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Approximate solutions to large Stein matrix
equations

Khalide Jbilou

Abstract—In the present paper, we propose numerical methods for
solving the Stein equation AXC − X − D = 0 where the matrix
A is large and sparse. Such problems appear in discrete-time control
problems, filtering and image restoration. We consider the case where
the matrix D is of full rank and the case where D is factored as a
product of two matrices. The proposed methods are Krylov subspace
methods based on the block Arnoldi algorithm. We give theoretical
results and we report some numerical experiments.
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I. INTRODUCTION

We consider the Stein matrix equation

AXC −X −D = 0 (1)

where A ∈ R
n×n, C ∈ R

p×p, D ∈ R
n×p and X ∈ R

n×p.
The matrix equation (1) plays an important role in linear
control and filtering theory for discrete-time large-scale dy-
namical systems and other problems; see [5], [6], [8], [17] and
the references therein. They also appear in image restoration
techniques [4] and in each step of Newton’s method for
discrete-time algebraic Riccati equations [11]. Equation (1)
is also referred to as discrete Sylvester equation.
Direct methods for solving the matrix equation (1) such as
those proposed in [2], [3], [9] are attractive if the matrices are
of small size. The matrix equation (1) can be formulated as an
np× np large linear system using the Kronecker formulation

(A ⊗ CT − Inp) vec(X) = vec(D) (2)

where ⊗ denotes the Kronecker product; (F ⊗G = [fi,j G]),
vec(X) is the vector of Rnp obtained by stacking the columns
of the matrix X and Inp is the np × np identity matrix.
Krylov subspace methods such as the GMRES algorithm [13]
could be used to solve the linear system (2). However, for
large problems this approach cannot be applied directly.

The matrix Equation (1) has a unique solution if and only
if λi(A)λj(C) �= 1 for all i = 1 . . . , n; j = 1, . . . , p where
λi(A) is the i-th eigenvalue of the matrix A. This will be
assumed through this paper. In particular, if ρ(A)ρ(C) < 1
where ρ(A) denotes the spectral radius of the matrix A,
equation (1) has a unique solution.

In this work, we present Galerkin projection methods based
on the block Arnoldi algorithm [14], [15]. We first consider
the case where the n× p matrix D is of full rank and p � n.
The second part of this paper is devoted to the case where both
matrices A and C are large and D is factored as D = EFT

with a low rank.
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II. THE BLOCK ARNOLDI ALGORIHM

In this section, we recall the block Arnoldi process applied
to the matrix A and starting with the n × p orthonormal
matrix V1.
The block Krylov subspace Kk(A, V1) =
span{V1, A V1, . . . , A

k−1 V1}, is the subspace generated
by the columns of the matrices V1, AV1, . . . , A

k−1V1.
The block Arnoldi algorithm constructs the blocks V1, . . . , Vk

whose columns form an orthonormal basis of the block Krylov
subspace Kk(A, V1). The algorithm is described as follows
Algorithm 1 The block Arnoldi algorithm

1) Choose a unitary n× p matrix V1.
2) For j = 1, . . . , k

• Wj = AVj ,
• for i = 1, 2, . . . , j

– Hi,j = V T
i Wj ,

– Wj = Wj − Vj Hi,j ,

• end for i
• QjRj = Wj (QR decomposition)
• Set Vj+1 = Qj and Hj+1,j = Rj .

3) End

The blocks V1, . . . , Vk constructed by Algorithm 1 have their
columns mutually orthogonal provided that the upper triangu-
lar matrices Hj+1,j are of maximum rank. If Hj+1,j = 0 then
Kj is invariant under A.

Let H̃k denotes the (k + 1)p× kp upper band-Hessenberg
matrix whose nonzero entries hi,j ; i = 1, . . . , (k+1)p and j =
1, . . . , kp are defined by Algorithm 1. H̃k is the kp×kp matrix
obtained from H̃k by deleting the last p-rows and Hk+1,k is
the p× p submatrix of the last p-rows and the last p-columns
of H̃k.
The matrix Vk is defined by Vk = [V1, . . . , Vk] where Vi,
i = 1, . . . , k is the i-th block constructed by the block Arnoldi
algorithm. From the block Arnoldi algorithm we can deduce
the following relations

AVk = Vk Hk + Vk+1Hk+1,kE
T
k ; AVk = Vk+1H̃k, (3)

and
Hk = VT

k AVk and VT
k Vk = Ik, (4)

where Ek is the matrix of the last p columns of the kp× kp

identity matrix Ikp.

III. THE CASE WHERE D IS FULL RANK

In this section, we consider the case where the n× p right-
hand side matrix D of (1) is of full rank, C nonsingular and
we assume that p � n.
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Let A be the linear operator from R
n×p onto R

n×p defined
as follows

A : X −→ A(X) = AXC −X. (5)

Then the Stein equation (1) can be written as

A(X) = D. (6)

We will solve the problem (6) which is equivalent to the initial
problem (1).
Starting from an initial guess X0 and the corresponding
residual R0 = D − AX0C + X0, the block Arnoldi Stein
method constructs, at step k, the new approximation Xk such
that

X
(i)
k −X

(i)
0 = Z

(i)
k ∈ Kk(A, R0); i = 1, . . . , p (7)

with the orthogonality relation

R
(i)
k ⊥ Kk(A, R0); i = 1, . . . , p (8)

where R
(i)
k is the ith component of the residual

Rk = D − A(Xk) and X
(i)
k is the ith of component

Xk. We give the following result which is easy to prove [7].

Theorem 1: Let A be the operator defined by (5) and
assume that R0 is of full rank. Then

Kk(A, R0) = Kk(A,R0).

Using this last property, the relations (7) and (8) are written
as

X
(i)
k −X

(i)
0 = Z

(i)
k ∈ Kk(A,R0), (9)

and
R

(i)
k ⊥ Kk(A,R0); i = 1, . . . , p. (10)

Assume that R0 is of rank p and let R0 = V1U1 be the QR

decomposition of R0 where the n× p matrix V1 is orthogonal
and U1 is p× p upper triangular.
Now as the columns of the matrix Vk (constructed by the block
Arnoldi algorithm) form a basis of the block Krylov subspace
Kk(A,R0), the relation (9) implies that Xk = X0 + Vk Yk

where Yk is a kp× p matrix. Using the orthogonality relation
(10), it follows that

VT
k (R0 −AVk YkC + Vk Yk) = 0.

We finally obtain the low-dimensional Stein equation

Hk YkC − Yk = D̃ (11)

with D̃ = Ẽ1U1 where Ẽ1 is the kp× p matrix whose upper
p× p principal block is the identity matrix.
The matrix equation (11) will be solved by using a direct
method such as the Hessenberg-Schur method [5]. We assume
that during the iterations λi(Hk)λj(C) < 1 and this implies
that the equation (11) has a unique solution.

Let us give now an expression of the residual norm that
can be used to stop the iterations in the block-Arnoldi Stein
algorithm without having to compute an extra product with
the matrix A.

Theorem 2: At step k, the norm of the residual Rk is given
by

‖ Rk ‖F = ‖ Hk+1,kE
T
k YkC ‖F

= ‖ Hk+1,kỸkC ‖F ,
where Ỹk is the p× p matrix corresponding to the last p rows
of the matrix Yk.

Proof: At step k, the residual Rk = D − AXkC + Xk,
with Xk = X0 + VkYk, is expressed as

Rk = R0 −AVkYkC + VkYk

and from the relation AVk = Vk Hk + Vk+1Hk+1,kE
T
k , it

follows that

Rk = Vk[D̃ −HkYkC + Yk]− Vk+1Hk+1,kE
T
k YkC.

Therefore using (11) and the fact that the matrix Vk+1 is
orthogonal the result follows.
The next result shows that the approximate solution Xk is an
exact solution of a perturbed Stein matrix equation.

Theorem 3: Assume that k steps of the block Arnoldi Stein
method have been run and let Xk = X0 + Vk Yk, be the
obtained approximate solution to (1) where Yk satisfies (11).
Then Xk is a solution of the perturbed problem

(A− Fk)XC −X = D − FkX0C,

with Fk = Vk+1Hk+1,kV
T
k and ‖ Fk ‖F=‖ Hk+1,k ‖F .

Proof: Multiplying on the left the equation (11) by the
matrix Vk we get

VkHkYkC − VkYk = VkD̃.

Using the relation AVk = Vk Hk + Vk+1Hk+1,kE
T
k and the

fact that Vk is orthogonal it follows that

AVkYkC − Vk+1Hk+1,kE
T
k VT

k VkYkC − VkYk = VkD̃.

Then as Xk = X0 + VkYk, VkEk = Vk and VkD̃ = R0, we
get

(A− Fk)XkC −Xk = D − FkX0C

where Fk = Vk+1Hk+1,kV
T
k and then ‖ Fk ‖F=‖ Hk+1,k ‖F .

Note that when Hk+1,k = 0, Fk = 0 and hence Xk is the
exact solution of the Stein matrix equation (1). In practice,
the computational requirements growth with the iteration and
then the block Arnoldi algorithm will be computed in a
restarted mode. The block-Arnoldi algorithm for solving (1)
is summarized as follows
Algorithm 2 The block Arnoldi algorithm for Stein equations

1) Choose a tolerance tol, an initial guess X0 and an integer
kmax.

2) Compute R0 = D+X0−AX0C and R0 = V1U1: (QR
decomposition.)

3) For k = 1, . . . , kmax,
• Apply Algorithm 1 to the pair (A, V1) to generate

V1, . . . , Vk+1 and the block Hessenberg matri Hk.
• Solve by a direct method the low-order Stein equa-

tion HkYkC − Yk = D̃.
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• If ‖ Rk ‖F< tol, stop.

4) End

IV. LOW-RANK APPROXIMATE SOLUTIONS TO LARGE

STEIN EQUATIONS

In this section, we consider large Stein matrix equations
with low-rank right-hand sides

AXC −X = EFT (12)

where A ∈ R
n×n, C ∈ R

p×p, E ∈ R
n×r and F ∈ R

p×r. We
assume that n and p are large; r � n and r � p. From now
on, we suppose that ρ(A)ρ(C) < 1 which ensures that (12)
has a unique solution.
Equations of the form (12) arise in many application such as
control theory and model reduction in large scale discrete-time
dynamical sytems [17]. This is the case for example when one
has to compute the controllability Xc and observability Xo

Gramians by solving two symmetric Stein equations

AXcA
T −Xc + EET = 0 and ATXoA−Xo + FFT = 0.

The Gramians of linear time-invariant systems play a fun-
damental role in many analysis and design problems such
as computing the Hankel singular values, the H2 norm of
dynamical systems and model reduction techniques [8], [17].

Next, we will show how to extract low-rank approximate
solutions to (12) via the block Arnoldi algorithm. At step k,
let Kk(A,E) and Kk(C

T , F ) be the block Krylov subspaces
associated with (A,E) and (CT , F ), respectively. Consider
the QR decompositions E = V1,AU1, F = V1,CU2 and apply
the block Arnoldi process to the pairs (A,E) and (CT , F )
starting with V1,A and V1,C respectively. We obtain two block
orthonormal bases {V1,A, . . . , Vk,A} and {V1,C , . . . , Vk,C} of
the Krylov subspaces Kk(A,E) and Kk(C

T , F ) respectively.
We denote by Hk,A and Hk,C the block upper Hessenberg
matrices given by

Hk,A = VT
k,A AVk,A and Hk,C = VT

k,C CT Vk,C

where Vk,A = [V1,A, . . . , Vk,A], Vk,C = [V1,C , . . . , Vk,C ] and
Hk,A = [HA

i,j ]i,j=1,...,p . We also have the following relations

AVk,A = Vk,A Hk,A + Vk+1,AH
A
k+1,kE

T
k . (13)

and
CT Vk,C = Vk,C Hk,C + Vk+1,CH

C
k+1,kE

T
k . (14)

where Ek is the matrix of the last r columns of the kr × kr

identity matrix Ikr .
The following result gives the exact solution of (12) in terms

of the two block Arnoldi bases.
Theorem 4: Let q and l be the degrees of the minimal

polynomials of A for E and CT for F respectively. Then
the exact solution of the Stein equation (12) is given by

X = Vq,AZVT
l,C (15)

where Z solves the problem

Hq,AZHT
l,C − Z = ẼF̃T (16)

with Ẽ = Ẽ1U1, F̃ = Ẽ1U2 and Ẽ1 is the kp × p matrix
whose upper p× p principal block is the identity matrix Ip.

Proof: Since q and l are the degrees of the minimal
polynomials of A for E and CT for F , respectively, it follows
that

AVq,A = Vq,AHq,A and CTVl,C = Vl,CHl,C . (17)

Multiplying on the left the two sides of (16) by Vq,A and VT
l,C

respectively, we get

Vq,AHq,AZHT
l,CVT

l,C − Vq,AZVT
l,C = Vq,AẼF̃TVT

l,C . (18)

Using (17) and the fact that Vq,AẼ = E and Vl,C F̃ = F ,
equation (18) is written as

AVq,AZVT
l,CC − Vq,AZVT

l,C = EFT .

This shows that X = Vq,AZVT
l,C is the solution (unique) of

(12).
Following the result of Theorem 4.1, we consider low-rank
approximations of the form

Xk = Vk,AZkVT
k,C (19)

where Zk ∈ R
kp×kp is solution of the low order Stein equation

Hk,AZkHT
k,C − Zk = ẼF̃T (20)

The low-dimensional discrete Stein equation (20) will
be solved by a direct method such as the Hessenberg-
Schur method [2]. We assume that during the iterations,
λi(Hk,C)λi(Hk,A) < 1 which ensures that (20) has a unique
solution.
In the following, we give some theoretical results. The next
theorem shows that the low-order approximate solution Xk is
a solution of a perturbed Stein equation.

Theorem 5: At step k, let Xk be the low-rank approximate
solution given by (19) and (20. Then

(A−Ak)Xk (C − Ck)−Xk = EFT (21)

where Ak = Vk+1,A HA
k+1,k V

T
k,A and Ck =

(Vk+1,C HC
k+1,k V

T
k,V )

T

Proof: Multiplying the low order Stein equation (20) on
the left by Vk,A and on the right by VT

k,C , using the relations
(13) and (14) and the fact that the two matrices Vk,A, Vk,C

are orthogonal, we get

AXkC −Xk −AXkCk −AkXkC +AkXkCk = EFT (22)

with Ak = Vk+1,A HA
k+1,k V

T
k,A and Ck =

(Vk+1,C HC
k+1,k V

T
k,V )

T . This shows the result.
The computation of the approximation Xk given by (19)

needs the product of three matrices and this becomes very
expensive as k increases. In the next theorem, we show how
to compute the residual norms used to stop the iterations
without computing the approximation Xk. When convergence
is achieved, Xk is given in a factored form and not formed
explicitly.

Theorem 6: Let Xk = Vk,AZkVT
k,C be the approximate

solution obtained, at step k, by the block Arnoldi Stein
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method where Zk is the solution of (20) and let Rk be the
corresponding residual. Then

‖ Rk ‖2F= ‖Rk,1‖2 + ‖Rk,2‖2 + ‖Rk,3‖2 (23)

with Rk,1 = Hk,AZkEk(H
C
k+1,k)

T , Rk,2 =

HA
k+1,kE

T
k ZkHT

k,C and Rk,3 = HA
k+1,kE

T
k ZkEkH

C
h+1,k

T

where Ek is the kp × p matrix of the last p columns of the
identity matrix Ikp.

Proof: The residual is given by Rk = EFT −
AVk,AZkVT

k,CC + Vk,AZkVT
k .

Then using the relations AVk,A = Vk+1,A H̃k,A, CTVk,C =

Vk+1,C H̃k,C and the expressions H̃k,A =

( Hk,A

HA
k+1,kE

T
k

)

and H̃k,C =

( Hk,C

HC
k+1,kE

T
k

)
, the residual Rk can be ex-

pressed in a matrix form

Rk = Vk+1,AZkVT
k+1,C (24)

with

Zk =

(
0 Hk,AZkEk(H

C
k+1,k)

T

HA
k+1,kE

T
k ZkHT

k,C HA
k+1,kE

T
k ZkEk(H

C
k+1,k)

T

)

where Zk solves (20). Therefore taking the norm of (24) and
using the fact that Vk+1,A = [Vk,A, Vk+1,A] and Vk+1,C =
[Vk,C , Vk+1,C ] are orthonormal matrices, the result (23) fol-
lows.

The block-Arnoldi algorithm for solving (12) is summarized
as follows
Algorithm 3 The block Arnoldi algorithm for Stein equations

1) Choose a tolerance tol and an integer kmax.
2) Compute E = V1,AU1 and F = V1,CU2: (QR)
3) For k = 1, . . . , kmax

• Apply Algorithm 1 to (A, V1) and (CT , V1) to
generate V1,A, . . . , Vk+1,A; V1,C , . . . , Vk+1,C and
the block Hessenberg matrices Hk,A and Hk,C .

• Solve by a direct method the low-order Stein equa-
tion: Hk,AZkHk,C − Zk = ẼF̃T .

• If ‖ Rk ‖F< tol, stop

4) End.

V. THE SYMMETRIC STEIN EQUATION

In this section, we consider symmetric Stein equations

AXAT −X +BBT = 0 (25)

where A ∈ R
n×n and B ∈ R

n×p with p � n.
If ρ(A) < 1 where ρ(A) denotes the spectral radius of A, the
symmetric Stein equation (25) (called also Schur stable) has
a unique solution given by (see [11])

X =

∞∑
i=0

Ai BBT AiT . (26)

As in [10], we apply the block Arnoldi algorithm to the pair
(A,B) and get the matrices Vk and Hk. We then consider
approximations of the form Xk = VkZkVT

k where Zk solves
the low-order symmetric Stein equation

HkZkHT
k − Zk = B̃B̃T . (27)

with B̃ = VT
k B.

Using Theorem 6 and Theorem 7, we get the following results
Theorem 7: Let Xk be the low-rank approximate solution

obtained at step k and let X be the exact solution of the
symmetric Stein equation (25). Then

(A−Ak)Xk (A−Ak)
T −Xk +BBT = 0 (28)

and

‖ Rk ‖2F= 2 ‖ HkYkEkH
T
k+1,k ‖2F + ‖ Hk+1,kE

T
k YkEkH

T
k+1,k ‖2F

(29)
where Ek is the kp × p matrix of the last p columns of the
identity matrix Ikp×kp and Ak = Vk+1 Hk+1,k V

T
k .

In the following theorem, we give an upper bound of the norm
of the error X − Xk where X is the exact solution of the
problem (25) and Xk is the low-rank approximate solution
of (25) obtained at step k by applying the block Arnoldi
algorithm.

Theorem 8: Assume that k steps of the block Arnoldi Stein
algorithm have been run and let Xk be the obtained low-rank
approximation. Then if ‖ A ‖2< 1, we have

‖ X −Xk ‖F ≤ 2
√
p ‖ A ‖2 ‖ Hk+1,k ‖F ‖ Yk ‖F

1− ‖ A ‖22
.

Proof: Subtracting (28) from (25), it follows that the error
X−Xk is the unique solution of the symmetric Stein equation

A(X −Xk)A
T − (X −Xk) = −AXkA

T
k −AkXkA

T . (30)

Now since ρ(A) < 1, the unique solution of (30) is written as

X −Xk =

∞∑
i=0

Ai [AXkA
T
k +AkXkA

T ]AiT .

Therefore

‖ X −Xk ‖2≤ 2 ‖ AXkA
T
k ‖2

∞∑
i=0

‖ A ‖2i2 . (31)

On the other hand if G ∈ R
n×p we have ‖ G ‖2≤‖ G ‖F≤√

p ‖ G ‖2.
Invoking the expression of Ak used in Theorem 5.1 and the
fact that Xk = VkZkVT

k , we obtain

‖ XkA
T
k ‖F ≤‖ Hk+1,k ‖F ‖ Yk ‖F . (32)

Then using (31) and (32), we obtain the desired result.

VI. NUMERICAL EXAMPLES

The tests reported in this section were run on SUN Mi-
crosystems workstations using Matlab. In all our experiments,
we divided the matrices A and C by ‖ A ‖1 and ‖ C ‖1
respectively.
We considered the Stein equation

AXC −X = EFT

where the matrices A, C, E and F are of dimension n × n,
p× p, n× r and p× r respectively with r << n, p.
For all our experiments, the tests where stopped when ‖
Rk ‖F≤ 10−8.
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TABLE I
MATRICES FROM HARWELL BOEING COLLECTION

Matrices A, B CPU-time iter. res. norms
A=Sherman5
C=Serman4 0.58 7 5.9× 10−9

n = 3312, p = 1104
A=Pde2961
C=Fidap009 2.11 13 2.5× 10−8

n = 2961, p = 3363

Example 1 For this experiment, we used matrices from
Harwell-Boeing Collection: Sherman4 (n = 1104 and
nnz(A) = 3786), PDE2961 (n = 2961 and nnz(A) =),
Sherman5 (n = 3312 and nnz(A) = 20793) and Fidap009
(n = 3363 and nnz(A) = 99397) where nnz(A) denotes the
number of nonzero coefficients in A.
The entries of the matrices E and F were random values
uniformly distributed on [0, 1] and we used r = 4.

In Table I, we listed the results obtained with different ma-
trices. A maximum number of itemax = 50 iterations was
allowed to the block-Arnoldi Stein algorithm (Algorithm 3).
The expression given in Theorem 7 was used to compute the
norm of the residual Rk without computing the approximation
Xk which is given in a factored form when convergence is
achieved.

Example 2 In this experiment, we applied the block-Arnoldi
Stein algorithm (Algorithm 3) with matrices A and B defined
as follows. The matrix A is generated from the 5-point
discretization of the operator

L1(u) = Δu − f1(x, y)
∂u

∂x
− f2(x, y)

∂u

∂y
− f3(x, y)u

on the unit square [0, 1] × [0, 1] with homogeneous Dirichlet
boundary conditions. We set f1(x, y) = ex

2+y, f2(x, y) = 2xy
and f3(x, y) = cos(xy).
The matrix C is also generated from the 5-point discretization
of the operator

L2(u) = −Δu+ g1(x, y)
∂u

∂x
+ g2(x, y)

∂u

∂y
+ g3(x, y)u

on the unit square [0, 1] × [0, 1] with homogeneous Dirichlet
boundary conditions. We set g1(x, y) = sin(x + 2y),
g2(x, y) = exy and g3(x, y) = xy.
The entries of the matrices E and F were random values
uniformly distributed on [0, 1]. The dimensions of the matrices
A and C are n = n2

0 and p = p20 respectively, where n0

and p0 are the number of inner grid points in each direction.
For this experiment we used n = 40.000, p = 10.000,
which corresponds to a very large linear system of dimension
4 108 × 4 108. We used different values of r (r = 5, r = 10,
r = 20 and r = 30). The obtained results are reported in
Table II.

VII. CONCLUSION

We proposed in this paper block Krylov subspace methods
for solving large and sparse Stein matrix equations. We first

TABLE II
RESULTS WITH n = 40.000 AND p = 10.000

Values of r 5 10 20 30
iteration 14 14 13 12

res. norms 2.6× 10−8 3.3× 10−8 2.2× 10−8 1.6× 10−8

cpu-time 9.9 22.2 60.3 125.1

considered the case when the right hand side is of full rank. In
the second part of the paper, we showed how to apply the block
Arnoldi algorithm to derive low-rank approximate solutions to
Stein matrix equations with factored right-hand sides. In the
two cases, we gave some theoretical results. The numerical
examples show that the proposed methods are attractive and
could be used for large problems.
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