 2ε  at each loop to 
decide if the search would continue in the upper or lower half 
of the current interval. The algorithm halts when the current 
interval is so narrow that the number of coefficients to be 
discarded no longer changes [16]. 
 
procedure Compress (C : array [1. .m] of reals; ε : real) 
   τmin←min{|c[i]|} 
   τmax←max{|c[i]|} 
   do 
       τ ←(τmin + τmax)/2 
       s ← 0 
       for i ← 1 to m do 
              if |C [i]| < τ then s ← s + |C [i]|2 
       end for 
       if s < ε2 then τmin← τ else τmax← τ  
   until τmin≈ τmax 
   for i ← 1 to m do 
         if |C [i]| < τ then C [i] ← 0 
    end for 
end procedure 
 

The below pseudocode fragment for a greedy L1 
compression scheme, which works by accumulating in a 2D 
array Δ [x,y] the error introduced by discarding a coefficient 
and checking if this error has exceeded a user-defined 
threshold. 
  
for each pixel (x,y) do 
     Δ [x,y] ← 0 
end for 
for i← 1 to m do 
     'Δ  ← Δ + error from discarding c[i] 
      if ∑ <Δ

yx

yx
,

' ],[ ε then 

             c[i] ← 0 
            Δ ← Δ ’ 

      end if 
end for 

To understand how wavelets work, let us start with a simple 
example. Assume we have a 1D image with a resolution of 
four pixels, having values [9 7 3 5]. Haar wavelet basis can be 
used to represent this image by computing a wavelet 
transform. To do this, first average the pixels together, 
pairwise, is calculated to get the new lower resolution image 
with pixel values [8 4]. Clearly, some information is lost in 
this averaging process. We need to store some detail 
coefficients to recover the original four pixel values from the 
two averaged values. In our example, 1 is chosen for the first 
detail coefficient, since the average computed is 1 less than 9 
and 1 more than 7. This single number is used to recover the 
first two pixels of our original four-pixel image. Similarly, the 
second detail coefficient is -1, since 4 + (-1) = 3 and 4 - (-1) = 
5. Thus, the original image is decomposed into a lower 
resolution (two-pixel) version and a pair of detail coefficients. 
Repeating this process recursively on the averages gives the 
full decomposition shown in Table I: 
     
 
 
 
 
 
 

Thus, for the one-dimensional Haar basis, the wavelet 
transform of the original four-pixel image is given by [6 2 1 -
1]. The way used to compute the wavelet transform by 
recursively averaging and differencing coefficients, is called a 
filter bank. We can reconstruct the image to any resolution by 
recursively adding and subtracting the detail coefficients from 
the lower resolution versions.  

It has been shown how one dimensional image can be 
treated as sequences of coefficients. Alternatively, we can 
think of images as piecewise constant functions on the half-
open interval [0, 1). To do so, the concept of a vector space is 
used. A one-pixel image is just a function that is constant over 
the entire interval [0, 1). Let V0 be the vector space of all these 
functions. A two pixel image has two constant pieces over the 
intervals [0, 1/2) and [1/2, 1). We call the space containing all 
these functions V1. If we continue in this manner, the space Vj 
will include all piecewise-constant functions defined on the 
interval [0, 1) with constant pieces over each of 2j equal 
subintervals. We can now think of every one-dimensional 
image with 2j pixels as an element, or vector, in Vj. Note that 
because these vectors are all functions defined on the unit 
interval, every vector in Vj is also contained in Vj+1. For 
example, we can always describe a piecewise constant 
function with two intervals as a piecewise-constant function 
with four intervals, with each interval in the first function 
corresponding to a pair of intervals in the second. Thus, the 
spaces Vj are nested; that is, V 0⊂ V 1⊂ V 2⊂ …… This nested 
set of spaces Vj is a necessary ingredient for the mathematical 
theory of multiresolution analysis [16]. It guarantees that 

Resolution Averages Detail Coefficients 
4 [9 7 3 5]  
2 [8 4] [1 -1] 
1 [6] [2] 

TABLE I: DECOMPOSITION TO LOWER RESOLUTION 
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every member of V0 can be represented exactly as a member 
of higher resolution space V1. The converse, however, is not 
true: not every function G(x) in V1 can be represented exactly 
in lower resolution space V0; in general there is some lost 
detail [17]. 
    Now we define a basis for each vector space V j. The basis 
functions for the spaces V j are called scaling functions, and 
are usually denoted by the symbol φ. A simple basis for Vj is 
given by the set of scaled and translated box functions [18]: 

φi
j (x) : = φ (2jx – i)    i = 0, 1, 2…..2j -1 where 

 
               φ (x) : =         1   for 0≤x<1 

                     0  otherwise  
 
The wavelets corresponding to the box basis are known as the 
Haar wavelets, given by- 

Ψi
j (x) : = Ψ (2jx – i)    i = 0, 1, 2…..2j -1 where 

 
Ψ (x) : =         1   for 0≤x<1/2 
                      -1 for 1/2≤x<1 

                    0  otherwise  
 

Thus, the DWT for an image as a 2D signal will be 
obtained from 1D DWT. We get the scaling function and 
wavelet function for 2D by multiplying two 1D functions. The 
scaling function is obtained by multiplying two 1D scaling 
functions: φ(x,y)=φ(x)φ(y). The wavelet functions are obtained 
by multiplying two wavelet functions or wavelet and scaling 
function for 1D. For the 2D case, there exist three wavelet 
functions that scan details in horizontal Ψ(1)(x,y)= φ(x)Ψ(y), 
vertical Ψ(2)(x,y)= Ψ(x)φ(y) and diagonal directions: Ψ(3)(x,y)= 
Ψ(x) Ψ(y). This may be represented as a four channel perfect 
reconstruction filter bank as shown in Fig. 1. Now, each filter 
is 2D with the subscript indicating the type of filter (HPF or 
LPF) for separable horizontal and vertical components. By 
using these filters in one stage, an image is decomposed into 
four bands. There exist three types of detail images for each 
resolution: horizontal (HL), vertical (LH), and diagonal (HH). 
The operations can be repeated on the low low (LL) band 
using the second stage of identical filter bank. Thus, a typical 
2D DWT, used in image compression, generates the 
hierarchical structure shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

The transformation of the 2D image is a 2D generalization 
of the 1D wavelet transformed already discussed. It applies 
the 1D wavelet transform to each row of pixel values. This 
operation provides us an average value along with detail 
coefficients for each row. Next, these transformed rows are 
treated as if they were themselves an image and apply the 1D 
transform to each column. The resulting values are all detail 
coefficients except a single overall average co-efficient.  In 
order to complete the transformation, this process is repeated 
recursively only on the quadrant containing averages.  
    Now let us see how the 2D Haar wavelet transformation is 
performed. The image is comprised of pixels represented by 
numbers [19]. Consider the 8×8 image taken from a specific 
portion of a typical image shown in Fig. 3. The matrix (a 2D 
array) representing this image is shown in Fig. 4.  
    Now we perform the operation of averaging and 
differencing to arrive at a new matrix representing the same 
image in a more concise manner. Let us look how the 
operation is done. Consider the first row of the Fig. 4.  

     Averaging: (64+2)/2=33, (3+61)/2=32, (60+6)/2=33, 
(7+57)/2=32 

Differencing: 64–33 =31, 3–32= –29, 60–33=27 and 
                                         7–32= –25     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

So, the transformed row becomes (33 32 33 32 31 –29 27 –
25). Now the same operation on the average values i.e. (33 32 
33 32) is performed. Then we perform the same operation on 
the averages i.e. first two elements of the new transformed 

LL HL3 
LH3 HH3 

 
HL2 

 
LH2 

 
HH2 

 
HL1 

 
 

LH1 
 

 
 

HH1 
 

Fig. 4  2D array representing the Fig. 3 

64 2 3 61 60 6 7 57 
9 55 54 12 13 51 50 16 
17 47 46 20 21 43 42 24 
40 26 27 37 36 30 31 33 
32 34 35 29 28 38 39 25 
41 23 22 44 45 19 18 48 
49 15 14 52 53 11 10 56 
8 58 59 5 4 62 63 1 

Image 
corres. to 
resolution 
level i-1 

Fig. 1 One Filter Stage in 2D DWT 
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Fig. 3 A 8×8 image 

Fig. 2 Structure of wavelet decomposition
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row. Thus the final transformed row becomes (32.5 0 0.5 0.5 
31 –29 27 –25). The new matrix we get after applying this 
operation on each row of the entire matrix of Fig. 4. is shown 
in Fig. 5. Performing the same operation on each column of 
the matrix in Fig. 5, we get the final transformed matrix as 
shown in Fig. 6. This operation on rows followed by columns 
of the matrix is performed recursively depending on the level 
of transformation meaning the more iteration provides more 
transformations. Note that the left-top element of the Fig. 6 
i.e. 32.5 is the only averaging element which is the overall 
average of all elements of the original matrix and the rest all 
elements are the details coefficients. The main part of the C 
program used to transform the matrix is shown in Fig. 7. The 
2D array mat holds the values which represent the image. 
    The point of the wavelet transform is that regions of little 
variation in the original image manifest themselves as small or 
zero elements in the wavelet transformed version. The 0’s in 
the Fig. 6 are due to the occurrences of identical adjacent 
elements in the original matrix. A matrix with a high 
proportion of zero entries is said to be sparse. For most of the 
image matrices, their corresponding wavelet transformed 
versions are much sparser than the originals. Very sparse 
matrices are easier to store and transmit than ordinary matrices 
of the same size. This is because the sparse matrices can be 
specified in the data file solely in terms of locations and 
values of their non-zero entries.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    It can be seen that in the final transformed matrix, we find a 
lot of entries zero. From this transformed matrix, the original 
matrix can be easily calculated just by the reverse operation of 
averaging and differencing i.e. the original image can be 
reconstructed from the transformed image without the loss of 
information. Thus, it yields a lossless compression of the 
image. However, to achieve more degree of compression, we 
have to think of the lossy compression. In this case, a 
nonnegative threshold value say ε is set. Then, any detailed 
coefficient in the transformed data, whose magnitude is less 
than or equal to ε,  is set to zero. It will increase the number of 
0’s in the transformed matrix and thus the level of 

compression is increased. So, ε =0 is used for a lossless 
compression. If the lossy compression is used, the 
approximations of the original image can be built up. The 
setting of the threshold value is very important as there is a 
tradeoff between the value of ε  and the quality of the 
compressed image. Finding out an appropriate value of ε  is an 
interesting area to research on. Loosely saying, the 
compression ratio of the image is calculated by- the number of 
nonzero elements in original matrix: the number of nonzero 
elements in updated transformed matrix [20]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    In summary, the main steps of the 2D image compression 
using wavelet as the basis functions are: (a) Start with the 
matrix P representing the original image, (b) Compute the 
transformed matrix T by the operation averaging and 
differencing (First for each row, then for each column) (c) 
Choose threshold value ε (ε =0 for lossless and ε = some +ve 
value for lossy) (d) Replace all co-efficient of T which is 
smaller than or equal to ε by zero. Suppose this matrix is D. 
(e) Use D to compute the compression ratio and to reconstruct 
the original image as well. 
     Now we see the effect of one step averaging and 
differencing of an image. The Fig. 8 is the original image and 
the Fig. 9 is the transformed image after applying the one step 
averaging and differencing. The more steps produce more 
decomposition.   
 
 
 
 
 
 
 
 
 
 

32.5 0 0.5 0.5 31 –29 27 –25 
32.5 0 –0.5 –0.5 –23 21 –19 17 
32.5 0 –0.5 –0.5 –15 13 –11 9 
32.5 0 0.5 0.5 7 –5 3 –1 
32.5 0 0.5 0.5 –1 3 –5 7 
32.5 0 –0.5 –0.5 9 –11 13 –15 
32.5 0 –0.5 –0.5 17 –19 21 –23 
32.5 0 0.5 0.5 –25 27 –29 31 

Fig. 5 Array after operation on each row of  Fig. 4 

32.5 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 4 –4 4 –4 
0 0 0 0 4 –4 4 –4 
0 0 0.5 0.5 27 –25 23 –21 
0 0 –0.5 –0.5 –11 9 –7 5 
0 0 0.5 0.5 –5 7 –9 11 
0 0 –0.5 –0.5 21 –23 25 –27 

Fig. 6 Final Transformed Matrix after one step 

/*row transformation*/ 
for(i=0;i<row;i++){w=col; 
 do{ k=0; 
/*averaging*/     for(j=0;j<w/2;j++) 
                               a[j]=((mat[i][j+j]+mat[i][j+j+1])/2); 
/*differencing*/ for(j=w/2;j<w;j++,k++)  
                                a[j]=mat[i][j-w/2+k]-a[k]; 
            for(j=0;j<row;j++) mat[i][j]=a[j]; 
            w=w/2; 
 }while(w!=1); 
} 
/*column transformation*/ 
for(i=0;i<col;i++){ w=row; 
 do{k=0; 
/*averaging*/    for(j=0;j<w/2;j++) 
                              a[j]=((mat[j+j][i]+mat[j+j+1][i])/2); 
/*differencing*/for(j=w/2;j<w;j++,k++)  
                              a[j]=mat[j-w/2+k][i]-a[k]; 
           for(j=0;j<w;j++) mat[j][i]=a[j]; 
           w=w/2; 
 }while(w!=1); 
} 

 

Fig. 8 Original Image 

 

     Fig. 9 Transformed Image 

Fig. 7 The Code 
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III. CONCURRENT PROGRAM TESTING 
A concurrent program consists of a collection of sequential 
processes whose execution is interleaved; the interleaving is 
the result of choices made by a scheduler. Lots of execution 
interleavings are possible, making testing of all but trivial 
concurrent programs infeasible. 
     To make matters worse, functional specifications for 
concurrent programs often concern intermediate steps of the 
computation. For example, consider a word-processing 
program with two processes: one that formats pages and 
passes them through a queue to the second process, which 
controls a printer. The functional specification might stipulate 
that the page-formatter process never deposit a page image 
into a queue slot that is full and that the printer-control 
process never retrieve the contents of an empty or partially 
filled queue slot. 
If contemplating the individual execution interleavings of a 
concurrent program is infeasible, then we must seek methods 
that allow all executions to be analyzed together. We do have 
on hand a succinct description of the entire set of executions: 
the program text itself. Thus, analysis methods that work 
directly on the program text (rather than on the executions it 
encodes) have the potential to circumvent problems that limit 
the effectiveness of testing. For example, here is a rule for 
showing that some bad thing doesn’t happen during 
execution: 
Identify a relation between the program variable that is true 
initially and is left true by each action of the program. Show 
that this relation implies the "bad thing" is impossible. 
     Thus, to show that the printer-control process in the 
previous example never reads the contents of a partially filled 
queue slot (a bad thing), we might see that the shared queue is 
implemented in terms of two variables: 
     NextFull points to the queue slot that has been full the 
longest and is the one the printer-control process will next 
read. 
     FirstEmpty points to the queue slot that has been empty the 
longest and is the one where the page-formatter process will 
next deposit a page image. 
     We would then establish that NextFull ≠ FirstEmpty is true 
initially and that no action of either process falsifies it. And, 
from the variable definitions, we would note that NextFull 
≠ FirstEmpty implies that the printer-control process reads the 
contents of a different queue slot than the page-formatter 
process writes, so the "bad thing" cannot occur. 
     It turns out that all functional specifications for concurrent 
programs can be partitioned into bad things and good things. 
Thus, a rule for such good things will complete the picture. To 
show that some good thing does happen during execution: 
Identify an expression involving the program variables that 
when equal to some minimal value implies that the "good 
thing" has happened. Show that this expression (a) is 
decreased by some program actions that must eventually run, 
and (b) is not increased by any other program action. 
     Note our rules for bad things and good things do not 
require checking individual process interleavings. They 
require only effort proportional to the size of the program 
being analyzed. Even the size of a large program need not be 

an impediment—large concurrent programs are often just 
small algorithms in disguise. Such small concurrent 
algorithms can be programmed and analyzed; we build a 
model and analyze it to gain insight about the full-scale 
artifact [21].  
     Thus, the correct sequencing of the interactions or 
communications between different tasks, and the coordination 
of access to resources that are shared between tasks, are key 
concerns during the design of concurrent computing 
systems.That is why, writing correct concurrent programs is 
harder than writing sequential ones. This is because the set of 
potential risks and failure modes is larger - anything that can 
go wrong in a sequential program can also go wrong in a 
concurrent one, and with concurrency comes additional 
hazards not present in sequential programs such as race 
conditions, data races, deadlocks, missed signals etc.  
     In some concurrent computing systems communication 
between the concurrent components is hidden from the 
programmer, while in others it must be handled explicitly. 
Explicit communication can be divided into two classes: 
     Shared Memory Communication: Concurrent components 
communicate by altering the contents of shared memory 
locations (exemplified by Java). This style of concurrent 
programming usually requires the application of some form of 
locking (e.g. mutual exclusion) to coordinate between multiple 
threads. 
     Message Passing Communication: Concurrent components 
communicate by exchanging messages (exemplified by 
Erlang). The exchange of messages may be carried out 
asynchronously (sometimes referred to as "send and pray", 
although it is standard practice to resend messages that are not 
acknowledged as received), or may use a style in which the 
sender blocks until the message is received. Message-passing 
concurrency tends to be far easier to reason about than shared-
memory concurrency, and is typically considered a more 
robust, although slower, form of concurrent programming.  
Testing concurrent programs is also harder than testing 
sequential ones. This is trivially true: tests for concurrent 
programs are themselves concurrent programs. But it is also 
true for another reason: the failure modes of concurrent 
programs are less predictable and repeatable than for 
sequential programs. Failures in sequential programs are 
deterministic; if a sequential program fails with a given set of 
inputs and initial state, it will fail every time. Failures in 
concurrent programs, on the other hand, tend to be rare 
probabilistic events. 
Because of this, reproducing failures in concurrent programs 
can be difficult. Not only might the failure be rare, and 
therefore not manifest itself frequently, but it might not occur 
at all in certain platform configurations, so that bug that 
happens daily at customer's site might never happen at all in 
test lab. Further, attempts to debug or monitor the program 
can introduce timing or synchronization artifacts that prevent 
the bug from appearing at all. As in Heisenberg's uncertainty 
principle, observing the state of the system may in fact change 
it. 
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IV. THE CONCURRENT COMPRESSION SYSTEM 
This section describes how the image is concurrently 
transformed, the problem lies in the concurrent 
transformation, the model of the system, the model 
verification and the result obtained.  

A. Concurrent Transformation of Image 
We know that wavelet transformation entails transformation 
of image data horizontally first and then vertically. Here we 
divide the image plane into n horizontal sections which are 
horizontally transformed concurrently. After then the image is 
divided into n vertical sections which are then vertically 
transformed concurrently. It is not a must that the number of 
horizontal sections is equal to the number of vertical sections. 
Fig. 10 below illustrates the method. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
But the problem lies in the concurrency. The system just 
proposed lets the possibility for vertical transformation to 
begin on some vertical sections before horizontal 
transformation in all sections is completed. Vertical sections 
that are already horizontally transformed can be vertically 
transformed as illustrated in Fig. 11. That allows the 
possibility for threads that completed horizontal 
transformation to go on to vertical transformation without 
having to wait on other threads to complete horizontal 
transformation. The gray color indicates sections of image 
data that are horizontally transformed. The white color 
indicates sections of image data that are not yet horizontally 
transformed. The gray vertical section with line stripes can be 
assigned to a thread for vertical transformation. Before a 
vertical section is available for transformation, one condition 
that must be met is that all horizontal sections transform n size 
data horizontally such that an n wide vertical section is 
available with all data points already horizontally transformed. 

 
 
 
 

The assertion for the verification is that at any time, the 
vertical transformation does not start on a vertical section that 
is not horizontally transformed. In Fig. 12, the vertical 
transformation can start in vertical sections V0 and V1 but not 
in V2 through V7. 

 
 

B. Model Verification 
To understand the term “model”, we need to be familiar with 
transition system and Kripke Structure. A transition system is 
a structure TS = (S, S0, R) where, S is a finite set of states; S0  
⊆  S is the set of initial states and R  ⊆  S × S is a transition 
relation which must be total i.e. for every s in S there exists s’ 
in S such that (s, s’) is in R (∀ s ∈ S ∃ s’ ∈ S . (s, s’) ∈ R). On 
the other hand, M = (S, S0, R, AP, L) is a Kripke Structure; 
where (S, S0, R) is a transition system. AP is a finite set of 
atomic propositions (each proposition corresponds to a 
variable in the model) and L is a labeling function. It labels 
each state with a set of atomic propositions that are true in that 
state. The atomic propositions and L together convert a 
transitions system into a model.   
     The foremost step to verify a system is to specify the 
properties that the system should have. For example, we may 
want to show that some concurrent program never deadlocks. 
These properties are represented by temporal logic. 
Computation Tree Logic (CTL) is one of the versions of 
temporal logic. It is currently one of the popular frameworks 
used in verifying properties of concurrent systems [22]. Once 
we know which properties are important, the second step is to 
construct a formal model for that system. The model should 
capture those properties that must be considered for the 
establishment of correctness. Model checking includes the 
traversing the state transition graph (Kripke Structure) and of 
verifying that if it satisfies the formula representing the 
property or not, more concisely, the system is a model of the 
property or not.  
     Each CTL formula is either true or false in a given state of 
the Kripke Structure. Its truth is evaluated from the truth of its 
sub-formulae in a recursive fashion, until one reaches atomic 
propositions that are either true or false in a given state. A 
formula is satisfied by a system if it is true for all the initial 
states of the system. Mathematically, say, a Kripke Structure 
K = (S, S0, R, AP, L) (system model) and a CTL formula Ψ 
(specification of the property) are given. We have to 
determine if K |= Ψ  holds (K is a model of Ψ) or not. K |= Ψ 
holds iff  K, s0 |= Ψ for every s0 ∈ S0. If the property does 
not hold, the model checker will produce a counter example 
that is an execution path that can not satisfy that formula.  
     Atomic propositions, standard boolean connectives of 
propositional logic (e.g., AND, OR, NOT), and temporal 
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operators all together are used to build the CTL formulae. 
Each temporal operator is composed of two parts: a path 
quantifier (universal (A) or existential (E)) followed by a 
temporal modality (F, G, X, U) and are interpreted relative to 
an implicit “current state”. There are generally many 
execution paths (the sequences) of state transitions of the 
system starting at the current state. The path quantifier 
indicates whether the modality defines a property that should 
be true of all those possible paths (denoted by universal path 
quantifier A) or whether the property needs only hold on some 
path (denoted by existential path quantifier E). The temporal 
modalities describe the ordering of events in time along an 
execution path and have the following meaning. 

• F ∅ (reads ‘∅’ holds sometime in the future'') is true in 
a path if there exists a state in that path where formula 
‘∅’ is true. 

• G ∅ (reads ‘∅’ holds globally'') is true in a path if ‘∅’ 
is true at each and every state in that path.  

• X ∅ (reads ‘∅’ holds in the next state'') is true in a path 
if ‘∅’ is true in the state reached immediately after the 
current state in that path.  

• ∅ U ϕ (reads ‘∅’ holds until ‘ϕ’ holds) is true in a path 
if ‘ϕ’is true in some state in that path, and ‘∅’ holds in 
all preceding states.  

The semantics of the CTL operators are stated below: 
• K, s |= EX (Ψ) there exists s’ such that s → s’ (R(s, 

s’)) and K, s’ |=Ψ.  It means that s has a successor 
state s’ at which Ψ holds. 

• K, s |= EU (Ψ1, Ψ2) iff there exists a path L = s0, s1, 
… from s and k >= 0 such that: K, L(k) |= Ψ2 and if 
0 ≤ j < k, then K, L(j) |= Ψ1. 

•  K, s |= AU(Ψ1, Ψ2) iff for every path L = s0, s1, … 
from s there exists k >= 0 such that: K, L(k) |= Ψ2 
and if 0 ≤ j < k, then K, L(j) |= Ψ1.  

• AX (Ψ): It is not the case there exists a next state at 
which Ψ does not hold i.e. for every next state Ψ 
holds. 

• EF (Ψ): There exists a path L from s and k >= 0 such 
that: K, L(k)|=Ψ. 

• AG (Ψ): It is not the case there exists a path L from s 
and k>= 0 such that: K, L(k)|= Ψ i.e. for every path L 
from s and every k >= 0;K, L(k)|=Ψ 

• AF(Ψ) : For every path L from s, there exists k>= 0 
such that: K, L(k)|= Ψ. 

• EG(Ψ): It is not the case that for every path L from s 
there is a k >= 0 such that K,L(k)|=Ψ. It means that 
there exists a path L from s such that, for every k>= 
0: K, L(k) |= Ψ. 

Some basic CTL operators among those stated above are 
shown graphically in Fig. 13. In this figure, if it is assumed 
that in the filled states, the formula f holds, then we can say 
that EF f, AF f, EG f, and AG f are satisfied in initial state.  
CTL formulas are sometime problematical to interpret. For 
this, a designer may fail to understand what property has 
been actually verified. Here we want to add some common 
constructs of CTL formula used in hardware verification.  

• AG (Request → AF Acknowledgement): For all 
reachable states (AG), if Request is asserted in the 
state, then always at some later point (AF), we must 
reach a state where Acknowledgement is asserted. 
AG is interpreted relative to the initial states of the 
system whereas AF is interpreted relative to the state 
where Request is asserted. A common mistake would 
be to write Request → AF Acknowledgement in 
place of AG (Request → AF Acknowledgement). The 
meaning of the former is that if Request is asserted in 
the initial state, then it is always the case that 
eventually we reach a state where Acknowledgement 
is asserted, while the latter requires that the 
condition is true for any reachable state where 
Request holds. If Request is identically true, AG 
(Request → AF Acknowledgement) reduces to AG 
AF Acknowledgement.  

• AG (AF DeviceEnabled): The proposition 
DeviceEnabled holds infinitely often on every 
computational path. 

• AG (EF start): From any reachable state, there must 
exist a path starting at that state that reaches a state 
where start is asserted. In other words, it must 
always be possible to reach the restart state.  

• EF ( x ∧ EX ( x∧ EX x)) → EF ( y ∧ EX EX z): If it 
is possible for x to be asserted in three consecutive 
states, then it is also possible to reach a state where y 
is asserted and from there to reach in two more steps 
a state where z is asserted.  

• EF ( ~Ready ∧ Started): It is possible to get to a 
state where holds started, but ready does not hold.  

• AG (Send → A (Send U Receive)): It is always the 
case that if Send occurs, then eventually Receive is 
true, and until that time, Send must continue to be 
true.  

• AG (in → AX AX AX out): Whenever in goes high, 
out will go high within three clock cycles. 
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C. The Model 
Fig. 14 shows the state diagram of the model for verification. 
It illustrates the tasks of a thread performing horizontal 
transformation on a horizontal section and vertical 
transformation on zero or more vertical sections.  
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     In order to establish the communication between multiple 
threads, we require some work to set up and maintain the 
communication channels. There are several ways to 
communicate between threads, with some being more efficient 
than others.  
     One of the simplest ways to communicate state information 
between threads is to use a shared object or shared block of 

memory. A shared object requires very little setup—all we 
have to do is make sure each thread has a pointer to the object. 
The object contains whatever custom information we need to 
communicate between threads, so it should be very efficient.  
     The second option is the port-based communication. Ports 
offer a fast and reliable way to communicate between threads 
and processes on the same or different computers. Ports are 
also a fairly standard form of communication on many 
different platforms and their use is well established. In Mac 
OS X, a port implementation is provided by the Mach kernel. 
These Mach ports can be used to pass data between processes 
on the same computer.  
     The third way is the use of the message queues. The 
message queues offer an easy-to-use abstraction for thread 
communication. A message queue is a first-in, first-out (FIFO) 
queue that manages incoming and outgoing data for the 
thread. A thread can have both an input and an output queue. 
The input queue contains work the thread needs to perform, 
while the output queue contains the results of that work.  
     To establish communication between the threads, a reliable 
communication channel is required. Here, this communication 
channel is modeled as a queue of message, which is the the 
integral part of the threads. The following figure 15 shows the 
modeling of the channel as a queue of message from thread 1 
to thread 2. The message is pushed through the tail of the 
queue from the thread 1 side and the message is received from 
the head of the queue at the thread 2 side. The Fig. 16 shows 
the modeling of the communication channel as a queue for the 
message from thread 2 to thread 1. The message is sent from 
the thread 2 side and it is received at the head of the queue at 
the thread1 side. 

 

 

 

 

 

 

 

 
 
 
D. Verification of the Model 

The specification for the proposed model verified by the SMV 
[23] is the SPEC AG (AU (hor_trans_count = Maxhor, 
bool_vert_trans) and its result is true. It means that in all 
states of the transition system it is true that no vertical 
transformation gets started in any state of all the paths until 
the variable hor_trans_count equals the maximum number of 
horizontal section i.e. Maxhor. This specification is the most 
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important one that we must get true for the correct wavelet 
transformation required for the compression of the image.  

V. CONCLUSION 

In this paper, we’ve presented how the discrete wavelet 
transform is used to image compression, a model for the 
concurrent wavelet transformation for the compression of the 
large image, and more importantly the formal verification of 
the proposed model using the model checking tool SMV that 
automatically creates a formal environment to efficiently solve 
the design checking tasks. Some properties of the model have 
been verified. One of the important properties, in the context 
of the concurrent DWT transformation, is that at any time, the 
vertical transformation does not start on a vertical section that 
is not horizontally transformed which holds true in the model. 
Perhaps, this is the first time when the concurrent wavelet 
transformation for the image compression has been formally 
verified. One of the drawbacks of our modeling in SMV is the 
smaller size of the queue shared by different threads. In this 
respect, we hope to use other verification tool like SPIN in  
future.  
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