
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

99

 

 

  
Abstract—On a such wide-area environment as a Grid, data 

placement is an important aspect of distributed database systems. In 
this paper, we address the problem of initial placement of database 
no-replicated fragments in Grid architecture. We propose a graph 
based approach that considers resource restrictions. The goal is to 
optimize the use of computing, storage and communication 
resources. The proposed approach is developed in two phases: in the 
first phase, we perform fragment grouping using knowledge about 
fragments dependency and, in the second phase, we determine an 
efficient placement of the fragment groups on the Grid. We also 
show, via experimental analysis that our approach gives solutions 
that are close to being optimal for different databases and Grid 
configurations. 
 

Keywords—Grid computing, Distributed systems, Data resources 
management, Database systems, Database placement.  

I. INTRODUCTION 
RID architectures enable the use of computing, data and 
communication resources distributed in a wide-area 

environment [9]. One of the most challenges for the using of 
such distributed environment is the mapping of the data to 
storage space available on Grid [6, 7]. The ways in which data 
is distributed across sites in Grid architecture have a 
significant effect on the performance of a distributed database 
system. In fact, a good data placement can enhance efficient 
computation, reduce access time and minimize overall usage 
of resources [1, 4, 5]. Distributed Database Systems provide 
facilities to manage datasets in the context of Grid 
environment [8]. A number of Grid characteristics 
(heterogeneity, high scale and dynamicity) make Grid 
database placement difficult. 

Generally, database placement is performed according to 
the access patterns. Initially, we perform a database no-
replicated fragments placement without any information about 
access patterns. This database initial placement is important 
because it will reduce the number of fragment reallocations 
over the network when database fragments are queried. For 
the database initial placement, we don't have any knowledge 
on access patterns. The key for a good database initial 
placement is enhancing efficient computation, reducing access 
time and minimizing overall usage of resources. 

 
Ch. Haddad is with the Department of Computer Science, Faculty of 

Sciences of Tunis, 1060 Tunis, Tunisia (corresponding author e-mail: 
cherif.haddad@gmail.com). 

F. B. Charrada is with the Department of Computer Science, Faculty of 
Sciences of Tunis, 1060 Tunis, Tunisia (e-mail: f.charrada@gnet.tn). 

In this paper, we are interested in the problem of the initial 
placement of relational database no-replicated fragments in 
Grid architecture. It consists of determining where to place a 
given set of database fragments on a network of computing 
sites in order to optimize the use of computing, storage and 
communication resources. For this purpose we propose a 
graph-based approach to resolve the data initial placement of 
relational databases on a Grid. We assume a database schema, 
a set of information about fragments dependency, and 
information about Grid sites and networks. In this work, we 
compare our approach to the Round-Robin and the Hashing 
placement techniques [2]. 

 
The remainder of this paper is organized as follows. Section 

2 outlines the parameters considered in our placement 
approach. Section 3 presents our proposed database initial 
placement approach. Section 4 describes some experiments 
conducted to evaluate our approach. Finally, section 5 
concludes our paper. 

II.  GRID ENVIRONMENT 
We model a Grid as a set of sites, each comprising a 

number of computing and storage elements. Each site can 
have a different number of computing elements, a different 
number of processors and hence different computing 
capabilities. We assume that all processors have more or less 
the same performance. Sites are connected to each other by 
WAN’s limited bandwidth and computing elements within a 
site are joined together over a local area network. 
 

The parameters considered in our initial database 
placement decision are the following: 

1. Site parameters: Each Grid site is denoted by GSa 
and for each site GSa, LANBW(GSa) represents the 
local area network bandwidth of GSa. PROC(GSa) 
represents the computing capability of the site GSa 
measured by the number of processors; 

2. Storage element parameters: Each storage element is 
denoted by SEi and for each storage element SEi, 
SR(SEi) represents the space reserved to store 
database fragments, DISKBW(SEi) represents the disk 
bandwidth of SEi, STAB(SEi) represents the stability 
of SEi which encompasses storage element failures, 
communication failures and the disconnection of the 
storage element from the grid. The storage element 
stability is expressed as the average probability of a 
storage element being up; 

A Graph-Based Approach for Placement of No-
Replicated Databases in Grid 

Cherif Haddad, and Faouzi Ben Charrada 

G 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

100

 

 

3. Network parameters: Sites are linked together 
through a communication network. In our work, the 
communication cost CC(GSa, GSb) between two sites 
GSa and GSb represents the average delay of sending 
one unit of data (1KB) from one site to another;  

4. Database parameters: We consider a relational 
database DB as a collection of m no-replicated 
fragments {F1, F2, ..., Fm}. For each fragment Fj, 
Size(Fj) represents the size of fragment Fj. We 
assume that fragmentation of database relations has 
been carried out before the placement phase. While 
fragmentation is an important issue, our main 
concern here is how the fragments should be placed 
around the Grid.  

III. PROPOSED APPROACH 
In this section, we present our proposed approach to place 

database no-replicated fragments across a set of sites. We first 
explain the graph-based approach and then we give our 
placement algorithms. 

A.  Graph-Based Placement Approach 
Our approach proceeds in two phases: in the first phase, we 

perform fragment grouping using knowledge about fragments 
dependency and, in the second phase, we determine an 
efficient placement of the fragment group on the Grid. The 
grouped fragments are represented by a set of dependency 
graphs. Our approach ensures: 
 

• Fragments that tend to be used together in answering 
queries should be placed together; 

• By grouping fragments into groups represented by 
graphs before placement, we reduce the search space 
of placement problem. 

 
In the following, we give some notions that are needed to 

define our placement approach. For the initial placement, we 
consider that we have knowledge on the fragment 
dependency. This knowledge can be produced at the database 
design phase [4]. The fragment dependency can be 
represented by a matrix |F|×|F| [di,j]m×m constructed as follows. 
For 1 ≤ i ≤ m, 1 ≤ j ≤ m, di,j=1 if fragment Fi depends on Fj, 
otherwise di,j=0. The fragment dependency matrix is used to 
generate the fragment dependency graphs Gk = (V,E,p), where 
V is the vertex set of Gk (fragments), E is the edge set 
(dependencies between fragments) and p assigns to each edge 
ei,j = (vi, vj), i ≠ j, a value p(ei,j) = di,j. 

 
For each vi ∈ V, the fragment dependency degree of vi, 

e.g., d(vi), is equal to the total number of dependencies of both 
fragments vi and vj, where (vi, vj) ∈ E, i ≠ j: 

 

∑
≠∈

=
jiVv

jii
j

vvpvd
;

),()(                 (1) 

In our work, we suppose that the movable unit is not a 
fragment but a group of fragments. Using this assumption, we 

compute the total size of fragments represented by a 
dependency graph Gk. This metric is computed as follows: 

  

∑
∈

=
Vv

ik
i

vSizeGSize )()(                 (2) 

B.  Initial Placement Algorithms 
Scalability is an important concern for our placement 

approach. To narrow the search field, our database placement 
is defined by two stages. The first one consists to choose 
candidate sites; this choice considers sites network 
bandwidths and sites computing capabilities. The second stage 
concerns the selection of storage elements inside chosen sites; 
this selection is made according to storage element's stability, 
disk bandwidth and space reserved to store database no-
replicated fragments. 

The main behavior of the initial placement algorithm can be 
resumed as follows. First, fragments are grouped according to 
their dependency as defined in section III.A. The set of 
grouped fragments is partitioned into a list of disjoint subsets 〈 
G1, …, Gk 〉 in a decreasing order of Size(Gk). Then, for each 
Gk we choose a site with highest network bandwidth and 
highest computing capability. The Grid initial placement 
algorithm is given by algorithm 1. 
 
Algorithm 1 Grid Initial Placement 
Require: Grid: Grid environment,  

{Gk }: Set of grouped fragments 
Ensure: Placement P 

1. P = ∅ 
2. Let G = {Gk } /* Queue of grouped fragments sorted in 

a decreasing order of Size(Gk) */ 
3. For all Gk in G do 
4. Generate a set LGk = {GSa} of sites sorted in a   

decreasing order of 〈 LANBW(GSa), PROC(GSa) 〉 
5. While ( There exist fragments in Gk to be placed ) do 
6. GS = RemoveItem(LGk) 
7. PGkGS = SiteInitialPlacement(Gk , GS) 
8. P = P ∪ PGkGS 
9. End While 

10. End For 
Output: P 
 

The time complexity of the Grid initial placement algorithm 
is O(ks) where k is the number of fragment groups and s is the 
number of sites in the Grid. 

 
The Grid initial placement just determines the site GSGk 

where the group Gk has to be placed. The decision where the 
fragments of Gk has to be placed is made by the site initial 
placement. The site initial placement algorithm is given by 
algorithm 2. 
 

Due to the fact that stability of storage elements STAB(SEi) 
can vary dynamically, storage elements with a high stability 
are advantaged. For each Gk we try to place it on the first 
storage element of the list. If the selected storage element can't 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

101

 

 

provide enough storage to place fragments of Gk, we compact 
the group by excluding a fragment with minimum dependency 
degree. If there are many fragments we choose the fragment 
with minimum size. 

 
Algorithm 2 Site Initial Placement 
Require: GSa: Site, {Gk }: Set of grouped fragments 
Ensure: Placement PGkGS 

1. PGkGS = ∅ 
2. Generate a set SEGSa = {SEi} /* of candidate storage 

elements of site GSa sorted in a decreasing order of 〈 
STAB(SEi), DISKBW(SEi), SR(SEi) 〉 */ 

3. While ( There exist fragments in Gk to be placed ) do 
4. SEi = GetFirstItem(SEGSa )  
5. If SR(SEi) >= Size(Gk) then 
6. PGkGS = PGkGS ∪ {(Gk , SEi)} 
7. SR(SEi) = SR(SEi) - Size(Gk) 
8. Else 
9. F = Compact(Gk) /* F is the fragment with 

minimum dependency degree in Gk */ 
10. While ( F is not placed ) do 
11. SEi = GetNextItem(SEGSa) 
12. If SR(SEi) >= Size(F) then 
13. PGkGS = PGkGS ∪ {(F , SEi)} 
14. SR(SEi) = SR(SEi) - Size(F) 
15. Exit() 
16. End If  
17. End While 
18. End If 
19. End While 
Output: PGkGS 

 
The time complexity of the site initial placement algorithm 

is O(n2) where n is the average number of storage elements 
per site. Hence, the overall time complexity to obtain the final 
placement of fragments is O(ksn2), where k is the number of 
fragment groups and s is the number of sites in the Grid. 

IV. EXPERIMENTATIONS 
To test the performance of our approach, we implemented 

a data placement prototype which gave us the opportunity to 
compare the results of our approach to those given by round 
robin and hashing placement techniques [2]. This prototype 
allows us to compute the variation of a placement algorithm 
running cost (search cost and data fragment transfer cost) 
according to the number of sites and the number of fragments. 
Also, it allows us to evaluate the quality of the data 
distribution and the performance gain when fragments are 
queried. To implement our prototype, we have developed an 
extension of OptorSim simulator. OptorSim is a Data Grid 
simulator package written in Java TM [3]. Using this prototype, 
we have run our initial placement algorithm and other 
placement strategies on a wide range of different databases 
and Grid configurations. 

Three sets of experiments are performed. The first 
investigates the relationship between algorithm running cost 
(search cost and transfer cost) and Grid configurations. The 
second one shows the impact of the database configuration on 
a given data placement method. The third evaluates the effect 
of the initial placement on the query communication cost. 

 
Table I shows the running cost of the three placement 

approaches (the Round-Robin placement, the Hashing-Share 
placement technique [2] and our approach) for different Grid 
configurations (number of storage elements ranging from 100 
to 500). 

 
From this table, we remark that the running cost of the 

three approaches increases with the number of storage 
elements for a given database configuration. The search cost is 
influenced by the number of storage elements because more 
elements take more time to analyse. We remark that the 
running cost of our approach is always the less one. 

 
Table II shows the variation of running cost for different 

database configurations (number of fragments ranging from 
100 to 1000). We remark that our algorithm gives a lower 
running cost compared to the two other approaches. In the 
other hand, we notice that the running cost of our approach 
does not increase exponentially when the number of fragments 
increases linearly. 

 
Since we want to evaluate the quality of the data 

distribution, we computed the communication cost when 
fragments are used in join queries. The communication cost 
consists of two components: the fragment transfer cost and the 
result transfer cost of the join operations. In order to simulate 
a real Grid network, we use different network bandwidths 
(ranging from 100 MB/s to 1 GB/s) and startup-delays 
(ranging from 6 to 10 μs) to compute the query 
communication cost. 

 
Fig. 1 shows the variation of the query communication 

cost for different number of queries. We have run our initial 
placement algorithm, the Round-Robin and the Hashing-Share 
strategies on a wide range of different databases and Grid 
configurations. We note that the communication cost increases 
with the number of queries.  

 
We remark that when the number of queries increases, the 

fragments become more and more dependent. We note that 
our approach preserves the dependency between fragments 
used together in join operations by placing depended 
fragments in the same site. As a result, the cost generated by 
the correlation constraint will be reduced and will prevent the 
query communication cost from increasing exponentially. 

 

 
 
 
 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

102

 

 

TABLE I  
RUNNING COST FOR VARIOUS NUMBER OF STORAGE ELEMENTS 

  Running cost (sec) 
Number of storage elements 100 200 300 400 500 

       

Round-Robin Search cost 
Transfer cost 
Total cost 

10 
2208 
2218 

13 
2424 
2437 

15 
2557 
2572 

17 
2602 
2619 

18 
2629 
2647 

Hashing-Share Search cost 
Transfer cost 
Total cost 

12 
2196 
2208 

16 
2460 
2476 

17 
2564 
2581 

18 
2620 
2638 

20 
2674 
2694 

Our approach Search cost 
Transfer cost 
Total cost 

7 
1607 
1614 

8 
1914 
1922 

8 
2048 
2056 

9 
2089 
2098 

10 
2113 
2123 

 
TABLE II 

RUNNING COST FOR VARIOUS NUMBER OF FRAGMENTS 
  Running cost (sec) 

Number of fragments 100 200 400 600 800 1000 
        

Round-Robin Search cost 
Transfer cost 
Total cost 

4 
438 
442 

7 
836 
842 

13 
1692 
1705 

17 
2602 
2619 

22 
3384 
3406 

28 
4246 
4274 

Hashing-Share Search cost 
Transfer cost 
Total cost 

7 
434 
441 

8 
844 
852 

15 
1740 
1755 

18 
2620 
2638 

25 
3442 
3467 

35 
4436 
4471 

Our approach Search cost 
Transfer cost 
Total cost 

3 
280 
283 

4 
648 
652 

6 
1221 
1227 

9 
2089 
2098 

11 
2601 
2712 

14 
3440 
3453 

 

 
Fig. 1 Query communication cost for various number of queries 

 
V.   CONCLUSION 

We have presented a graph-based approach to the initial 
placement of database no-replicated fragments in the context 
of Grid environment. Our approach is graph-based and uses 
the connectivity between fragments to place the maximum of 
connectivity on the same site. The main characteristic of our 
approach is to preserve the connectivity between fragments in 
order to reduce both execution time and communication cost 
between sites. It is clear that the objective of our approach is 
not to find the best initial placement of no-replicated 
fragments but to define an initial placement that can reduce 
the movement of fragments during their use through join 
queries. 

As future works, we plan to study the effect of the 
replication on the query processing cost. 

REFERENCES  
[1] I. D. Baev and R. Rajaraman. Approximation algorithms for data 

placement in arbitrary networks. In SODA’01: Proceedings of the twelfth 
annual ACM-SIAM Symposium on Discrete Algorithms, pages 661–670, 
Philadelphia, PA, USA, 2001. 

[2] A. Brinkmann, K. Salzwedel, and C. Scheideler. Compact, adaptive 
placement schemes for non-uniform capacities. In Proceedings of the 
14th ACM Symp. on Parallel Algorithms and Architectures (SPAA), 
pages 53–62, Winnipeg, Manitoba, Canada, August 2002. 

[3] D. G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, C. Nicholson, K. 
Stockinger, and F. Zini. Optorsim: A simulation tool for scheduling and 
replica optimisation in data grids. In Proceedings of Computing in High 
Energy Physics, CHEP 2004, Interlaken, Switzerland, 2004. 

[4] Y. Huang and J. Chen. Fragment allocation in distributed database 
design. Journal of Information Science and Engineering, 17(3):491–506, 
2001. 

[5] Y. Huang and N. Venkatasubramanian. Data placement in intermittently 
available environments. In High Performance Computing - HiPC 2002, 
9th International Conference, volume 2552 of Lecture Notes in 
Computer Science, pages 367–376, Bangalore, India, December 2002. 
Springer-Verlag. 

[6] T. Kosar and M. Livny. Stork: Making data placement a first class 
citizen in the grid. In Proceedings of 24th IEEE Int. Conference on 
Distributed Computing Systems,(ICDCS2004), Tokyo, March 2004. 

[7] K. Ranganathan and I. Foster. Decoupling computation and data 
scheduling in distributed data-intensive applications. In International 
Symposium of High Performance Distributed Computing, HPDC-11, 
Edinburgh, Scotland, July 2002. 

[8] H. Stockinger. Distributed database management systems and the data 
grid. In 18th IEEE Symposium on Mass Storage Systems and 9th NASA 
Goddard Conference on Mass Storage Systems and Technologies, San 
Diego, CA, April 17-20 2001. 

[9] H. Stockinger, Omer F. Rana, R. Moore, and A. Merzky. Data 
management for grid environments. In High-Performance Computing 
and Networking, 9th International Conference, HPCN Europe 2001, 
volume 2110 of Lecture Notes in Computer Science, pages 151–160, 
Amsterdam, The Netherlands, June 2001. Springer-Verlag. 


