
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2594

Abstract—The scientific community has invested a great deal of

effort in the fields of discrete wavelet transform in the last few
decades. Discrete wavelet transform (DWT) associated with the
vector quantization has been proved to be a very useful tool for the
compression of image. However, the DWT is very computationally
intensive process requiring innovative and computationally efficient
method to obtain the image compression. The concurrent
transformation of the image can be an important solution to this
problem. This paper proposes a model of concurrent DWT for image
compression. Additionally, the formal verification of the model has
also been performed. Here the Symbolic Model Verifier (SMV) has
been used as the formal verification tool. The system has been
modeled in SMV and some properties have been verified formally.

Keywords—Computation Tree Logic, Discrete Wavelet
Transform, Formal Verification, Image Compression,
Symbolic Model Verifier.

I. INTRODUCTION
HE research in compression techniques has stemmed from
the ever increasing need for efficient data transmission,
storage and utilization of hardware resources.

Uncompressed image data require considerable storage
capacity and transmission bandwidth. Despite rapid
progresses in mass storage density, processor speeds and
digital communication system performance demand for data
storage capacity and data transmission bandwidth continues to
outstrip the capabilities of available technologies. The recent
growth of data intensive multimedia based applications have
not only sustained the need for more efficient ways to encode
signals and images but have made compression of such signals
central to signal storage and digital communication
technology.
 Compressing an image is significantly different from
compressing raw binary data. Of course, general purpose
compression programs can be used to compress images, but
the result is less than optimal. This is because images have
certain statistical properties which can be exploited by
encoders specifically designed for them. Also, some of the

Manuscript received November 15, 2007
Kamrul Hasan Talukder is a Graduate student in the Department of

Information Engineering of the Graduate School of Engineering in Hiroshima
University, Japan. (e-mail: khtalukder@hiroshima-u.ac.jp).

Koichi Harada is a Professor in the Department of Information Engineering
of the Graduate School of Engineering in Hiroshima University, Japan. (e-
mail: hrd@hiroshima-u.ac.jp).

finer details in the image can be sacrificed for the sake of
saving a little more bandwidth or storage space.
 Lossless compression involves with compressing data
which, when decompressed, will be an exact replica of the
original data. This is the case when binary data such as
executables documents etc. are compressed. They need to be
exactly reproduced when decompressed. On the other hand,
images need not be reproduced 'exactly'. An approximation of
the original image is enough for most purposes, as long as the
error between the original and the compressed image is
tolerable.
 The neighboring pixels of most of the images are highly
correlated and therefore hold redundant information from
certain perspective of view [1]. The foremost task then is to
find out less correlated representation of the image. Image
compression is actually the reduction of the amount of this
redundant data (bits) without degrading the quality of the
image to an unacceptable level [2] [3] [4]. There are mainly
two basic components of image compression - redundancy
reduction and irrelevancy reduction. The redundancy
reduction aims at removing duplication from the signal source
image while the irrelevancy reduction omits parts of the signal
that is not noticed by the signal receiver i.e., the Human
Visual System (HVS) [5] which presents some tolerance to
distortion, depending on the image content and viewing
conditions. Consequently, pixels must not always be
regenerated exactly as originated and the HVS will not detect
the difference between original and reproduced images.
 The current standards for compression of still image (e.g.,
JPEG) use Discrete Cosine Transform (DCT), which
represents an image as a superposition of cosine functions
with different discrete frequencies [6]. The DCT can be
regarded as a discrete time version of the Fourier Cosine
series. It is a close relative of Discrete Fourier Transform
(DFT), a technique for converting a signal into elementary
frequency components. Thus, DCT can be computed with a
Fast Fourier Transform (FFT) like algorithm of complexity
O(nlog2 n).
 More recently, the wavelet transform has emerged as a
cutting edge technology within the field of image analysis.
The wavelet transformations have a wide variety of different
applications in computer graphics including radiosity [7],
multiresolution painting [8], curve design [9], mesh
optimization [10], volume visualization [11], image searching
[12] and one of the first applications in computer graphics,

A Scheme of Model Verification of the
Concurrent Discrete Wavelet Transform (DWT)

for Image Compression
Kamrul Hasan Talukder and Koichi Harada

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2595

image compression. The Discrete Wavelet Transformation
(DWT) provides adaptive spatial frequency resolution (better
spatial resolution at high frequencies and better frequency
resolution at low frequencies) that is well matched to the
properties of an HVS.
 This paper proposes a technique of concurrent DWT based
image compression which has also been formally verified.
Simulation and testing [13] are some of the traditional
approaches for verifying the systems. Simulation and testing
both involve making experiments before deploying the system
in the field. While simulation is performed on an abstraction
or a model of the system, testing is performed on the actual
product. In both cases, these methods typically inject signals
at certain points in the system and observe the resulting
signals at other points. Checking all the possible interactions
and finding potential pitfalls using simulation and testing
techniques is not always possible. Formal verification [14], an
appealing alternative to simulation and testing, conducts an
exhaustive exploration of all possible behaviors of the system.
Thus, when a design is marked correct by the formal method,
it implies that all behaviors have been explored and the
question of adequate coverage or a missed behavior becomes
irrelevant. There are some robust tools for formal verification
such as SMV, SPIN, COSPAN, VIS etc [14]. Our method has
been modeled in SMV and the properties of the system have
been verified formally.

II. DWT IN IMAGE COMPRESSION
Wavelet transform exploits both the spatial and frequency

correlation of data by dilations (or contractions) and
translations of mother wavelet on the input data. It supports
the multiresolution analysis of data i.e. it can be applied to
different scales according to the details required, which allows
progressive transmission and zooming of the image without
the need of extra storage. Another encouraging feature of
wavelet transform is its symmetric nature that is both the
forward and the inverse transform has the same complexity,
building fast compression and decompression routines. Its
characteristics well suited for image compression include the
ability to take into account of Human Visual System’s (HVS)
characteristics, very good energy compaction capabilities,
robustness under transmission, high compression ratio etc.
 The implementation of wavelet compression scheme is
very similar to that of subband coding scheme: the signal is
decomposed using filter banks. The output of the filter banks
is down-sampled, quantized, and encoded. The decoder
decodes the coded representation, up-samples and recomposes
the signal.
 Wavelet transform divides the information of an image into
approximation and detail subsignals. The approximation
subsignal shows the general trend of pixel values and other
three detail subsignals show the vertical, horizontal and
diagonal details or changes in the images. If these details are
very small (threshold) then they can be set to zero without
significantly changing the image. The greater the number of
zeros the greater the compression ratio. If the energy retained
(amount of information retained by an image after
compression and decompression) is 100% then the

compression is lossless as the image can be reconstructed
exactly. This occurs when the threshold value is set to zero,
meaning that the details have not been changed. If any value is
changed then energy will be lost and thus lossy compression
occurs. As more zeros are obtained, more energy is lost.
Therefore, a balance between the two needs to be found out
[15].
 The primary aim of any compression method is generally
to express an initial set of data using some smaller set of data
either with or without loss of information. As for an example,
let we have a function)(xf expressed as a weighted sum of
basis function)(,),........(1 xuxu m as given below-

 ∑
=

=
m

i
ii xucxf

1

)()(

where mcc,,.........1 are some coefficients. We here will try
to find a function that will approximate)(xf with smaller
coefficients, perhaps using different basis. That means we are
looking for-

 ∑
=

=
m

i
ii xucxf

ˆ

1

)(ˆˆ)(ˆ

with a user-defined error tolerance ε (ε = 0 for lossless

compression) such that mm ˆ> and ε≤−)(ˆ)(xfxf . In

general, one could attempt to construct a set of basis functions
muu ˆ1 ˆ....,,.........ˆ that would provide a good approximation in a

fixed basis.
 One form of the compression problem is to order the
coefficients mcc ,........,1 so that for mm ˆ> , the first
m̂ elements of the sequence give the best approximation

)(ˆ xf to)(xf as measured in the 2L form.

 Let)(iπ be a permutation of m,.......,1 and)(ˆ xf be a
function that uses the coefficients corresponding to the first
m̂ numbers of the permutation :)(iπ

 ∑
=

=
m

i
ii ucxf

ˆ

1
)()()(ˆ

ππ

The square of the 2L error in this approximation is given by-

)(ˆ)(|)(ˆ)()(ˆ)(
2

2
xfxfxfxfxfxf −−=−

 ∑ ∑
+= +=

=
m

mi

m

mj
iiii ucuc

1ˆ 1ˆ
)()()()(| ππππ

 ∑ ∑
+= +=

=
m

mi

m

mj
iiii uucc

1ˆ 1ˆ
)()()()(| ππππ

 ∑
+=

=
m

mi
ic

1ˆ

2
)()(π

Wavelet image compression using the 2L norm can be
summarized in the following ways:

i) Compute coefficients mcc ,......,1 representing an
image in a normalized two-dimensional Haar basis.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2596

ii) Sort the coefficients in order of decreasing
magnitude to produce the sequence)()1(.,,......... mcc ππ .

iii) Given an allowable error ε and starting from
mm =ˆ , find the smallest m̂ for which

 ()∑
+=

≤
m

mi
ic

1ˆ

22
)(επ

 The first step is accomplished by applying either of the 2D
Haar wavelet transforms being sure to use normalized basis
functions. Any standard sorting method will work for the
second step and any standard search technique can be used for
third step. However, for large images sorting becomes
exceedingly slow. The procedure below outlines a more
efficient method of accomplishing steps 2 and 3, which uses a
binary search strategy to find a thresholdτ below which
coefficients can be truncated.
 The procedure takes as input a 1D array of coefficients c
(with each coefficient corresponding to a 2D basis function)
and an error toleranceε. For each guess at a threshold τ the
algorithm computes the square of the 2L error that would
result from discarding coefficients smaller in magnitude
thanτ . This squared error s is compared to 2ε at each loop to
decide if the search would continue in the upper or lower half
of the current interval. The algorithm halts when the current
interval is so narrow that the number of coefficients to be
discarded no longer changes [16].

procedure Compress (C : array [1. .m] of reals; ε : real)
 τmin←min{|c[i]|}
 τmax←max{|c[i]|}
 do
 τ ←(τmin + τmax)/2
 s ← 0
 for i ← 1 to m do
 if |C [i]| < τ then s ← s + |C [i]|2
 end for
 if s < ε2 then τmin← τ else τmax← τ
 until τmin≈ τmax
 for i ← 1 to m do
 if |C [i]| < τ then C [i] ← 0
 end for
end procedure

The below pseudocode fragment for a greedy L1
compression scheme, which works by accumulating in a 2D
array Δ [x,y] the error introduced by discarding a coefficient
and checking if this error has exceeded a user-defined
threshold.

for each pixel (x,y) do
 Δ [x,y] ← 0
end for
for i← 1 to m do
 'Δ ← Δ + error from discarding c[i]
 if ∑ <Δ

yx

yx
,

'],[ε then

 c[i] ← 0
 Δ ← Δ ’

 end if
end for

To understand how wavelets work, let us start with a simple
example. Assume we have a 1D image with a resolution of
four pixels, having values [9 7 3 5]. Haar wavelet basis can be
used to represent this image by computing a wavelet
transform. To do this, first average the pixels together,
pairwise, is calculated to get the new lower resolution image
with pixel values [8 4]. Clearly, some information is lost in
this averaging process. We need to store some detail
coefficients to recover the original four pixel values from the
two averaged values. In our example, 1 is chosen for the first
detail coefficient, since the average computed is 1 less than 9
and 1 more than 7. This single number is used to recover the
first two pixels of our original four-pixel image. Similarly, the
second detail coefficient is -1, since 4 + (-1) = 3 and 4 - (-1) =
5. Thus, the original image is decomposed into a lower
resolution (two-pixel) version and a pair of detail coefficients.
Repeating this process recursively on the averages gives the
full decomposition shown in Table I:

Thus, for the one-dimensional Haar basis, the wavelet
transform of the original four-pixel image is given by [6 2 1 -
1]. The way used to compute the wavelet transform by
recursively averaging and differencing coefficients, is called a
filter bank. We can reconstruct the image to any resolution by
recursively adding and subtracting the detail coefficients from
the lower resolution versions.

It has been shown how one dimensional image can be
treated as sequences of coefficients. Alternatively, we can
think of images as piecewise constant functions on the half-
open interval [0, 1). To do so, the concept of a vector space is
used. A one-pixel image is just a function that is constant over
the entire interval [0, 1). Let V0 be the vector space of all these
functions. A two pixel image has two constant pieces over the
intervals [0, 1/2) and [1/2, 1). We call the space containing all
these functions V1. If we continue in this manner, the space Vj
will include all piecewise-constant functions defined on the
interval [0, 1) with constant pieces over each of 2j equal
subintervals. We can now think of every one-dimensional
image with 2j pixels as an element, or vector, in Vj. Note that
because these vectors are all functions defined on the unit
interval, every vector in Vj is also contained in Vj+1. For
example, we can always describe a piecewise constant
function with two intervals as a piecewise-constant function
with four intervals, with each interval in the first function
corresponding to a pair of intervals in the second. Thus, the
spaces Vj are nested; that is, V 0⊂ V 1⊂ V 2⊂ …… This nested
set of spaces Vj is a necessary ingredient for the mathematical
theory of multiresolution analysis [16]. It guarantees that

Resolution Averages Detail Coefficients
4 [9 7 3 5]
2 [8 4] [1 -1]
1 [6] [2]

TABLE I: DECOMPOSITION TO LOWER RESOLUTION

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2597

every member of V0 can be represented exactly as a member
of higher resolution space V1. The converse, however, is not
true: not every function G(x) in V1 can be represented exactly
in lower resolution space V0; in general there is some lost
detail [17].
 Now we define a basis for each vector space V j. The basis
functions for the spaces V j are called scaling functions, and
are usually denoted by the symbol φ. A simple basis for Vj is
given by the set of scaled and translated box functions [18]:

φi
j (x) : = φ (2jx – i) i = 0, 1, 2…..2j -1 where

 φ (x) : = 1 for 0≤x<1

 0 otherwise

The wavelets corresponding to the box basis are known as the
Haar wavelets, given by-

Ψi
j (x) : = Ψ (2jx – i) i = 0, 1, 2…..2j -1 where

Ψ (x) : = 1 for 0≤x<1/2
 -1 for 1/2≤x<1

 0 otherwise

Thus, the DWT for an image as a 2D signal will be
obtained from 1D DWT. We get the scaling function and
wavelet function for 2D by multiplying two 1D functions. The
scaling function is obtained by multiplying two 1D scaling
functions: φ(x,y)=φ(x)φ(y). The wavelet functions are obtained
by multiplying two wavelet functions or wavelet and scaling
function for 1D. For the 2D case, there exist three wavelet
functions that scan details in horizontal Ψ(1)(x,y)= φ(x)Ψ(y),
vertical Ψ(2)(x,y)= Ψ(x)φ(y) and diagonal directions: Ψ(3)(x,y)=
Ψ(x) Ψ(y). This may be represented as a four channel perfect
reconstruction filter bank as shown in Fig. 1. Now, each filter
is 2D with the subscript indicating the type of filter (HPF or
LPF) for separable horizontal and vertical components. By
using these filters in one stage, an image is decomposed into
four bands. There exist three types of detail images for each
resolution: horizontal (HL), vertical (LH), and diagonal (HH).
The operations can be repeated on the low low (LL) band
using the second stage of identical filter bank. Thus, a typical
2D DWT, used in image compression, generates the
hierarchical structure shown in Fig. 2.

The transformation of the 2D image is a 2D generalization
of the 1D wavelet transformed already discussed. It applies
the 1D wavelet transform to each row of pixel values. This
operation provides us an average value along with detail
coefficients for each row. Next, these transformed rows are
treated as if they were themselves an image and apply the 1D
transform to each column. The resulting values are all detail
coefficients except a single overall average co-efficient. In
order to complete the transformation, this process is repeated
recursively only on the quadrant containing averages.
 Now let us see how the 2D Haar wavelet transformation is
performed. The image is comprised of pixels represented by
numbers [19]. Consider the 8×8 image taken from a specific
portion of a typical image shown in Fig. 3. The matrix (a 2D
array) representing this image is shown in Fig. 4.
 Now we perform the operation of averaging and
differencing to arrive at a new matrix representing the same
image in a more concise manner. Let us look how the
operation is done. Consider the first row of the Fig. 4.

 Averaging: (64+2)/2=33, (3+61)/2=32, (60+6)/2=33,
(7+57)/2=32

Differencing: 64–33 =31, 3–32= –29, 60–33=27 and
 7–32= –25

So, the transformed row becomes (33 32 33 32 31 –29 27 –
25). Now the same operation on the average values i.e. (33 32
33 32) is performed. Then we perform the same operation on
the averages i.e. first two elements of the new transformed

LL HL3
LH3 HH3

HL2

LH2

HH2

HL1

LH1

HH1

Fig. 4 2D array representing the Fig. 3

64 2 3 61 60 6 7 57
9 55 54 12 13 51 50 16
17 47 46 20 21 43 42 24
40 26 27 37 36 30 31 33
32 34 35 29 28 38 39 25
41 23 22 44 45 19 18 48
49 15 14 52 53 11 10 56
8 58 59 5 4 62 63 1

Image
corres. to
resolution
level i-1

Fig. 1 One Filter Stage in 2D DWT

Horizontal
Vertical

 aL

 aH

 2

 2 aL

 aH

 aL

 aH

 2

 2

 2

 2

LL

LH

HL

HH

Image
corres. to
res. level i

Detail
Images at
resolution
level i

Fig. 3 A 8×8 image

Fig. 2 Structure of wavelet decomposition

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2598

row. Thus the final transformed row becomes (32.5 0 0.5 0.5
31 –29 27 –25). The new matrix we get after applying this
operation on each row of the entire matrix of Fig. 4. is shown
in Fig. 5. Performing the same operation on each column of
the matrix in Fig. 5, we get the final transformed matrix as
shown in Fig. 6. This operation on rows followed by columns
of the matrix is performed recursively depending on the level
of transformation meaning the more iteration provides more
transformations. Note that the left-top element of the Fig. 6
i.e. 32.5 is the only averaging element which is the overall
average of all elements of the original matrix and the rest all
elements are the details coefficients. The main part of the C
program used to transform the matrix is shown in Fig. 7. The
2D array mat holds the values which represent the image.
 The point of the wavelet transform is that regions of little
variation in the original image manifest themselves as small or
zero elements in the wavelet transformed version. The 0’s in
the Fig. 6 are due to the occurrences of identical adjacent
elements in the original matrix. A matrix with a high
proportion of zero entries is said to be sparse. For most of the
image matrices, their corresponding wavelet transformed
versions are much sparser than the originals. Very sparse
matrices are easier to store and transmit than ordinary matrices
of the same size. This is because the sparse matrices can be
specified in the data file solely in terms of locations and
values of their non-zero entries.

 It can be seen that in the final transformed matrix, we find a
lot of entries zero. From this transformed matrix, the original
matrix can be easily calculated just by the reverse operation of
averaging and differencing i.e. the original image can be
reconstructed from the transformed image without the loss of
information. Thus, it yields a lossless compression of the
image. However, to achieve more degree of compression, we
have to think of the lossy compression. In this case, a
nonnegative threshold value say ε is set. Then, any detailed
coefficient in the transformed data, whose magnitude is less
than or equal to ε, is set to zero. It will increase the number of
0’s in the transformed matrix and thus the level of

compression is increased. So, ε =0 is used for a lossless
compression. If the lossy compression is used, the
approximations of the original image can be built up. The
setting of the threshold value is very important as there is a
tradeoff between the value of ε and the quality of the
compressed image. Finding out an appropriate value of ε is an
interesting area to research on. Loosely saying, the
compression ratio of the image is calculated by- the number of
nonzero elements in original matrix: the number of nonzero
elements in updated transformed matrix [20].

 In summary, the main steps of the 2D image compression
using wavelet as the basis functions are: (a) Start with the
matrix P representing the original image, (b) Compute the
transformed matrix T by the operation averaging and
differencing (First for each row, then for each column) (c)
Choose threshold value ε (ε =0 for lossless and ε = some +ve
value for lossy) (d) Replace all co-efficient of T which is
smaller than or equal to ε by zero. Suppose this matrix is D.
(e) Use D to compute the compression ratio and to reconstruct
the original image as well.
 Now we see the effect of one step averaging and
differencing of an image. The Fig. 8 is the original image and
the Fig. 9 is the transformed image after applying the one step
averaging and differencing. The more steps produce more
decomposition.

32.5 0 0.5 0.5 31 –29 27 –25
32.5 0 –0.5 –0.5 –23 21 –19 17
32.5 0 –0.5 –0.5 –15 13 –11 9
32.5 0 0.5 0.5 7 –5 3 –1
32.5 0 0.5 0.5 –1 3 –5 7
32.5 0 –0.5 –0.5 9 –11 13 –15
32.5 0 –0.5 –0.5 17 –19 21 –23
32.5 0 0.5 0.5 –25 27 –29 31

Fig. 5 Array after operation on each row of Fig. 4

32.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 –4 4 –4
0 0 0 0 4 –4 4 –4
0 0 0.5 0.5 27 –25 23 –21
0 0 –0.5 –0.5 –11 9 –7 5
0 0 0.5 0.5 –5 7 –9 11
0 0 –0.5 –0.5 21 –23 25 –27

Fig. 6 Final Transformed Matrix after one step

/*row transformation*/
for(i=0;i<row;i++){w=col;
 do{ k=0;
/*averaging*/ for(j=0;j<w/2;j++)
 a[j]=((mat[i][j+j]+mat[i][j+j+1])/2);
/*differencing*/ for(j=w/2;j<w;j++,k++)
 a[j]=mat[i][j-w/2+k]-a[k];
 for(j=0;j<row;j++) mat[i][j]=a[j];
 w=w/2;
 }while(w!=1);
}
/*column transformation*/
for(i=0;i<col;i++){ w=row;
 do{k=0;
/*averaging*/ for(j=0;j<w/2;j++)
 a[j]=((mat[j+j][i]+mat[j+j+1][i])/2);
/*differencing*/for(j=w/2;j<w;j++,k++)
 a[j]=mat[j-w/2+k][i]-a[k];
 for(j=0;j<w;j++) mat[j][i]=a[j];
 w=w/2;
 }while(w!=1);
}

Fig. 8 Original Image

 Fig. 9 Transformed Image

Fig. 7 The Code

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2599

III. CONCURRENT PROGRAM TESTING
A concurrent program consists of a collection of sequential
processes whose execution is interleaved; the interleaving is
the result of choices made by a scheduler. Lots of execution
interleavings are possible, making testing of all but trivial
concurrent programs infeasible.
 To make matters worse, functional specifications for
concurrent programs often concern intermediate steps of the
computation. For example, consider a word-processing
program with two processes: one that formats pages and
passes them through a queue to the second process, which
controls a printer. The functional specification might stipulate
that the page-formatter process never deposit a page image
into a queue slot that is full and that the printer-control
process never retrieve the contents of an empty or partially
filled queue slot.
If contemplating the individual execution interleavings of a
concurrent program is infeasible, then we must seek methods
that allow all executions to be analyzed together. We do have
on hand a succinct description of the entire set of executions:
the program text itself. Thus, analysis methods that work
directly on the program text (rather than on the executions it
encodes) have the potential to circumvent problems that limit
the effectiveness of testing. For example, here is a rule for
showing that some bad thing doesn’t happen during
execution:
Identify a relation between the program variable that is true
initially and is left true by each action of the program. Show
that this relation implies the "bad thing" is impossible.
 Thus, to show that the printer-control process in the
previous example never reads the contents of a partially filled
queue slot (a bad thing), we might see that the shared queue is
implemented in terms of two variables:
 NextFull points to the queue slot that has been full the
longest and is the one the printer-control process will next
read.
 FirstEmpty points to the queue slot that has been empty the
longest and is the one where the page-formatter process will
next deposit a page image.
 We would then establish that NextFull ≠ FirstEmpty is true
initially and that no action of either process falsifies it. And,
from the variable definitions, we would note that NextFull
≠ FirstEmpty implies that the printer-control process reads the
contents of a different queue slot than the page-formatter
process writes, so the "bad thing" cannot occur.
 It turns out that all functional specifications for concurrent
programs can be partitioned into bad things and good things.
Thus, a rule for such good things will complete the picture. To
show that some good thing does happen during execution:
Identify an expression involving the program variables that
when equal to some minimal value implies that the "good
thing" has happened. Show that this expression (a) is
decreased by some program actions that must eventually run,
and (b) is not increased by any other program action.
 Note our rules for bad things and good things do not
require checking individual process interleavings. They
require only effort proportional to the size of the program
being analyzed. Even the size of a large program need not be

an impediment—large concurrent programs are often just
small algorithms in disguise. Such small concurrent
algorithms can be programmed and analyzed; we build a
model and analyze it to gain insight about the full-scale
artifact [21].
 Thus, the correct sequencing of the interactions or
communications between different tasks, and the coordination
of access to resources that are shared between tasks, are key
concerns during the design of concurrent computing
systems.That is why, writing correct concurrent programs is
harder than writing sequential ones. This is because the set of
potential risks and failure modes is larger - anything that can
go wrong in a sequential program can also go wrong in a
concurrent one, and with concurrency comes additional
hazards not present in sequential programs such as race
conditions, data races, deadlocks, missed signals etc.
 In some concurrent computing systems communication
between the concurrent components is hidden from the
programmer, while in others it must be handled explicitly.
Explicit communication can be divided into two classes:
 Shared Memory Communication: Concurrent components
communicate by altering the contents of shared memory
locations (exemplified by Java). This style of concurrent
programming usually requires the application of some form of
locking (e.g. mutual exclusion) to coordinate between multiple
threads.
 Message Passing Communication: Concurrent components
communicate by exchanging messages (exemplified by
Erlang). The exchange of messages may be carried out
asynchronously (sometimes referred to as "send and pray",
although it is standard practice to resend messages that are not
acknowledged as received), or may use a style in which the
sender blocks until the message is received. Message-passing
concurrency tends to be far easier to reason about than shared-
memory concurrency, and is typically considered a more
robust, although slower, form of concurrent programming.
Testing concurrent programs is also harder than testing
sequential ones. This is trivially true: tests for concurrent
programs are themselves concurrent programs. But it is also
true for another reason: the failure modes of concurrent
programs are less predictable and repeatable than for
sequential programs. Failures in sequential programs are
deterministic; if a sequential program fails with a given set of
inputs and initial state, it will fail every time. Failures in
concurrent programs, on the other hand, tend to be rare
probabilistic events.
Because of this, reproducing failures in concurrent programs
can be difficult. Not only might the failure be rare, and
therefore not manifest itself frequently, but it might not occur
at all in certain platform configurations, so that bug that
happens daily at customer's site might never happen at all in
test lab. Further, attempts to debug or monitor the program
can introduce timing or synchronization artifacts that prevent
the bug from appearing at all. As in Heisenberg's uncertainty
principle, observing the state of the system may in fact change
it.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2600

IV. THE CONCURRENT COMPRESSION SYSTEM
This section describes how the image is concurrently
transformed, the problem lies in the concurrent
transformation, the model of the system, the model
verification and the result obtained.

A. Concurrent Transformation of Image
We know that wavelet transformation entails transformation
of image data horizontally first and then vertically. Here we
divide the image plane into n horizontal sections which are
horizontally transformed concurrently. After then the image is
divided into n vertical sections which are then vertically
transformed concurrently. It is not a must that the number of
horizontal sections is equal to the number of vertical sections.
Fig. 10 below illustrates the method.

But the problem lies in the concurrency. The system just
proposed lets the possibility for vertical transformation to
begin on some vertical sections before horizontal
transformation in all sections is completed. Vertical sections
that are already horizontally transformed can be vertically
transformed as illustrated in Fig. 11. That allows the
possibility for threads that completed horizontal
transformation to go on to vertical transformation without
having to wait on other threads to complete horizontal
transformation. The gray color indicates sections of image
data that are horizontally transformed. The white color
indicates sections of image data that are not yet horizontally
transformed. The gray vertical section with line stripes can be
assigned to a thread for vertical transformation. Before a
vertical section is available for transformation, one condition
that must be met is that all horizontal sections transform n size
data horizontally such that an n wide vertical section is
available with all data points already horizontally transformed.

The assertion for the verification is that at any time, the
vertical transformation does not start on a vertical section that
is not horizontally transformed. In Fig. 12, the vertical
transformation can start in vertical sections V0 and V1 but not
in V2 through V7.

B. Model Verification
To understand the term “model”, we need to be familiar with
transition system and Kripke Structure. A transition system is
a structure TS = (S, S0, R) where, S is a finite set of states; S0
⊆ S is the set of initial states and R ⊆ S × S is a transition
relation which must be total i.e. for every s in S there exists s’
in S such that (s, s’) is in R (∀ s ∈ S ∃ s’ ∈ S . (s, s’) ∈ R). On
the other hand, M = (S, S0, R, AP, L) is a Kripke Structure;
where (S, S0, R) is a transition system. AP is a finite set of
atomic propositions (each proposition corresponds to a
variable in the model) and L is a labeling function. It labels
each state with a set of atomic propositions that are true in that
state. The atomic propositions and L together convert a
transitions system into a model.
 The foremost step to verify a system is to specify the
properties that the system should have. For example, we may
want to show that some concurrent program never deadlocks.
These properties are represented by temporal logic.
Computation Tree Logic (CTL) is one of the versions of
temporal logic. It is currently one of the popular frameworks
used in verifying properties of concurrent systems [22]. Once
we know which properties are important, the second step is to
construct a formal model for that system. The model should
capture those properties that must be considered for the
establishment of correctness. Model checking includes the
traversing the state transition graph (Kripke Structure) and of
verifying that if it satisfies the formula representing the
property or not, more concisely, the system is a model of the
property or not.
 Each CTL formula is either true or false in a given state of
the Kripke Structure. Its truth is evaluated from the truth of its
sub-formulae in a recursive fashion, until one reaches atomic
propositions that are either true or false in a given state. A
formula is satisfied by a system if it is true for all the initial
states of the system. Mathematically, say, a Kripke Structure
K = (S, S0, R, AP, L) (system model) and a CTL formula Ψ
(specification of the property) are given. We have to
determine if K |= Ψ holds (K is a model of Ψ) or not. K |= Ψ
holds iff K, s0 |= Ψ for every s0 ∈ S0. If the property does
not hold, the model checker will produce a counter example
that is an execution path that can not satisfy that formula.
 Atomic propositions, standard boolean connectives of
propositional logic (e.g., AND, OR, NOT), and temporal

Image Data

 1

 2

 …

 n

1 2 … n

Fig. 10 Image Division

Fig. 11 Ordering the Transformation

Fig. 12 Vertical vs Horizontal transformation

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2601

operators all together are used to build the CTL formulae.
Each temporal operator is composed of two parts: a path
quantifier (universal (A) or existential (E)) followed by a
temporal modality (F, G, X, U) and are interpreted relative to
an implicit “current state”. There are generally many
execution paths (the sequences) of state transitions of the
system starting at the current state. The path quantifier
indicates whether the modality defines a property that should
be true of all those possible paths (denoted by universal path
quantifier A) or whether the property needs only hold on some
path (denoted by existential path quantifier E). The temporal
modalities describe the ordering of events in time along an
execution path and have the following meaning.

• F ∅ (reads ‘∅’ holds sometime in the future'') is true in
a path if there exists a state in that path where formula
‘∅’ is true.

• G ∅ (reads ‘∅’ holds globally'') is true in a path if ‘∅’
is true at each and every state in that path.

• X ∅ (reads ‘∅’ holds in the next state'') is true in a path
if ‘∅’ is true in the state reached immediately after the
current state in that path.

• ∅ U ϕ (reads ‘∅’ holds until ‘ϕ’ holds) is true in a path
if ‘ϕ’is true in some state in that path, and ‘∅’ holds in
all preceding states.

The semantics of the CTL operators are stated below:
• K, s |= EX (Ψ) there exists s’ such that s → s’ (R(s,

s’)) and K, s’ |=Ψ. It means that s has a successor
state s’ at which Ψ holds.

• K, s |= EU (Ψ1, Ψ2) iff there exists a path L = s0, s1,
… from s and k >= 0 such that: K, L(k) |= Ψ2 and if
0 ≤ j < k, then K, L(j) |= Ψ1.

• K, s |= AU(Ψ1, Ψ2) iff for every path L = s0, s1, …
from s there exists k >= 0 such that: K, L(k) |= Ψ2
and if 0 ≤ j < k, then K, L(j) |= Ψ1.

• AX (Ψ): It is not the case there exists a next state at
which Ψ does not hold i.e. for every next state Ψ
holds.

• EF (Ψ): There exists a path L from s and k >= 0 such
that: K, L(k)|=Ψ.

• AG (Ψ): It is not the case there exists a path L from s
and k>= 0 such that: K, L(k)|= Ψ i.e. for every path L
from s and every k >= 0;K, L(k)|=Ψ

• AF(Ψ) : For every path L from s, there exists k>= 0
such that: K, L(k)|= Ψ.

• EG(Ψ): It is not the case that for every path L from s
there is a k >= 0 such that K,L(k)|=Ψ. It means that
there exists a path L from s such that, for every k>=
0: K, L(k) |= Ψ.

Some basic CTL operators among those stated above are
shown graphically in Fig. 13. In this figure, if it is assumed
that in the filled states, the formula f holds, then we can say
that EF f, AF f, EG f, and AG f are satisfied in initial state.
CTL formulas are sometime problematical to interpret. For
this, a designer may fail to understand what property has
been actually verified. Here we want to add some common
constructs of CTL formula used in hardware verification.

• AG (Request → AF Acknowledgement): For all
reachable states (AG), if Request is asserted in the
state, then always at some later point (AF), we must
reach a state where Acknowledgement is asserted.
AG is interpreted relative to the initial states of the
system whereas AF is interpreted relative to the state
where Request is asserted. A common mistake would
be to write Request → AF Acknowledgement in
place of AG (Request → AF Acknowledgement). The
meaning of the former is that if Request is asserted in
the initial state, then it is always the case that
eventually we reach a state where Acknowledgement
is asserted, while the latter requires that the
condition is true for any reachable state where
Request holds. If Request is identically true, AG
(Request → AF Acknowledgement) reduces to AG
AF Acknowledgement.

• AG (AF DeviceEnabled): The proposition
DeviceEnabled holds infinitely often on every
computational path.

• AG (EF start): From any reachable state, there must
exist a path starting at that state that reaches a state
where start is asserted. In other words, it must
always be possible to reach the restart state.

• EF (x ∧ EX (x∧ EX x)) → EF (y ∧ EX EX z): If it
is possible for x to be asserted in three consecutive
states, then it is also possible to reach a state where y
is asserted and from there to reach in two more steps
a state where z is asserted.

• EF (~Ready ∧ Started): It is possible to get to a
state where holds started, but ready does not hold.

• AG (Send → A (Send U Receive)): It is always the
case that if Send occurs, then eventually Receive is
true, and until that time, Send must continue to be
true.

• AG (in → AX AX AX out): Whenever in goes high,
out will go high within three clock cycles.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2602

C. The Model
Fig. 14 shows the state diagram of the model for verification.
It illustrates the tasks of a thread performing horizontal
transformation on a horizontal section and vertical
transformation on zero or more vertical sections.

 In order to establish the communication between multiple
threads, we require some work to set up and maintain the
communication channels. There are several ways to
communicate between threads, with some being more efficient
than others.
 One of the simplest ways to communicate state information
between threads is to use a shared object or shared block of

memory. A shared object requires very little setup—all we
have to do is make sure each thread has a pointer to the object.
The object contains whatever custom information we need to
communicate between threads, so it should be very efficient.
 The second option is the port-based communication. Ports
offer a fast and reliable way to communicate between threads
and processes on the same or different computers. Ports are
also a fairly standard form of communication on many
different platforms and their use is well established. In Mac
OS X, a port implementation is provided by the Mach kernel.
These Mach ports can be used to pass data between processes
on the same computer.
 The third way is the use of the message queues. The
message queues offer an easy-to-use abstraction for thread
communication. A message queue is a first-in, first-out (FIFO)
queue that manages incoming and outgoing data for the
thread. A thread can have both an input and an output queue.
The input queue contains work the thread needs to perform,
while the output queue contains the results of that work.
 To establish communication between the threads, a reliable
communication channel is required. Here, this communication
channel is modeled as a queue of message, which is the the
integral part of the threads. The following figure 15 shows the
modeling of the channel as a queue of message from thread 1
to thread 2. The message is pushed through the tail of the
queue from the thread 1 side and the message is received from
the head of the queue at the thread 2 side. The Fig. 16 shows
the modeling of the communication channel as a queue for the
message from thread 2 to thread 1. The message is sent from
the thread 2 side and it is received at the head of the queue at
the thread1 side.

D. Verification of the Model

The specification for the proposed model verified by the SMV
[23] is the SPEC AG (AU (hor_trans_count = Maxhor,
bool_vert_trans) and its result is true. It means that in all
states of the transition system it is true that no vertical
transformation gets started in any state of all the paths until
the variable hor_trans_count equals the maximum number of
horizontal section i.e. Maxhor. This specification is the most

a

a

b. AF

c. EG

d. AG

a. EF

Fig. 13 Basic CTL Operators

No Yes

 Completed

 Horizontal Trans.
on Horizontal Section

 Not completed

All Vertical Section
are completed

Vertical
Trans.

Completed
Vertical

Transformation
on Vertical Section

Is there any Available
Vertical Section?

Vertical
Transformation
not completed

Fig. 14 State diagram of a thread

thr1_tail

message sent
at this point

Thread 1(thr1) Side
thr1_tail+1 thr2_head+1

Thread 2(thr2) Side

thr2_head

message received
at this point

Fig. 15 Channel for message from thread 1to thread 2

thr1_head

message
received at
this point

Thread 1(thr1) Side
 thr1_head+1 thr2_tail+1

Thread 2(thr2) Side

thr2_tail

message sent at
this point

Fig. 16 Channel for reply from thread 2 to thread 1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2603

important one that we must get true for the correct wavelet
transformation required for the compression of the image.

V. CONCLUSION

In this paper, we’ve presented how the discrete wavelet
transform is used to image compression, a model for the
concurrent wavelet transformation for the compression of the
large image, and more importantly the formal verification of
the proposed model using the model checking tool SMV that
automatically creates a formal environment to efficiently solve
the design checking tasks. Some properties of the model have
been verified. One of the important properties, in the context
of the concurrent DWT transformation, is that at any time, the
vertical transformation does not start on a vertical section that
is not horizontally transformed which holds true in the model.
Perhaps, this is the first time when the concurrent wavelet
transformation for the image compression has been formally
verified. One of the drawbacks of our modeling in SMV is the
smaller size of the queue shared by different threads. In this
respect, we hope to use other verification tool like SPIN in
future.

REFERENCES
[1] Jayant, N. and Noll, P., “Digital Coding of Waveforms: Principles and

Applications to Speech and Video”, NJ: Prentice-Hall, 1984.
[2] Polikar, R. B. "Wavelet Tutorial Part I, II, III, IV",

http://users.rowan.edu/~polikar/WAVELETS/WTtutorial.html, 2003.
[3] David Salomon, “Data Compression: the Complete Reference”, 2nd Ed.

Springer, 2002.
[4] Michael B.Martin, “Application of Wavelets to image Compression”,

M.S. Thesis, Blacksburg Virigina, 1999.
[5] Jayant, N., Johnston, J., and Safranek, R., "Signal compression based on

models of human perception", in Proc. IEEE, Vol. 81, October 1993, pp.
1385–1422.

[6] Rao, K. R. and Yip, P., “Discrete Cosine Transform: Algorithms,
Advantages and Applications”, San Diego, CA: Academic, 1990.

[7] Gortler. S., Schröder, P., Cohen, M., and Hanrahan, P., "Wavelet
Radiosity", in Proc. SIGGRAPH, 1993, pp. 221-230.

[8] Berman, D., Bartell, J. and Salesin, D., "Multiresolution Painting and
Compositing", in Proc. SIGGRAPH, 1994, pp. 85-90.

[9] Finkelstein. A. and Salesin, D., "Multiresolution Curves", in Proc.
SIGGRAPH, 1994, pp. 261-268.

[10] Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsberry, M. and
Stuetzle, W., "Multiresolution Analysis of Arbitrary Meshes", in Proc.
SIGGRAPH, 1995, pp. 173-182.

[11] Lippert, L. and Gross, M., "Fast Wavelet Based Volume Rendering by
Accumulation of Transparent Texture Maps", in Proc.
EUROGRAPHICS, 1995, pp. 431-443.

[12] Jacobs, C., Finkelstein, A. and Salesin, D., "Fast Multiresolution Image
Querying", in Proc. SIGGRAPH, 1995, pp. 277-286.

[13] Myers, Glenford J. “The Art of Software Testing”, John Wiley and Sons.
ISBN 0-471-04328-1, 1979.

[14] Edmund M. Clakre, Jr. Oma FrumBerg and Doron A. Paled, “Model

Checking”, The MIT Press, Second Printing, 2000.
[15] Kamrul Hasan Talukder and Koichi Harada, "Development and

Performance Analysis of an Adaptive and Scalable Image Compression
Scheme with Wavelets", Published in the Proc. of ICICT, BUET, Dhaka,
Bangladesh, ISBN: 984-32-3394-8, March 2007, pp. 250-253.

[16] Eric J. Stollnitz, Tony D. Derose and David H. Salesin, “Wavelets for
Computer Graphics”, Morgan Kaufmann Publishers, Inc., San Francisco.
1996.

[17] Robert L. Cook and Tony DeRose, “Wavelet Noise”, ACM Transactions
on Graphics, Volume 24, Number 3, Proc. of ACM SIGGRAPH 2005,
July 2005, pp. 803-811.

[18] Vetterli, M. and Kovacevic, J., “Wavelets and Subband Coding”,
Englewood Cliffs, NJ, Prentice Hall, 1995, http://cm.bell-
labs.com/who/jelena/Book/home.html

[19] G. Beylkin, R. Coifman, and V. Rokhlin, “Fast wavelet transforms and
numerical algorithms”, I. Communications on Pure and Applied
Mathematics, 44(2), March 1991, pp. 141-183.

[20] Colm Mulcahy, “Image compression using the Haar Wavelet
transforms”, Spelman Science and Math Journal, Vol 1, No 1, April
1997, pp. 22-31.

[21] Fred B. Schneider, “On Concurrent Programming” Inside Risks 94,
CACM 41, 4, Apr 1998.

[22] Michael Huth, “Logic in Computer Science: tool based modeling and
reasoning about systems”, Proceedings of the International Conference
on Frontiers in Education 2000, Kansas City, October 2000.

[23] Cadence Berkeley Laboratories, Free download from the website:
http://www.kenmcmil.com/smv.html, Califonia, USA. SMV Model
Checker, 1999.

