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Abstract—Mechanical buckling analysis of rectangular plates
with central circular cutout is performed in this paper. The finite-
element method is used to study the effects of plate-support
conditions, aspect ratio, and hole size on the mechanical buckling
strength of the perforated plates subjected to linearly varying loading.
Results show that increasing the hole size does not necessarily reduce
the mechanical buckling strength of the perforated plates. It is also
concluded that the clamped boundary condition increases the
mechanical buckling strength of the perforated plates more than the
simply-supported boundary condition and the free boundary
conditions enhance the mechanical buckling strength of the
perforated plates more effectively than the fixed boundary conditions.
Furthermore, for the bending cases, the critical buckling load of
perforated plates with free edges is less than perforated plates with
fixed edges.

Keywords—Buckling, Perforated plates, Boundary condition,
Rectangular plates

I. INTRODUCTION

HIN plate elements are one of the main components in
many structures such as ship hulls, dock gates, plate and

box girders of bridges, platforms of offshore structures and
aerospace structures. Cutout holes in such plate elements are
necessary for inspection, maintenance, service purposes and
weight reduction.

 The presence of cutouts (perforations) in a structural
member often complicates the design process. In aerospace
structures, cutouts are commonly used as access ports for
mechanical and electrical systems or specially weight
reduction. Structural panels with cutouts often experience
compressive loads that are induced either mechanically or
thermally and can result in panel buckling. Thus, the buckling
behavior of structural panels with cutouts must be fully
assigned in designing process.
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The buckling of flat square plates with central circular holes
under in-plane edge compression has been studied both
theoretically and experimentally by various authors [1–12].
The methods of theoretical analysis used by most of the past
investigators [1–3, 5] were the Rayleigh-Ritz minimum energy
method and the Timoshenko method [13]. However, except
for Schlack [3] and Kawai and Ohtsubo [5], the theoretical
analysis methods used do not allow the boundary and loading
conditions to be precisely defined for larger hole sizes.
Because the stress distribution of the infinite perforated plate
are used as the prebuckling stress solution for the finite
perforated plate. Thus, most of the earlier buckling solutions
are limited to small hole sizes and are not fit for studying the
effects of different plate boundary conditions on the buckling
strengths of the finite plates with arbitrarily sized holes using
these approximate solutions.

Schlack [3] analyzed the buckling behavior of a simply
supported square plate with a circular hole, subjected to
uniform edge displacements with three arbitrary displacement
functions Using the Rayleigh-Ritz method and calculated the
buckling displacements. Then, the buckling loads were
calculated using stress-strain relationships. Ritchie and Rhodes
[7] studied the buckling behavior of both square and
rectangular simply-supported perforated plates. Their
theoretical analysis employed an approximate approach using
a combination of Rayleigh-Ritz and finite-element method.
These methods are reasonably accurate for small holes, but
lose accuracy when dealing with larger holes. The results of
their analysis show that the buckling behavior of perforated
rectangular plates is quite different from perforated square
plates and the buckling mode is dependent on the hole size.
Kawai and Ohtsubo [5] also studied the perforated square
plates using the Rayleigh-Ritz procedure with the prebuckling
stress distribution determined by the finite-element method.
To reduce the labor of numerical calculations, the double
integrations in the energy procedure for each finite element
were transformed into line integrals around the element
boundary using the well-known Gauss theorem. To minimize
the mathematical complexities, Nemeth [8–11] analyzed
perforated square orthotropic plates by converting the classical
two-dimensional buckling analysis into an equivalent one
dimensional analysis by approximating the plate
displacements with kinematically admissible series. In his
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analysis, the two unloaded edges were assumed simply
supported, and the loaded edges were either simply supported
or clamped. This approximate buckling analysis predicted the
buckling loads to within 10 percent of those calculated using
the finite-element method. Nemeth’s analytical and
experimental results [10] indicated that increasing the hole
size in a given plate does not always reduce the 3 buckling
load. Lee et al. [12] examined the buckling behavior of a
square plate with a central circular hole using the finite-
element method. This study was limited to small size holes.

Recent thin shell finite element research on the elastic
buckling of simply-supported rectangular plates with multiple
holes has demonstrated that the presence of holes can either
decrease or increase the critical elastic buckling stress and
change the length and quantity of buckled half-waves [15–19].
The elastic buckling behavior depends upon the quantity of
hole material removed relative to the size of the plate and hole
spacing. These recent findings are important as a design
perspective. Because they demonstrate that certain hole
location and geometry has very deleterious effect on critical
elastic buckling stress and potentially load-deformation
response. The most of past analyses of perforated plates
considered mainly the plates under simply-supported
boundary condition. In this paper we investigate the
mechanical buckling analysis of rectangular plates containing
arbitrarily-sized central circular holes. A finite-element
method was used to study the effects of plate boundary
condition, aspect ratio and hole size on the mechanical
buckling strength of perforated plates subjected to linearly
varying in-plane normal load.

II.DESCRIPTION OF THE PROBLEM

A. Geometry

The geometry of the perforated rectangular plates and
different boundary conditions used in the finite-element
analysis are described as follows.

Fig. 1 shows the geometry of perforated rectangular plates
with length l, width w and thickness t. The central cutout is a
circular hole with diameter d (Fig. 1). Table 1 lists the
dimensions of perforated rectangular plates.

Notice that all the plates have the same width, w = 20 in.
and the same thickness t= 0.1 in.

Fig. 1 Rectangular plates with central cutout

A. Boundary Conditions

The four edges of the perforated plates are either simply
supported or clamped. The two unloaded edges are either
constrained from the transverse in-plane motions (Figs. 2 (a))
which is called fixed case or unconstrained from the transverse
in-plane motions (Figs. 2 (b)) that is called free case.

TABLE I
DIMENSIONS OF PERFORATED PLATES

w, in. 20 20 20

t, in 0.1 0.1

l/w 1 1.5

d/w

(a) Fixed case-two horizontal edges with no in-plane transverse
motion

(b) Free case-two horizontal edges with in-plane transverse motion
Fig. 2 Fixed and free boundary condition for two vertical edges

(simply supported or clamped)

The four cases of boundary conditions considered in this
analysis are as follows:

1. 4S fixed—four edges simply supported; the two side
edges can slide freely along the lubricated fixed guides (Fig. 3
(a)).

2. 4S free—four edges simply supported; the two side edges
can slide freely along the lubricated guides which can have
free in-plane transverse motion (Fig. 3 (b)).

Fixed

x

y

Fixed
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3. 4C fixed—four edges clamped; the two side edges can
slide freely along the lubricated fixed clamping guides (Fig. 4
(a)).

4. 4C free—four edges clamped; the two side edges can
slide freely along the lubricated clamping guides which can
have free in-plane transverse motion (Fig. 4 (b)) [20].

Fig. 3 Two types of boundary conditions for simply-supported

horizontal edges

Fig. 4 Two types of boundary conditions for clamped horizontal
edges

A linearly varying force is subjected to two opposite edges
(x = 0 and x = a) as follows:

where N0 and α are the intensity of the compressive force
per unit length and a numerical factor, respectively [17].

Negative sign in (1) represents compression. By changing α
in (1), different particular cases may be obtained. For instance,
if α is set to zero, the uniformly distributed compressive force
is obtained. By taking α = 1, the compressive force varies
linearly from −N0 at y = −w/2 to zero at y = w/2. For α = 2,
pure in-plane bending is obtained. The other cases (α = 0.5
and α = 1.5) give a combination of bending and compression.
All loading cases are shown in Fig. 5. For simplicity, hereafter
the loading cases of α = 0.0, 0.5 and 1.0 are called
‘‘compression”, and a = 1.5 and 2.0 are called ‘‘bending”. The
case of α < 0 or α > 2 are not considered because such cases
are identical with the cases of 0≤ α ≤ 2 as far as the edge
conditions are the same [21,22].

Fig. 5 Example of in-plane loading Nx along the edge

III. FINITE ELEMENT ANALYSIS PROCEDURE

The commercial multipurpose finite element software
program ANSYS (2009) was employed in this research. The
general-purpose Elastic Shell63 element is used to model the
perforated plate because it shows satisfactory performance in
verification work previously described by El-Sawy and
Nazmy [14, 15]. The Elastic Shell63 element has four nodes
possessing six degrees of freedom per node. An irregular

(a) 4S fixed

Fixed support

Lubricated

Movable  support

Lubricated

(b) 4S free

x

x

Fixed support

Lubricated

Lubricated

x

x

Movable support

(b) 4C free

(a) 4S fixed
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discretisation in finite element modeling is employed as
shown in Fig. 6 in this study. The mesh density of the plate
was chosen based on the size of a circular hole. The default
shell element size was selected b/50. The shell element size
along the hole perimeter was set to the smaller of b/100 or
πd/40. The mesh pattern was set-up on the basis of the results
achieved in previous numerical studies [15].

Fig.6 typical mesh of a plate with a circular hole

The material of the plates was assumed to be homogeneous,
isotropic and elastic. The material properties for Young’s
modulus E = 16 × 106 lb/in2 and Poision’s ratio υ = 0.31 were
selected.

IV. LINEAR BUCKLING ANALYSIS

There are two types of buckling analyses: nonlinear
buckling analysis and eigenvalue (or linear) buckling analysis.
Because the two methods can yield dramatically different
results, it is necessary to first understand the differences
between them. Nonlinear buckling analysis is usually the more
accurate approach and is therefore recommended for design or
evaluation of actual structures. This technique employs a
nonlinear static analysis with gradually increasing loads to
seek the load level at which your structure becomes unstable,
as depicted in. Using the nonlinear technique, your model can
include features such as initial imperfections, plastic behavior,
gaps, and large-deflection response. In addition, using
deflection-controlled loading, you can even track the post-
buckled performance of your structure (which can be useful in
cases where the structure buckles into a stable configuration,
such as "snap-through" buckling of a shallow dome).

Eigenvalue buckling analysis predicts the theoretical
buckling strength (the bifurcation point) of an ideal linear
elastic structure. This method corresponds to the textbook
approach to elastic buckling analysis: for instance, an
eigenvalue buckling analysis of a column will match the
classical Euler solution. However, imperfections and
nonlinearities prevent most real-world structures from
achieving their theoretical elastic buckling strength. Thus,
eigenvalue buckling analysis often yields unconservative
results, and should generally not be used in actual day-to-day
engineering analyses [23].

The linear buckling analysis will not be suitable if the
deformations are not small or if the material shows nonlinear
behavior near collapse. In such cases, the nonlinear buckling
analysis, which is a combination of both linear and nonlinear

buckling analysis, must be performed [17]. In this study, the
material behavior is assumed to be linear elastic and
deformations compared with the overall dimensions of plate
are assumed to be small. Based on the assumptions, the linear
buckling analysis is used to determine the critical buckling
load of perforated plates.

fi

fi

(2)

 at which

V.RESULTS AND DISCUSSION
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TABLE II
COMPARISON OF FINITE-ELEMENT AND CLASSICAL BUCKLING

SOLUTIONS FOR SIMPLY SUPPORTED RECTANGULAR SOLID

PLATES UNDER UNIAXIAL COMPRESSION

The comparison of the finite-element and the classical
buckling solutions in Table2 shows very close correlation and
not only indicates that the adequacy of the finite-element
modeling but also provides great confidence in the accuracy of
the finite-element buckling solutions for the perforated plates
presented in this research.

A. Mechanical Buckling for α = 0 Cases
Figures 7–9, show the compressive buckling loads (α = 0)

plotted as functions of hole size d /w for the plates with
circular holes under 4S-free, 4S-fixed, 4C-free and 4C-fixed
boundary conditions. The 4C-free buckling curves almost lie
considerably above the other buckling curves for all plate
aspect ratios.

For the free and fixed cases, the 4C buckling curves always
lie considerably above the 4S buckling curves for all plate
aspect ratios. For the 4s fixed cases, by increasing the hole
size, the critical buckling load is decreased for all plate aspect
ratios. But for the 4C fixed cases, by increasing the hole size,
the critical buckling load is increased for all plate aspect
ratios. For the other plate-support conditions, it could be
decrease or increase and depending on the hole sizes and the
plate aspect ratios.

Fig.7 Compressive buckling loads as functions of hole size; circular
holes; (l/w=1, α = 0)

Fig.8 Compressive buckling loads as functions of hole size; circular
holes; (l/w=1.5, α =0)

Fig.9 Compressive buckling loads as functions of hole size; circular
holes; (l/w=2, α =0)

B. Mechanical Buckling for α = 0.5 and α = 1 Cases

Figures 10–15, show the critical buckling loads for α = 0.5
and α= 1 plotted as function of hole size d /w for the plates
with circular hole under different boundary conditions. The
buckling curves is similar to compressive buckling loads (α =
0).

Fig.10 Compressive buckling loads as functions of hole size; circular
holes; (l/w=1, α =0.5)

l/w
( Nx)cr,lb/in , circular hole

model(d=0)
( Nx)cr,lb/in , Timoshenko

1 145.57 145.58

1.5 157.93 157.97

2 145.57 145.58
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Fig.11 Compressive buckling loads as functions of hole size; circular
holes; (l/w=1.5, α =0.5)

Fig.12 Compressive buckling loads as functions of hole size; circular
holes; (l/w=2, α =0.5)

Fig.13 Compressive buckling loads as functions of hole size; circular
holes; (l/w=1, α =1)

Fig.14. Compressive buckling loads as functions of hole size; circular
holes; (l/w=1.5, α =1)

Fig.15. Compressive buckling loads as functions of hole size; circular
holes; (l/w=2, α =1)

C.Mechanical Buckling for α = 1.5 Cases
Figures 16–18, show the changes of the critical buckling

loads for α = 1.5 with hole size d /w for the plates with circular
hole under different boundary conditions. It can be seen from
this figures that for 4S cases, the critical buckling load
decrease by increasing the hole size, only when the hole size
becomes greater than d /w=0.5. For 4C cases, the critical
buckling load, depending on the hole size and aspect ratio may
be decreased or increased.

Fig.16 Bending buckling loads as functions of hole size; circular
holes; (l/w=1, α =1.5)

Fig.17. Bending buckling loads as functions of hole size; circular
holes; (l/w=1.5, α =1.5)
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Fig.18 Bending buckling loads as functions of hole size; circular

holes; (l/w=2, α =1.5)

D.Mechanical Buckling for α = 2 Cases (Pure Bending)

Figures 19–21, show the pure bending buckling loads (α=2)
plotted as function of hole size d /w for the plates with circular
hole under different boundary conditions. The 4C-fixed
buckling curves almost lie considerably above the other
buckling curves for all plate aspect ratios. The buckling
strength for 4S-free condition is almost below the other
buckling strength for all plate aspect ratios. For free boundary
conditions, the critical buckling loads decrease slightly, as the
hole size grows initially, and then increase at larger hole sizes.
For 4S-fixed boundary condition, the critical buckling loads
always decrease slightly, as the hole size grows. For 4C-fixed
boundary condition, the critical buckling loads depending on
the aspect ratio may be decreased or increased, as the hole size
grows.

Fig.19 Bending buckling loads as functions of hole size; circular
holes; (l/w=2, α 2)

Fig.20 Bending buckling loads as functions of hole size; circular
holes; (l/w=1.5, α =2)

Fig.21 Bending buckling loads as functions of hole size; circular

holes; (l/w=2, α =2)

VI. CONCLUDING REMARKS

FEM buckling analysis was performed on plates containing
centrally located circular hole subjected to linearly varying
loading. The effects of plate support conditions, aspect ratio
and hole size on the mechanical buckling strength were
studied. The key findings of the analysis are as follows:

Increasing the hole size does not necessarily reduce
the mechanical buckling strength of the perforated
plates. For certain aspect ratios and support
conditions, mechanical buckling strength increase
with the increasing hole sizes.
The clamped boundary conditions increase the
mechanical buckling strength of the perforated plates
more effectively than the simply-supported boundary
conditions.
For compression loading cases, the free boundary
conditions enhance the mechanical buckling strength
of the perforated plates more effectively than the
fixed boundary conditions. But for bending cases, the
fixed boundary conditions increase the mechanical
buckling strength of the perforated plates more than
the free boundary conditions.

For compression loading cases, by increasing the hole size,
the critical buckling loads decrease slightly or increase for
some boundary conditions. For bending cases, the critical
buckling loads almost decrease as the hole size grows and the
presence of the circular hole with d/b = 0.5 and 0.6 causes a
reduction on the buckling load up to 30%. These hole sizes is
a critical value and must be avoided for bending cases
specially in the elastic buckling condition.
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