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A Study on Mode of Collapse of Metallic Shells
Having Combined Tube-Frusta Geometry
Subjected to Axial Compression
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Abstract—The present paper deals with the experimental and
computational study of axial collapse of the duminum metallic shells
having combined tube-frusta geometry between two parald plates.
Shells were having bottom two third lengths as frusta and remaining
top one third lengths as tube. Shells were compressed to recognize
their modes of collapse and associated energy absorption capability.
An axisymmetric Finite Element computationa mode of collapse
process is presented and analysed, using a non-linear FE code
FORGE?2. Six noded isoparametric triangular elements were used to
discretize the deforming shell. The material of the shells was
idealized as rigid visco-plastic. To validate the computational model
experimental and computed results of the deformed shapes and their
corresponding load-compression and energy-compression curves
were compared. With the help of the obtained results progress of the
axisymmetric mode of collapse has been presented, analysed and
discussed.
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I.  INTRODUCTION

HIN walled structural shell elements such as cylindrica

shells, conical shells, and domes are commonly used as
energy absorbing elements in crashworthiness applications.
Study of their collapse behaviour has received considerable
atention of the researchers in the last four decades.
Experimental, analytical and computational studies on these
structural elements have been carried out under both quasi-
static and dynamic loadings in axial and latera directions [1]-
[16].

Among the different energy absorbing elements the thin
walled conical shells commonly known as frusta are employed
over a broad range of applications, especiadly in the
applications of aerospace and armaments as the nose cones of
missiles and aircraft.

Johnson and Reid [1] examined and there after reviewed the
modes of collapse of and associated |oad—displacement
variations for different thin-walled shells. Postlethwaite and
Mills [2] performed the axial crushing tests2 on conica shells
of semi-apical angles of 5-20 degree and studied their energy
absorption capacity. Mamalis and Johnson [3] tested
aluminum frustas under quasi-static axial compression
between two pardlel platens to study their crumbling. In
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experiments they identified two modes of collapse namely
concertina and diamond modes and also proposed empirical
relationships for both these modes of deformation. Mamalis et
al. [4] extended their experimenta study to include the effect
of strain rate and found that the deformation modes of frusta
could be classified as (a) concertina, (b) concertina-diamond,
and (c) diamond. Mamalis and associates [5] modified and
produced a refined model of Postlethwaite and Mills [2] and
obtained a better prediction for the mean crushing load. In
another paper, Mamalis and his team [6] modeled the
progressive extensible collapse of frusta and presented a
theoretical model that shows the changes in peaks and troughs
of the experimenta load-displacement curves. Their
theoretical predictions were fairly comparable with their
experimental counterparts.

Others researchers Alghamdi [7], Aljawi and Alghamdi [8]-
[9], Alghamdi et al. [10]-[11], El-Sobky et a. [12], and Gupta
and Venkatesh [13] have also reported experimental studies on
the performance of compressed frusta subjected to quasi-static
and dynamic axia loadings. Gupta and Gupta [14]-[16] also
studied the collapse process of metallic shells subjected to
axial compression between two flat platens with experiments
and FE modeling.

From the previous research results it can be concluded that
on the basis of experimental investigations different ana ytical
models have been proposed by different researchers [3]-[6]
and [12]. But the complexity of deformation process often
limits the general use of closed-form analytica solutions.
Therefore, it is essential to use numerical methods to solve this
class of problems in the present time, when computational
facilities are enhancing day by day.

The paper presents an experimental and computational
analysis of the deformation behaviour of the metalic thin
walled shells having combined tube-frusta geometry subjected
to axial compression between two parallel plates. Shells are
having top one third lengths as tube and remaining bottom two
third length as frusta. Shells were tested to identify their
modes of collapse and to study the associated energy
absorption capacity. Wall thickness of shell was varied. A
Finite Element computational model of development of the
axisymmetric mode of collapse is presented and anaysed,
using a non-linear finite element code FORGE2[17].
Experimental and computed results of the deformed shapes
and their corresponding load-compression and energy-
compression curves were presented and compared to validate
the computational model. On the basis of the obtained results
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development of the axisymmetric mode of collapse Ibeer
presented, analysed and discussed.
Il.  EXPERIMENTS

Aluminium sheets of thicknesses varying betweemd %
mm were commercially obtained, and the getry of the
shells required for the present experimental wogtenmade
from these sheets by the process of spinning. #dl ghells
were annealed by soaking them at 3000 C in theafigrior 1
hour, and allowing them to cool in the furnace 2drhours. A
universal testing machine Instron of 250 T capaditss
employed for experimentation. Specimens were ciyni
positioned on the bottom platen of the machine withe
diameter touching the top platen of the machines Tppe!
platen was moved at a condtatownward velocity of 1
mm/min. The compression process was continuedhtltop
diameter of tube and folded portion of the shelineain
contact with top platen. The loatmpression curves we
recorded with the automatic recorder of the machiflee
deformed shapes of the specimens at different stafehe
compression process were recorded.

SPECIMEN TC1

(b)
Fig. 1 Typical views of (abhe undeformed ar(b) deformed shells.

It was found that in the beginning of the collapsecess o
all the shells an axisymmetric concertina ring diepe at the
junction of tube and cone towards the inner sid¢hefcone
There after the tube portion of the shell move itie
remaining paion of the shell with continuous deformation
cone. This process gets continued till tube diamite enc
and the concertina fold and deformed shell comés the
contact of the upper platen of the machine. Figefticts the

photographs of the dewwment of the mode of collapse. It
very clear that the mode of collapse remains axisgtic
throughout its development process. The correspor
experimental loadompression and calculated ene
compression curves for these specimens are presi Figs.
2(a) and 2(b) respectively. Ene-compression variations are
obtained by integrating the lc-compression curves.
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I1l.  COMPUTATIONAL STUDY

A. Governing Equations: Finite element formulations for
noniinear problems of plasticity are classified intolid
formulations and flow formulations. In the flow foulation
which is employed here, the elastic componentsrafrsare
neglected as small compared to their pc counterparts. An
updated Lagrangian reference system is employedeivhtéhe
velocities are considered as the basic unknowns tae
incompressibility condition is incorporated usingpanalty
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function. The overall deformation is analysed imte of a
large number of deformation steps. Linearised iaiahip
between the stress and strain rate is assumedisb dexing
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where O is the equivalent stress for uniaxial case and
+
Ko=K, 3"+l

each step and a quasi-steady state is assumedafir e

incremental solution. The computational procedsai@ked to
a re-zoning procedure.

Each deformation step is treated as a boundaryevalu

problem. At the beginning of a given step, the feob

domainQ (i. e. the volume occupied by the deforming tube),

The friction between the shell and the platens xi@hed
with a viscoplastic law

aK,(1+ag)Em v, [ 7,

1 (5)

V

the state of inhomogenity and the values of madteria where||| indicates the norm of a vector, is the sliding

parameters are supposed to be given or determineads.

The velocity vectorY is prescribed on a part of surfacy
together with traction on the remainder of surf&€eSolution
to the incremental problem at any given time presidhe
velocity and stress distributions that satisfy tip@verning
equations in the body as well as boundary condition the
surface. The material is assumed as homogenemigpi,
incompressible and rigid visco-plastic. The constie
relation for such a material is given by the Nortdoff law as
follows

S =2K (\/é ?jm_l ,

)
oo N
E=|—=& [ =~
where (3 : ”) & _%(Vi«i +Vi,i)
5 &
where 7, U, Kand m represents the components of t

deviatoric stress tensor, strain rate tensor, netewnsistency
and strain rate sensitivity index respectively. Theis the
component of velocity in the direction "i" at angipt of the
problem domain. The incompressibility conditiorwistten as
below

divV =0 2)
whereV is the velocity vector at any point of the domain.

over the problem domdih

velocity between tube and platenijs the friction factor and p
is a material parameter whose value is often takgral to m.
The remeshing of six nodded isoparametric triargula
elements is achieved through a Declaunary-Vororype t

algorithm. Values of at the nodes of the newly created mesh
are found by interpolation of the correspondingueal at the
nodes of the older, distorted mesh.

B. Computational Model and its features. In the finite
element model of the compression process the w@empwas
modeled to move on its axis with a downward velooit 10
mm/minute while the bottom platen as stationarye Thntact
between the platen and shell surfaces has beemedsas
sliding unilateral [17]. Friction factoo at the platen shell
interface is assumed to be given [17]. Since thgiral and
experimentally deformed shells were axisymmetric &0
axisymmetric Finite Element model of the compressio
process is proposed and presented. Fig. 3(a) shbes
h%omputational model used for the present investgatSix
noded isoparametric triangular elements have besenl o
discretize the tube domain. The temperature is kepstant
and equal to room temperature 3100 K. Compressiooeps
of each tube specimen was simulated using FORGH® and
analyzed. The total deformation of the specimen eaxsied
out into small steps called as increments. Theevalfithe
incremental strain in each increment was taken lequz®o of
the current tube height. Number of elements used
discretization of the problem domain were varietieen 900

fo

The material consistency K depends upon the thermtm 1030. Number of remeshings required to finiste th

mechanical condition of the material. For most nsetéhe

compression of different specimens were betwedy five to

behaviour of K can be approximated by means of tH#ty three. The computer memory required to stibre results

following multiplicative law;
K=K,(1+ag)e’"

whereK
B is the temperature sensitivity term and T is thsotute

®3)

temperature. The values of the parame{gps a,B and m
can be found by conducting uniaxial tensile testditierent
strain rates and temperatures. By suitable choic¢hese
parameters, equations (1) and (3) can approximhte
mechanical behaviour of most of the metals at chffe
temperatures and strain rate ranges. Using abaieqs the
constitutive equation for uniaxial case gets threnfas follows

=K, (1+az)&" @

of these simulations varied from 18 to 20 MB.
The constitutive relation (4) models mechanical avébur
of the tube material. If the compression procegseisormed

0 is aconstant, a is the strain hardening parametg, . e or less constant temperature then the e’

remains same at all points of the deforming bodp T
determine the above material parameters namelyakamd m
uniaxial tensile tests were conducted at threeedfit strain
rates. Special tensile test specimens were prefaredtting
tthe same shells in their axial direction as weredugor
carrying out the compression tests. Load-deformatiorves
were recorded. The true stress versus true straies were
calculated from the recorded load-deformation csinte
calculate the material parameters.

To verify the proposed Finite Element model typical
experimental and computed load-compression andgener
compression curves as well as deformed shapes were
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compared. Fig. 4 shows typical computed deformefilps at
various stages of compression of shell specimegs. F2(a)
and (b) presents the comparison of typical expertaieand
computed load-compression and energy-compressioresu
Comparison of experimental and computed deformedilgs

at the end of the compression process is presemtedy. 5.

After seeing the Fig. 2 one can say that the coatpinad-
compression and energy-compression variations gl

agreement with the experimental ones. The companedrue
deformed shapes are also match quite well (seekig.

IV. DISCUSSIONON TYPICAL COMPUTATIONAL RESULTS

To discuss the compression process four zonesterfest
have also been demarcated within the shell crossse
These can be described as,

d=7.4 mm, 6=31.30 mm

0=47.74 mm 0=91.0 mm

Fig. 4 Typical computed deformed profiles at diéietrvalues of
compression

Actual

Computed

Fig. 5 Comparison of deformed shapes of specimeafted
compression

Zone | and IV: Region of the shell adjoining to tog and
bottom platens respectively where deformation dmgccur.

Zone II: Region of the shell locked between zonand
zone lll. During the compression process its amdicuously
increases.

Zone lll: Region of the shell adjoining to the zoieand
originated from zone IV

The proposed simulation model was used to obtaiaildd
computational results of compression of each spatim
however computational results of a typical specimeee
presented below. Input data for this typical case i

Ko = 109.3 MPa, m = p =0.0147, a = 0.125, frictfantor
at top interface Top) = 0.45, friction factor at bottom
interface @bottom) = 0.45. The problem domain was
discretized into 975 elements. Strain incremergdoh step of
compression was 2%. The total displacement of 91ahtap
platen was completed in 117 steps (increments).

V. DEVELOPMENT OFAXISYMMETRIC MODE OFCOLLAPSE

To understand the pattern of deformation occurdngng
axial compression of shell and development of arisgtric
mode of collapse, the compression process is divit® two
stages, referretb as the initial and final.

Initially the shell is having contacts over its o
periphery with the top and bottom platens on bbid ¢énds.
Therefore, in the beginning of the compression @ssc
uniform compression of the shell occurs and thel lmathe
load-compression curve reaches to its peak valegy oon
the local buckling triggered at the junction of ¢éutind cone of
the shell and concertina folding begins at thaafion on the
inner side of shell. This is designated as firsiget of
compression. This stage of compression is chaiaetetby
localized deformation in a region which is iderifias region
Il (marked in Fig. 3(b)). The so-called concertiioédd forms
there. With increase of compression, the foldinggpesses
and the tube bends more and more. The folding moes at
decreasing load because the rate of increase daftives
moment due to strain hardening in region Il is less
compared to the increase in the eccentricity (distebetween
the point of action of load point and the concertiold in
region Il). With progress of compression the loadtiues to
decrease but at a lower rate. This is because pirofi
compression, the influence of eccentricity incretmmds to
progressively decrease relative to that of the eiase of
resistive moment at the concertina fold. The ugyer of the
fold remains inclined with the horizontal and iristicondition
the contact occurs between two outer boundarigbkeothell.
This is the end of formation of concertina fold téfthis stage
with further compression the load starts increasinge again
and reaches to the second peak value. This magdibed to
end of the localized bending around the concerfité and
further deformation is mainly confined in this regi
(concertina fold location) only. During this statfe portion
of shell around the concertina fold rotates in sacay that
the folded portion gets a particular angle. Afteis trotation,
concertina fold moves radially inward. After thisage with
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progress of compression, site of dominant defownati [5]
expands to the new virgin shell called as zone aid
originated from zone IV. As this happens, zone thrts [g)
expanding and zone | and zone |V starts reducihg fharks
the beginning of the second stage of compressiwh saread
of the plastic hinge. However the required loadoiser as
compared to that in initial stage. The plastic lking
continuously moves radially inward with leaving gified (8l
region (zone Il) behind it. At this juncture to exm the
plastic region in the virgin shell from zone IV ano#l larger
periphery load required is of lower value due @ itticrease in (9]
lever arm by movement of some portion of tube ofiezd
inner side. Therefore, the magnitude of compresdaad
decreases in the remaining compression process diel
development of axisymmetric mode proceeds further.

[7]

VI. CONCLUSION [11

An experimental and computational study of quaaiist
axial compression of metallic thin walled shellsving [12]
combined tube-frusta geometry between two parpleges is
presented. Shells are having top one third lengthibe and [13;
remaining bottom two third length as frusta. It viasnd that
all these shells were deformed in axisymmetric made
collapse. A Finite Element computational model &fe t
development of the axisymmetric mode of collapselso
presented. Experimental and computed results afiéfermed  [15]
shapes and their corresponding load-compressioreaedyy-
compression curves are compared and found in good
agreement. On the basis of the study the mechafitke [16]
mode of collapse has been studied and discussed.

The mode of collapse forms by the development cd oni7)
concertina fold followed by the plastic zone desigual here as
zone Il. The concertina fold develops fully whillagtic zone
develops continuously till the end of compressiancpss.
During the development of mode of collapse soméiqas of
the shell move radially inward and some radialltward.

(14
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