
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1149

Computational Intelligence Hybrid Learning 
Approach to Time Series Forecasting 

Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang and Tsunghan Wu 

 
Abstract—Time series forecasting is an important and widely 

popular topic in the research of system modeling. This paper 
describes how to use the hybrid PSO-RLSE neuro-fuzzy learning 
approach to the problem of time series forecasting. The PSO 
algorithm is used to update the premise parameters of the 
proposed prediction system, and the RLSE is used to update the 
consequence parameters. Thanks to the hybrid learning (HL) 
approach for the neuro-fuzzy system, the prediction performance 
is excellent and the speed of learning convergence is much faster 
than other compared approaches. In the experiments, we use the 
well-known Mackey-Glass chaos time series. According to the 
experimental results, the prediction performance and accuracy in 
time series forecasting by the proposed approach is much better 
than other compared approaches, as shown in Table IV. Excellent 
prediction performance by the proposed approach has been 
observed. 

Keywords—forecasting, hybrid learning (HL), Neuro-Fuzzy 
System (NFS), particle swarm optimization (PSO), recursive 
least-squares estimator (RLSE), time series 

I. INTRODUCTION 
YSTEM modeling for function approximation, 
optimization and forecasting has been widely 

investigated for years. Time series forecasting is one of the 
momentous applications in system modeling. In time series, 
time is usually a very important factor to make decision or 
prediction. Data in past history recorded in time sequence is 
called time series. Managers usually use historical data to 
forecast various types of variables such as changes in stock, 
sales of products, population growth, and many others. The 
accurate and valuable prediction of these variables can assist 
managers to make a decision. Time series is also a group of 
statistics, according to the order which events are occurred in 
time sequence. For instance, the daily average temperature or 
monthly rainfall at a place, daily stock market closing price, 
company’s turnover, unemployment rate, economic growth 
rate and total amount of national income and export. Modern 
business and economic activities, in essence, are dynamic, 
and they changes frequently. How to make a reliable forecast 
is one of the most important issues for modern enterprises 
and organizations. The usage of time series to forecast the 
future tendency has to make use of detailed data which were 
generated for some time past in the cause of understanding 
the trend of changes. 

Many previous researches had used many kinds of 
methods in time series forecasting [8]-[16]. Neuro-fuzzy 
system (NFS) is one of the most frequently used methods. 
Many kinds of optimization algorithms had been used for 
NFSs. The design of NFS to forecasting had been also 
proposed in previous researches. However, the forecasting 
performance and accuracy were not good enough.  
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We propose neuro- fuzzy system with hybrid learning 
(HL) approach in this research to make prediction for time 
series as accurate as possible. We use few past data as 
inputs to the neuro-fuzzy predictor to forecast one-step 
ahead result. 

NFSs are useful to represent and process linguistic 
information and to deal with uncertainty and imprecision 
[6]. In our study, we use Takagi-Sugeno (T-S) neuro-fuzzy 
model [6]-[7] for time series forecasting. The reasoning 
process in T-S neuro-fuzzy model is very similar to that in a 
traditional fuzzy inference system. An appropriate 
neuro-fuzzy model for prediction is very important to 
forecast time series accurately. How to design and adjust 
fuzzy sets and fuzzy rules in a NFS is critically significant 
on forecasting results. Furthermore, because there are 
usually many unknown parameters in a NFS, the selection 
of learning algorithm to adapt the neuro-fuzzy predictor 
plays an extremely pivotal position. In order to adapt the 
free parameters of the proposed neuro-fuzzy predictor, we 
propose a hybrid learning approach using both the particle 
swarm optimization (PSO) [4] and the recursive 
least-squares estimator (RLSE) [6] to solve the problem. 
The PSO is used to update premise parameters of the NFS 
predictor, and the RLSE is used to update the consequent 
parameters. In this paper, we specify the proposed hybrid 
learning approach for NFS to the problem of time series 
forecasting. The main goal of the research is to find the 
optimal solution for the neuro-fuzzy predictor so that the 
prediction performance by the proposed approach can be as 
good as possible. The PSO is a useful method for solving 
global optimization problems, and the RLSE can solve 
linear model question in very efficient way. The hybrid 
learning approach for the NFS predictor can make 
forecasting result with great accuracy. 

In Section II, the methodology of NFS is specified. In 
Section III, we describe the hybrid learning approach with 
PSO and RLSE to the proposed neuro-fuzzy predictor. In 
Section IV, the Mackey-Glass chaos time series is used as 
an illustrated example to demonstrate the proposed 
neuro-fuzzy prediction approach. Finally, a discussion for 
the experimental results is given and the paper is 
concluded. 

II.  NEURO-FUZZY SYSTEM AS A PREDICTOR 
To design a multiple-input-single-output neuro-fuzzy 

system as a predictor, we use T-S fuzzy model. T-S fuzzy 
model was first proposed by Takagi and Sugeno to develop 
a systematic approach to generate fuzzy rules from a given 
input-output data set [5]-[7]. 

In the first-order T-S model, the consequent of a fuzzy 
rule is a linear combination of crisp inputs. Let us consider 
a M-input-one-output fuzzy system with K fuzzy rules in 
the rule base. The form of a T-S fuzzy rule can be given as 
follows. 

S
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Fig. 1. Structure of neuro-fuzzy system. 
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where {h1(t), h2(t), … , hM(t)} are the inputs to the 
neuro-fuzzy system at time t ; yi (t) is the i-th rule output,

},,{ 21
i
M

ii sss L are the fuzzy sets of the i-th rule, and

},,{ 21
i
M

ii aaa L are the consequent parameters of the i-th 
rule. The fuzzy model can be cast into neural structure to be 
a neuro-fuzzy system (NFS). The proposed approach is 
based on the NFS methodology. In the study, input data are 
from historical data in time series. 

The NFS structure is shown in Fig. 1. There are six 
layers in the proposed neuro-fuzzy system. The explanation 
for the six layers is specified as follows. 

Layer 0: This layer is called the input layer. Each node in 
this layer corresponds to an input crisp variable H(t) = 
[h1(t), h2(t),…, hM(t)]. 

Layer 1: The layer is called the fuzzy-set layer. Each 
node of the layer represents a linguistic value characterized 
by a fuzzy set. Each node output indicates a membership 
degree. To design fuzzy sets, we use Gaussian membership 
functions. The general description of fuzzy sets using 
Gaussian membership function is given as follows. 

))/)((5.0exp()(gaussmf 2σmhh −−=        (2)                                                    
where m and σ are the mean and the spread of the 
Gaussian-type fuzzy set. The parameters of mean and 
spread for all the fuzzy sets in the premise-parts of the 
proposed NFS are called the premise parameters. 

Layer 2: The layer is for the firing strengths of the K 
if-then rules. The nodes perform the fuzzy-and operations 
for the premise parts of the fuzzy rules. Each node output 
indicates a firing strength of a corresponding fuzzy rule. 
The firing strength for the i-th rule is denoted as βi, and it is 
defined as. 
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i
M
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Layer 3: The process of normalization for the firing 

strengths of the fuzzy rules is performed in this layer. The 
normalized firing strength for the i-th fuzzy rule is given as 
follows.                                           
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Layer 4: The layer is called the consequent layer. The 

nodes in the layer perform the normalized consequents of 
all the fuzzy rules. Then the output of the i-th fuzzy rule is 
given as follows. 
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where },,{ 21
i
M

ii aaa L are the consequent parameters of 
the i-th fuzzy rule.  Layer 5: The layer is called the output layer. There is 
only one node in the layer for single output. The node in 
this layer combines all the outputs from Layer 4 to produce 
the system output, given as follows. 
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  Once the consequent parameters are determined, the 
system output of the NFS can be expressed as follows. 
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  Assume that there are N samples observed from an 
unknown system of interest. The observed samples are 
collected to be used as training data for the proposed 
neuro-fuzzy predictor. The training data (TD) is denoted as 
follows. 

},,2,1),({TD Nttd L==              (8) 

To overview the approach structure for the prediction of 
the output of an unknown system, the approach diagram for 
prediction is given in Fig. 2. 

In Fig.2, the input vector H(t) is obtained from the TD in 
(8) which are observed from the unknown system. The 
purpose of the neuro-fuzzy predictor is to generate an 

 
 
 
 
 
 

Fig. 2. Neuro-fuzzy prediction approach diagram. 
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output, Y(t), and the error between the unknown system 
output and the NFS output is minimized. The prediction 
error is defined as follows. 

NttYtdte ,,2,1),()()( L=−=            (9) 

  With the N pairs of input-output training patterns, the 
concept of root mean square error (RMSE) is used as error 
norm, given as follows. 

N

te
N

t
∑

== 1

2)(
RMSE                (10) 

The premise parameters in Layer 1 and the consequent 
parameters in Layer 4 can be viewed as the two subsets of 
the free parameters for the proposed NFS. The parameters 
are sometimes called the system parameters for the NFS. 
They can be adapted using machine learning algorithms 
such as PSO and RLSE. In the following section, we 
specify the PSO-RLSE hybrid learning method for the 
neuro-fuzzy predictor. 

III.  HYBRID PSO-RLSE LEARNING APPROACH 

A. Particle Swarm Optimization 
PSO was proposed by Eberhart and Kennedy in the mid 

1990s [4]. PSO is an excellent approach having collective 
wisdom concept to the evolution of the optimization search 
in research areas. PSO has been applied successfully to a 
wide variety of search and optimization problems [1]-[3]. 
According to the PSO algorithm, a particle is viewed as a 
bird searching for food (a better solution), and all the 
particles comprise a population, which is called a "swarm" 
of the birds. Each particle moves toward its own best 
position and the swarm-best position. All particles 
competes each other to be the swarm best. In this way, PSO 
combines the search behaviors of both individual search 
and swarm search. There exists a subtle relationship for 
competition and cooperation in the search process. All 
particles shall remember their own best positions during the 
searching process. Besides, all particles have their own 
velocities in order to determine their search movements. 

Particles search iteratively for the optimum solution 
using the concept of fitness function. A fitness function 
sometimes is called a cost function. Particles change their 
search direction by means of two search memories, which 
are given as follows. 

 
Pbest：the best location of individual particle, and 

Gbest：the best location of the swarm. 
A search process by PSO is shown conceptually in Fig. 3. 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Search process by PSO. 

In Fig. 3, the target T is the location of the optimum 
solution. In the swarm, there are two particles, which are 
labeled with A and B, respectively. Both particles are 
updated for their locations at time t. When t = 2, it is 
obvious that particle B is the closest particle to the target. 
This means that particle B is the Gbest of the swarm. 

Assume the problem space is with Q dimensions. The 
particles’ velocities are updated as follows. 
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where Vi (t) is the velocity of i-th particle at time t, {c1,c2} 
are the parameters for PSO,  and {ξ1 , ξ2 } are random 
numbers in [0, 1]. 

The particles locations are updated as follows. 

)()()1( ttt iii VLL +=+                 (13) 

)](,),(),([)( ,2,1, tltltlt Qiiii L=L           (14) 

where Li (t) is the location of the i-th particle at time t.
  The procedure of PSO is given in Fig. 4. 

In Fig. 4, f(Li) indicates the cost in RMSE for the current 
location of the i-th particle, f(Pbesti) indicates the cost for 
Pbesti , and f(Gbest) represents the cost for Gbest. 

Step 1. Decided the swarm size, dimensions of particles, 
and the maximal number of iterations. 

Step 2. Initialize the positions and the velocities of the 
particles for the swarm randomly. 

Step 3. Calculate fitness for each particle according to 
fitness function.  

Step 4. Update position and velocity for each particle in 
the swarm according to (11) and (13). 

Step 5. If f(Li) < f(Pbesti), then update the Pbesti of the 
swarm. If f(Pbesti) < f(Gbest), update the Gbest of 
the swarm. 

Step 6. If stopping criteria satisfied, Gbest is the optimum 
solution. Otherwise, go back to Step 3 to continue 
the PSO procedure. 

Fig. 4. Implementation procedure of PSO. 
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B. Recursive Least-Squares Estimator 
In general, the least square estimation (LSE) problem [6] 

can be specified below. The output of a linear model y is 
given as follows. 

)()()( 2211 ufufufy nnθθθ +++= L        (15) 

where u is the model’s input, fi(.) is known function of u, 
and θi , i=1,2,…, n represents unknown parameters to be 

estimated. The problem of LSE can be written in a concise 
form, as follows. 

yAθ =                   (16) 

where A is a input matrix, θ is a parameter vector to be 
estimate and y is an output vector. 

The recursive least-squares estimator (RLSE) for the 
problem of (16), where the k-th row of [A, y], denoted by 
ሾ࢈௞்,  ௞ሿ, is sequentially obtained, can be calculated as࢟
follows. 
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where k ranges from 0 to N -1 and the final RLSE ࣂ෡ is 
equal to ࣂே, the estimator using all N data pairs. There are 
N training data in (8) to be involved for the adaption of the 
neuro-fuzzy predictor. 

To start the algorithm in (17), we need to select the initial 
values of ࣂ଴ and ࡼ଴ which is given as follows. 

IP α=0                    (18) 

where ߙ is a large value and I is the identity matrix. ࣂ଴ 
can be initially set to zeros.                                                                        

C. Hybrid learning algorithm 
To train the proposed hybrid-learning-based neuro-fuzzy 

system (HL-NFS) for time series forecasting, the PSO in 
(11) and (13) is used together with the RLSE in (17) for 
fast convergence of learning. The PSO is used to update the 
premise parameters and the RLSE is used to update the 
consequence parameters. Fig. 5 shows the implementation 
flowchart. The training procedure for HL-NFS is shown as 
follows. 
Step 1. Collect sample data. The first half of data is used 

for training, and the other half is for testing.  
Step 2. Update the premise parameters by the PSO in (11) 

and (13). 
Step 3. Update the consequent parameters by the RLSE in 

(17). According to (17), we have to design the 
vector bk+1 as follows. 
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Fig. 5 Flowchart for the training process of the proposed 
approach. 
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The parameter vector ࣂ is given as follows. 
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Step 4. After all parameters of the NFS predictor are 
determined, calculate system output in (7). 

Step 5. Return to the PSO procedure in Fig. 4. Calculate 
cost in (10) for each particle. 

Step 6. Compare the costs of all particles. Update Pbest 
and Gbest in the swarm. 

Step 7. If stopping criteria satisfied, Gbest is the optimum 
premise parameters for the NFS. Otherwise, go 
back to Step 2 to continue the procedure. 

D. Testing procedure of HL-NFS 
In order to verify and test the accuracy and prediction 

performance of the HL-NFS after learning, the remaining 
half of sample data is used for testing. The testing 
procedure is given as follows. 
Step 1. After the training procedure, the premise 

parameters have been determined by PSO and the 
consequent parameters have been updated by 
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RLSE. 
Step 2. Testing data are used as input to the trained 

HL-NFS predictor. 
Step 3. Generate prediction output in (7). 
Step 4. The output of the HL-NFS predictor is compared 

to the corresponding target to produce prediction 
error in (9). 

IV.  EXPERIMENTS FOR THE APPROACH 

A. Settings of system and algorithm implementation 
In the experiments, the well-known Mackey-Glass chaos 

time series is used and it is defined as follows. 

)(1.0
)(1

)(2.0)( 10 tx
tx

txtx −
−+

−
=

τ
τ

&
          (21) 

where τ= 17. The time step is given as 0.1 s. The initial 
condition is given as x(0) = 1.2 and x(t) = 0 for t < 0. The 
mapping relationship of the HL-NFS to predict the chaos 
time series in (21) is given as follows: 

)))1((,),(),(()( Δ−−Δ−=+ DtxtxtxfPtx L    (22) 

where t is the time index, തܲ ൌ ∆ൌ 6, and ܦഥ ൌ 4. From the 
Mackey-Glass time series x(t),the data pairs (H(t), d(t)) 
extracted from the series are given as follows. 

)](6),-(12),-(18),-([)( txtxtxtxtH =       (23) 

)6()( += txtd               (24) 

for t = 118 to 1117. The objective of the model is to exploit 
the obtained samples to predict the output of the time series 
in the future. There are 1000 data pairs generated. The first 
500 data pairs are used for system training and the 
remaining 500 data pairs are used for testing. For the NFS 
predictor design, each input variable has two fuzzy sets, 
and there are 24 = 16 fuzzy rules in the neuro-fuzzy system, 
in which there are 16 premise parameters and 80 
consequent parameters. All of the fuzzy sets use the form of 
Gaussian membership function in (2), which has two free 
parameters. The proposed HL-NFS approach is compared 
to the NFS using the PSO alone (denoted as NFS-PSO). 
The settings of the PSO-RLSE hybrid learning method for 
the proposed HL-NFS are given in Table I. And the settings 
of the PSO for the NFS-PSO approach are given in Table 
II.  

TABLE I     
SETTINGS OF PSO-RLSE FOR HL-NFS 

PSO 
Dimensions of particle 16 
Swarm size 100 
Initialization of particle position Random in [0, 1] 
Initialization of particle velocity Random in [0, 1] 
Learning rate (c1,c2) 2 
Maximum iterations 1000 

RLSE 
Number of consequent-part 
parameters

 80 

θ0 80×1 zero vector 
P0 ࡼ଴ ൌ  ࡵߙ

ߙ 108 

I 80×80 identity matrix 
TABLE II     

SETTINGS FOR PSO IN NFS 
Dimensions of particle 96 
Swarm size 100 
Initialization of particle position Random in [0, 1] 
Initialization of particle velocity Random in [0, 1] 
Learning rate (c1,c2) 2 
Maximum iterations 1000 

B. Experimental results 
After 1000 training iterations, the parameters of the 

proposed HL-NFS are shown in Table III. The performance 
by the proposed HL-NFS and the NFS-PSO are shown in 
Table IV. The prediction performance of the HL-NFS 
learning is 0.0014 in RMSE and the RMSE for testing is 
0.0013. In the NFS using the PSO alone (NFS-PSO), there 
are 96 unknown parameters which are determined by the 
PSO. And the performances for training and testing are 
0.0113 and 0.0113 in RMSE, respectively. The learning 
curves are shown in Figs. 6 and 7. The training and testing 
results by the NFS-PSO and the proposed HL-NFS are 
shown in Figs. 8 to 15. The blue line represents the target, 
and the red and dotted line represents the prediction output 
by the proposed HL-NFS and the compared NFS-PSO 
approach. Figs. 16 and 17 show the fuzzy sets after learning. 
The performance comparison to other works is given in 
Table IV. 

 

 
Fig. 6 Learning curve by the proposed HL-NFS approach. 

 

 
Fig. 7 Learning curve by the compared NFS-PSO approach. 
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TABLE III    

PARAMETERS AFETER LEARNING BY THE HL-NFS 
 
Premise-part 

)18()(1 −= txth   )12()(2 −= txth   )6()(3 −= txth   )()(4 txth =  
 
     m      σ      m      σ      m       σ      m      σ 
 
s1  1.6587  0.3486  0.5931  0.1981  0.9384  0.6394  0.9691 0.1480 
s2  0.4829  0.2694  0.9736  0.7136  0.6528  0.2360  1.3003 0.1509 
 
Consequent-part = a0+a1h1(t)+ a2h2(t)+ a3h3(t)+ a4h4(t) 
Parameters       a0        a1        a2        a3         a4 
  

Rule 1 4.1048 -10.4386 14.9053 -3.4357 -1.7852 
Rule 2 -18.8653 1.1165 -18.6503 44.9217 -13.1210 
Rule 3 -2.5798 8.0324 -12.1059 4.7486 2.8750 
Rule 4 27.0955 4.4071 2.4483 -39.8492 8.0871 
Rule 5 0.3566 0.3959 -0.2958 -0.5022 0.8181 
Rule 6 -2.8194 0.6550 1.0849 -1.3495 3.1039 
Rule 7 2.7680 -1.2446 -1.1585 1.5481 -1.6064 
Rule 8 25.9175 -0.7634 -31.8984 18.0425 -11.6680 
Rule 9 0.7910 2.3342 -0.8341 0.1243 0.0521 
Rule 10 3.2043 -2.0677 -0.7358 -3.9836 2.8566 
Rule 11 -3.1840 -0.8984 3.2290 -1.9703 3.5241 
Rule 12 -21.0412 -13.9039 17.7967 -28.8458 37.0513 
Rule 13 -1.2293 -0.2933 -0.0885 2.4198 -0.0846 
Rule 14 2.8909 -1.2871 -1.6488 -2.5176 3.2357 
Rule 15 3.6915 -0.4888 0.6932 -1.2407 -1.0618 
Rule 16 15.0918 20.4092 -19.9707 26.8166 -31.8162 

 
 

 
Fig. 8 Training results by the proposed HL-NFS approach. 
Training data are sampled from the Mackey-Glass chaos time 
series from t=124 to 623. 

 

 
Fig. 9 Prediction error by the proposed HL-NFS approach in 

training phase. 

 
Fig. 10 Training results by the NFS-PSO approach. Training data 
are sampled from the Mackey-Glass chaos time series from t=124 

to 623. 

 
Fig. 11 Prediction error by the NFS-PSO approach in training 

phase. 

 
Fig. 12 Testing results by the proposed HL-NFS approach. 

Training data are sampled from the Mackey-Glass chaos time 
series from t=624 to 1123. 
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Fig. 13 Prediction error by the proposed HL-NFS approach in 

testing phase. 

 

 
Fig. 14 Testing results by the NFS-PSO approach. Training data 

are sampled from the Mackey-Glass chaos time series from t=624 
to 1123. 

 
Fig. 15 Prediction error by the NFS-PSO approach in testing 

phase. 

 
Fig. 16 Fuzzy sets of the proposed HL-NFS after training. 

 
Fig. 17 Fuzzy sets of the NFS-PSO after training. 

 

TABLE IV    
PERFORMANCE COMPARISON 

Method RMSE 
(training) 

RMSE 
(testing) 

Rul
es 
 

Chen et al. [10] 0.0158 0.0163 13 
Cho and Wang [11] (Table 1) 0.0096 0.0114 23 
Cho and Wang [11] (Table 2) 0.0107 0.0128 21 
Cho and Wang [11] (Table 3) 0.0119 0.0131 13 
Jang [4] 0.0016 0.0015 16 
Nauck and Kruse [12] 0.1070 0.1080 26 
Paul and Kumar [13] 0.0053 0.0055 9 
Paul and Kumar [13] 0.0056 0.0057 10 
WNN + gradient [14] 0.0067 0.0071 N/A 
WNN + hybrid [14] 0.0056 0.0059 N/A 
LLWNN + gradient [14] 0.0038 0.0041 N/A 
LLWNN + hybrid [14] 0.0033 0.0036 N/A 
HyFIS [15] 0.0021 0.0021 16 
FNT model (case 1) [16] 0.0069 0.0071 N/A 
NFS-PSO 0.0113 0.0113 16 
HL-NFS (proposed approach) 0.0014 0.0013 16 

V. DISCUSSION AND CONCLUSION 
The proposed hybrid learning neuro-fuzzy system (NFS) 

approach to the problem of time series forecasting has been 
presented in the paper. The NFS is used as a predictor for 
time series forecasting. The new hybrid-learning method 
using both the well-known PSO and the RLSE has been 
applied for the adaption of the NFS in the proposed 
approach. The PSO is used to update the premise 
parameters and the RLSE is for the consequent parameters. 
The two methods are incorporated in hybrid way for the 
learning of the HL-NFS. The popularly famous 
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Mackey-Glass chaos time series is used to test the proposed 
approach. The proposed approach is then compared to 
several other approaches for performance comparison. 

To illustrate and contrast the forecasting performance by 
the proposed approach, the NFS is first trained using the 
PSO alone (denoted as NFS-PSO approach) to adapt the 
system parameters of the neuro-fuzzy predictor. And then, 
the NFS is trained using the proposed PSO-RLSE hybrid 
learning method (denoted as HL-NFS approach). The 
forecasting performances for the two learning approaches 
are shown in Table IV. In the compared NFS-PSO approach, 
the performance shows that it is kind of hard for the PSO to 
find the optimal solution. The performance is not good 
enough with only RMSE=0.0113. This happens because 
there are too many parameters for the PSO to find the 
optimal solution. In this case, it is more likely for the PSO 
to fall into a local minimum during the learning process of 
the NFS. In contrast, the proposed HL-NFS approach can 
find the optimum solution easily and rapidly. The system 
parameters are divided into two subsets, which are called 
the premise subset and the consequent subset. The PSO is 
responsible for the premise subset of parameters whose 
amount is much reduced. The RLSE is used to update the 
consequent subset of parameters. Thus, it is obvious that 
the proposed HL-NFS approach can reach to the optimal 
solution for the NFS in fast way. With the learning curves 
in Figs. 6 and 7, the learning convergence of the proposed 
HL-NFS approach is much faster than the NFS-PSO 
approach. The experimental results by the HL-NFS 
approach are shown in Figs. 8, 9, 12 and 13, in which the 
Mackey-Glass time series is almost coincident with the 
predicted curves in the phases of training and testing. The 
performances in RMSE for training and testing are 0.0014 
and 0.0013, respectively.  

The proposed HL-NFS approach has shown excellent 
performance in prediction of the Mackey-Glass chaos time 
series. As shown in Table IV, the prediction performance by 
the proposed HL-NFS for the Mackey-Glass chaos time 
series is superior to other compared approaches. 
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