
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1149

Computational Intelligence Hybrid Learning
Approach to Time Series Forecasting

Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang and Tsunghan Wu

Abstract—Time series forecasting is an important and widely

popular topic in the research of system modeling. This paper
describes how to use the hybrid PSO-RLSE neuro-fuzzy learning
approach to the problem of time series forecasting. The PSO
algorithm is used to update the premise parameters of the
proposed prediction system, and the RLSE is used to update the
consequence parameters. Thanks to the hybrid learning (HL)
approach for the neuro-fuzzy system, the prediction performance
is excellent and the speed of learning convergence is much faster
than other compared approaches. In the experiments, we use the
well-known Mackey-Glass chaos time series. According to the
experimental results, the prediction performance and accuracy in
time series forecasting by the proposed approach is much better
than other compared approaches, as shown in Table IV. Excellent
prediction performance by the proposed approach has been
observed.

Keywords—forecasting, hybrid learning (HL), Neuro-Fuzzy
System (NFS), particle swarm optimization (PSO), recursive
least-squares estimator (RLSE), time series

I. INTRODUCTION
YSTEM modeling for function approximation,
optimization and forecasting has been widely

investigated for years. Time series forecasting is one of the
momentous applications in system modeling. In time series,
time is usually a very important factor to make decision or
prediction. Data in past history recorded in time sequence is
called time series. Managers usually use historical data to
forecast various types of variables such as changes in stock,
sales of products, population growth, and many others. The
accurate and valuable prediction of these variables can assist
managers to make a decision. Time series is also a group of
statistics, according to the order which events are occurred in
time sequence. For instance, the daily average temperature or
monthly rainfall at a place, daily stock market closing price,
company’s turnover, unemployment rate, economic growth
rate and total amount of national income and export. Modern
business and economic activities, in essence, are dynamic,
and they changes frequently. How to make a reliable forecast
is one of the most important issues for modern enterprises
and organizations. The usage of time series to forecast the
future tendency has to make use of detailed data which were
generated for some time past in the cause of understanding
the trend of changes.

Many previous researches had used many kinds of
methods in time series forecasting [8]-[16]. Neuro-fuzzy
system (NFS) is one of the most frequently used methods.
Many kinds of optimization algorithms had been used for
NFSs. The design of NFS to forecasting had been also
proposed in previous researches. However, the forecasting
performance and accuracy were not good enough.

Authors are with Department of Information Management .National
Central University.Taiwan, ROC. e-mail: jamesli@mgt.ncu.edu.tw

We propose neuro- fuzzy system with hybrid learning
(HL) approach in this research to make prediction for time
series as accurate as possible. We use few past data as
inputs to the neuro-fuzzy predictor to forecast one-step
ahead result.

NFSs are useful to represent and process linguistic
information and to deal with uncertainty and imprecision
[6]. In our study, we use Takagi-Sugeno (T-S) neuro-fuzzy
model [6]-[7] for time series forecasting. The reasoning
process in T-S neuro-fuzzy model is very similar to that in a
traditional fuzzy inference system. An appropriate
neuro-fuzzy model for prediction is very important to
forecast time series accurately. How to design and adjust
fuzzy sets and fuzzy rules in a NFS is critically significant
on forecasting results. Furthermore, because there are
usually many unknown parameters in a NFS, the selection
of learning algorithm to adapt the neuro-fuzzy predictor
plays an extremely pivotal position. In order to adapt the
free parameters of the proposed neuro-fuzzy predictor, we
propose a hybrid learning approach using both the particle
swarm optimization (PSO) [4] and the recursive
least-squares estimator (RLSE) [6] to solve the problem.
The PSO is used to update premise parameters of the NFS
predictor, and the RLSE is used to update the consequent
parameters. In this paper, we specify the proposed hybrid
learning approach for NFS to the problem of time series
forecasting. The main goal of the research is to find the
optimal solution for the neuro-fuzzy predictor so that the
prediction performance by the proposed approach can be as
good as possible. The PSO is a useful method for solving
global optimization problems, and the RLSE can solve
linear model question in very efficient way. The hybrid
learning approach for the NFS predictor can make
forecasting result with great accuracy.

In Section II, the methodology of NFS is specified. In
Section III, we describe the hybrid learning approach with
PSO and RLSE to the proposed neuro-fuzzy predictor. In
Section IV, the Mackey-Glass chaos time series is used as
an illustrated example to demonstrate the proposed
neuro-fuzzy prediction approach. Finally, a discussion for
the experimental results is given and the paper is
concluded.

II. NEURO-FUZZY SYSTEM AS A PREDICTOR
To design a multiple-input-single-output neuro-fuzzy

system as a predictor, we use T-S fuzzy model. T-S fuzzy
model was first proposed by Takagi and Sugeno to develop
a systematic approach to generate fuzzy rules from a given
input-output data set [5]-[7].

In the first-order T-S model, the consequent of a fuzzy
rule is a linear combination of crisp inputs. Let us consider
a M-input-one-output fuzzy system with K fuzzy rules in
the rule base. The form of a T-S fuzzy rule can be given as
follows.

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1150

ܻሺݐሻ

Layer 0 Layer 1 Layer 3 Layer 2 Layer 4 Layer 5

 ڮ

 ڭ ڭ

 ڭ

 ڭ

 ڭ

 ڭ ڭ ڭ

)(1 th

)(2 th

)(thM

Fig. 1. Structure of neuro-fuzzy system.

Rule i: IF 1x is))((11 ths i and 2x is))((22 ths i
L and Mx is))((ths M

i
M

 Then)()()(110 thathaaty M
i
M

iii +++= L

 Ki ,,2,1 L= (1)

where {h1(t), h2(t), … , hM(t)} are the inputs to the
neuro-fuzzy system at time t ; yi (t) is the i-th rule output,

},,{ 21
i
M

ii sss L are the fuzzy sets of the i-th rule, and

},,{ 21
i
M

ii aaa L are the consequent parameters of the i-th
rule. The fuzzy model can be cast into neural structure to be
a neuro-fuzzy system (NFS). The proposed approach is
based on the NFS methodology. In the study, input data are
from historical data in time series.

The NFS structure is shown in Fig. 1. There are six
layers in the proposed neuro-fuzzy system. The explanation
for the six layers is specified as follows.

Layer 0: This layer is called the input layer. Each node in
this layer corresponds to an input crisp variable H(t) =
[h1(t), h2(t),…, hM(t)].

Layer 1: The layer is called the fuzzy-set layer. Each
node of the layer represents a linguistic value characterized
by a fuzzy set. Each node output indicates a membership
degree. To design fuzzy sets, we use Gaussian membership
functions. The general description of fuzzy sets using
Gaussian membership function is given as follows.

))/)((5.0exp()(gaussmf 2σmhh −−= (2)
where m and σ are the mean and the spread of the
Gaussian-type fuzzy set. The parameters of mean and
spread for all the fuzzy sets in the premise-parts of the
proposed NFS are called the premise parameters.

Layer 2: The layer is for the firing strengths of the K
if-then rules. The nodes perform the fuzzy-and operations
for the premise parts of the fuzzy rules. Each node output
indicates a firing strength of a corresponding fuzzy rule.
The firing strength for the i-th rule is denoted as βi, and it is
defined as.

)))((,)),(()),(((product)(2211 thsthsthst M
i
M

iii L=β (3)
Layer 3: The process of normalization for the firing

strengths of the fuzzy rules is performed in this layer. The
normalized firing strength for the i-th fuzzy rule is given as
follows.

∑
=

= K

i

i

i
i

t

ttr

1

)(

)()(
β

β (4)

Layer 4: The layer is called the consequent layer. The

nodes in the layer perform the normalized consequents of
all the fuzzy rules. Then the output of the i-th fuzzy rule is
given as follows.

))()()(()()(110 thathaatrtytr M
i
M

iiiii L++= (5)

where },,{ 21
i
M

ii aaa L are the consequent parameters of
the i-th fuzzy rule. Layer 5: The layer is called the output layer. There is
only one node in the layer for single output. The node in
this layer combines all the outputs from Layer 4 to produce
the system output, given as follows.

∑

∑
∑

=

=

=

== K

i

i

K

i

ii
K

i

ii

t

tyt
tytrtY

1

1

1)(

)()(
)()()(

β

β
 (6)

 Once the consequent parameters are determined, the
system output of the NFS can be expressed as follows.

Nt

thathaatrtY
K

i
M

i
M

iii

,,2,1

))()(()()(
1

110

L

L

=

+++×= ∑
=

 (7)

 Assume that there are N samples observed from an
unknown system of interest. The observed samples are
collected to be used as training data for the proposed
neuro-fuzzy predictor. The training data (TD) is denoted as
follows.

},,2,1),({TD Nttd L== (8)

To overview the approach structure for the prediction of
the output of an unknown system, the approach diagram for
prediction is given in Fig. 2.

In Fig.2, the input vector H(t) is obtained from the TD in
(8) which are observed from the unknown system. The
purpose of the neuro-fuzzy predictor is to generate an

Fig. 2. Neuro-fuzzy prediction approach diagram.

NFS predictor

Unknown
system

＋
H(t) Y(t) d(t)

e(t)

－ ＋

Ν

Ν

Ν

Π

Π

Π

1
1s

1
2s

1
Ms

i
Ms

Σ

is1

is2

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1151

output, Y(t), and the error between the unknown system
output and the NFS output is minimized. The prediction
error is defined as follows.

NttYtdte ,,2,1),()()(L=−= (9)

 With the N pairs of input-output training patterns, the
concept of root mean square error (RMSE) is used as error
norm, given as follows.

N

te
N

t
∑

== 1

2)(
RMSE (10)

The premise parameters in Layer 1 and the consequent
parameters in Layer 4 can be viewed as the two subsets of
the free parameters for the proposed NFS. The parameters
are sometimes called the system parameters for the NFS.
They can be adapted using machine learning algorithms
such as PSO and RLSE. In the following section, we
specify the PSO-RLSE hybrid learning method for the
neuro-fuzzy predictor.

III. HYBRID PSO-RLSE LEARNING APPROACH

A. Particle Swarm Optimization
PSO was proposed by Eberhart and Kennedy in the mid

1990s [4]. PSO is an excellent approach having collective
wisdom concept to the evolution of the optimization search
in research areas. PSO has been applied successfully to a
wide variety of search and optimization problems [1]-[3].
According to the PSO algorithm, a particle is viewed as a
bird searching for food (a better solution), and all the
particles comprise a population, which is called a "swarm"
of the birds. Each particle moves toward its own best
position and the swarm-best position. All particles
competes each other to be the swarm best. In this way, PSO
combines the search behaviors of both individual search
and swarm search. There exists a subtle relationship for
competition and cooperation in the search process. All
particles shall remember their own best positions during the
searching process. Besides, all particles have their own
velocities in order to determine their search movements.

Particles search iteratively for the optimum solution
using the concept of fitness function. A fitness function
sometimes is called a cost function. Particles change their
search direction by means of two search memories, which
are given as follows.

Pbest：the best location of individual particle, and

Gbest：the best location of the swarm.
A search process by PSO is shown conceptually in Fig. 3.

Fig. 3. Search process by PSO.

In Fig. 3, the target T is the location of the optimum
solution. In the swarm, there are two particles, which are
labeled with A and B, respectively. Both particles are
updated for their locations at time t. When t = 2, it is
obvious that particle B is the closest particle to the target.
This means that particle B is the Gbest of the swarm.

Assume the problem space is with Q dimensions. The
particles’ velocities are updated as follows.

))()((
))()(()()1(

22

11

ttc
ttctt

ii

iiii

LGbest
LPbestVV

−××+
−××+=+

ξ
ξ

 (11)

)](,),(),([)(,2,1, tvtvtvt Qiiii L=V (12)

where Vi (t) is the velocity of i-th particle at time t, {c1,c2}
are the parameters for PSO, and {ξ1 , ξ2 } are random
numbers in [0, 1].

The particles locations are updated as follows.

)()()1(ttt iii VLL +=+ (13)

)](,),(),([)(,2,1, tltltlt Qiiii L=L (14)

where Li (t) is the location of the i-th particle at time t.
 The procedure of PSO is given in Fig. 4.

In Fig. 4, f(Li) indicates the cost in RMSE for the current
location of the i-th particle, f(Pbesti) indicates the cost for
Pbesti , and f(Gbest) represents the cost for Gbest.

Step 1. Decided the swarm size, dimensions of particles,
and the maximal number of iterations.

Step 2. Initialize the positions and the velocities of the
particles for the swarm randomly.

Step 3. Calculate fitness for each particle according to
fitness function.

Step 4. Update position and velocity for each particle in
the swarm according to (11) and (13).

Step 5. If f(Li) < f(Pbesti), then update the Pbesti of the
swarm. If f(Pbesti) < f(Gbest), update the Gbest of
the swarm.

Step 6. If stopping criteria satisfied, Gbest is the optimum
solution. Otherwise, go back to Step 3 to continue
the PSO procedure.

Fig. 4. Implementation procedure of PSO.

A
A

A

B

B

T

At t = 2, Pbest
of particle A.

At t = 2, Pbest of particle B,
Gbest of the swarm.

t = 1
t = 2

t = 1

t = 2

Target

X

Y

B

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1152

B. Recursive Least-Squares Estimator
In general, the least square estimation (LSE) problem [6]

can be specified below. The output of a linear model y is
given as follows.

)()()(2211 ufufufy nnθθθ +++= L (15)

where u is the model’s input, fi(.) is known function of u,
and θi , i=1,2,…, n represents unknown parameters to be

estimated. The problem of LSE can be written in a concise
form, as follows.

yAθ = (16)

where A is a input matrix, θ is a parameter vector to be
estimate and y is an output vector.

The recursive least-squares estimator (RLSE) for the
problem of (16), where the k-th row of [A, y], denoted by
ሾ࢈௞், ௞ሿ, is sequentially obtained, can be calculated as࢟
follows.

11

11
1 1 ++

++
+

+
−=

kk
T
k

K
T
kkk

kk bPb
PbbPPP (17a)

)(11111 k
T
kkkkkk θbybPθθ +++++ −+= (17b)

where k ranges from 0 to N -1 and the final RLSE ࣂ෡ is
equal to ࣂே, the estimator using all N data pairs. There are
N training data in (8) to be involved for the adaption of the
neuro-fuzzy predictor.

To start the algorithm in (17), we need to select the initial
values of ࣂ଴ and ࡼ଴ which is given as follows.

IP α=0 (18)

where ߙ is a large value and I is the identity matrix. ࣂ଴
can be initially set to zeros.

C. Hybrid learning algorithm
To train the proposed hybrid-learning-based neuro-fuzzy

system (HL-NFS) for time series forecasting, the PSO in
(11) and (13) is used together with the RLSE in (17) for
fast convergence of learning. The PSO is used to update the
premise parameters and the RLSE is used to update the
consequence parameters. Fig. 5 shows the implementation
flowchart. The training procedure for HL-NFS is shown as
follows.
Step 1. Collect sample data. The first half of data is used

for training, and the other half is for testing.
Step 2. Update the premise parameters by the PSO in (11)

and (13).
Step 3. Update the consequent parameters by the RLSE in

(17). According to (17), we have to design the
vector bk+1 as follows.

)]1()1()1([21
1 +++=+ kkk K

k bbbbbbb L (19a)

])1()1([)1(1
i

M
iii khkhk γγγ ++=+ Lbb (19b)

Fig. 5 Flowchart for the training process of the proposed
approach.

1,,1,0 −= Nk L

Ki L,2,1=

The parameter vector ࣂ is given as follows.

TK] [21 ωωωθ L= (20a)

TK
M

iii aaa] [10 L=ω (20b)

Ki L,2,1=

Step 4. After all parameters of the NFS predictor are
determined, calculate system output in (7).

Step 5. Return to the PSO procedure in Fig. 4. Calculate
cost in (10) for each particle.

Step 6. Compare the costs of all particles. Update Pbest
and Gbest in the swarm.

Step 7. If stopping criteria satisfied, Gbest is the optimum
premise parameters for the NFS. Otherwise, go
back to Step 2 to continue the procedure.

D. Testing procedure of HL-NFS
In order to verify and test the accuracy and prediction

performance of the HL-NFS after learning, the remaining
half of sample data is used for testing. The testing
procedure is given as follows.
Step 1. After the training procedure, the premise

parameters have been determined by PSO and the
consequent parameters have been updated by

Training data

 Initialize positions
and velocities of all

the particles

Calculate
cost value according

to RMSE

Update Gbest and
Pbest in the swarm

Update positions
and velocities
of the particles

Gbest is the best
premise-part
parameters

Finished?

 Layer 0
Input layer

Layer 1
Calculate

membership degrees

Layer 2
Calculate

firing strengths

Layer 4
Calculate rule

outputs

Design input
matrix A

Decide
 ଴ࣂ ଴ andࡼ

 ௞ାଵࡼ
Update

 ௞ାଵࣂ
Update

Get consequent-part
parameters by the

last ࣂ௞ାଵ

NFS RLSE PSO

Layer 3
Normalization

Recursive

Layer 5
Output layer

Gbest is
premise-part
parameters

Yes

No

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1153

RLSE.
Step 2. Testing data are used as input to the trained

HL-NFS predictor.
Step 3. Generate prediction output in (7).
Step 4. The output of the HL-NFS predictor is compared

to the corresponding target to produce prediction
error in (9).

IV. EXPERIMENTS FOR THE APPROACH

A. Settings of system and algorithm implementation
In the experiments, the well-known Mackey-Glass chaos

time series is used and it is defined as follows.

)(1.0
)(1

)(2.0)(10 tx
tx

txtx −
−+

−
=

τ
τ

&
 (21)

where τ= 17. The time step is given as 0.1 s. The initial
condition is given as x(0) = 1.2 and x(t) = 0 for t < 0. The
mapping relationship of the HL-NFS to predict the chaos
time series in (21) is given as follows:

)))1((,),(),(()(Δ−−Δ−=+ DtxtxtxfPtx L (22)

where t is the time index, തܲ ൌ ∆ൌ 6, and ܦഥ ൌ 4. From the
Mackey-Glass time series x(t),the data pairs (H(t), d(t))
extracted from the series are given as follows.

)](6),-(12),-(18),-([)(txtxtxtxtH = (23)

)6()(+= txtd (24)

for t = 118 to 1117. The objective of the model is to exploit
the obtained samples to predict the output of the time series
in the future. There are 1000 data pairs generated. The first
500 data pairs are used for system training and the
remaining 500 data pairs are used for testing. For the NFS
predictor design, each input variable has two fuzzy sets,
and there are 24 = 16 fuzzy rules in the neuro-fuzzy system,
in which there are 16 premise parameters and 80
consequent parameters. All of the fuzzy sets use the form of
Gaussian membership function in (2), which has two free
parameters. The proposed HL-NFS approach is compared
to the NFS using the PSO alone (denoted as NFS-PSO).
The settings of the PSO-RLSE hybrid learning method for
the proposed HL-NFS are given in Table I. And the settings
of the PSO for the NFS-PSO approach are given in Table
II.

TABLE I
SETTINGS OF PSO-RLSE FOR HL-NFS

PSO
Dimensions of particle 16
Swarm size 100
Initialization of particle position Random in [0, 1]
Initialization of particle velocity Random in [0, 1]
Learning rate (c1,c2) 2
Maximum iterations 1000

RLSE
Number of consequent-part
parameters

 80

θ0 80×1 zero vector
P0 ࡼ଴ ൌ ࡵߙ

ߙ 108

I 80×80 identity matrix
TABLE II

SETTINGS FOR PSO IN NFS
Dimensions of particle 96
Swarm size 100
Initialization of particle position Random in [0, 1]
Initialization of particle velocity Random in [0, 1]
Learning rate (c1,c2) 2
Maximum iterations 1000

B. Experimental results
After 1000 training iterations, the parameters of the

proposed HL-NFS are shown in Table III. The performance
by the proposed HL-NFS and the NFS-PSO are shown in
Table IV. The prediction performance of the HL-NFS
learning is 0.0014 in RMSE and the RMSE for testing is
0.0013. In the NFS using the PSO alone (NFS-PSO), there
are 96 unknown parameters which are determined by the
PSO. And the performances for training and testing are
0.0113 and 0.0113 in RMSE, respectively. The learning
curves are shown in Figs. 6 and 7. The training and testing
results by the NFS-PSO and the proposed HL-NFS are
shown in Figs. 8 to 15. The blue line represents the target,
and the red and dotted line represents the prediction output
by the proposed HL-NFS and the compared NFS-PSO
approach. Figs. 16 and 17 show the fuzzy sets after learning.
The performance comparison to other works is given in
Table IV.

Fig. 6 Learning curve by the proposed HL-NFS approach.

Fig. 7 Learning curve by the compared NFS-PSO approach.

100 200 300 400 500 600 700 800 900 1000

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2
x 10-3 Learning Curve

C
os

t V
al

ue
 (R

M
S

E
)

Iteration

100 200 300 400 500 600 700 800 900 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Learning Curve

C
os

t V
al

ue
 (R

M
S

E
)

Iteration

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1154

TABLE III

PARAMETERS AFETER LEARNING BY THE HL-NFS

Premise-part

)18()(1 −= txth)12()(2 −= txth)6()(3 −= txth)()(4 txth =

 m σ m σ m σ m σ

s1 1.6587 0.3486 0.5931 0.1981 0.9384 0.6394 0.9691 0.1480
s2 0.4829 0.2694 0.9736 0.7136 0.6528 0.2360 1.3003 0.1509

Consequent-part = a0+a1h1(t)+ a2h2(t)+ a3h3(t)+ a4h4(t)
Parameters a0 a1 a2 a3 a4

Rule 1 4.1048 -10.4386 14.9053 -3.4357 -1.7852
Rule 2 -18.8653 1.1165 -18.6503 44.9217 -13.1210
Rule 3 -2.5798 8.0324 -12.1059 4.7486 2.8750
Rule 4 27.0955 4.4071 2.4483 -39.8492 8.0871
Rule 5 0.3566 0.3959 -0.2958 -0.5022 0.8181
Rule 6 -2.8194 0.6550 1.0849 -1.3495 3.1039
Rule 7 2.7680 -1.2446 -1.1585 1.5481 -1.6064
Rule 8 25.9175 -0.7634 -31.8984 18.0425 -11.6680
Rule 9 0.7910 2.3342 -0.8341 0.1243 0.0521
Rule 10 3.2043 -2.0677 -0.7358 -3.9836 2.8566
Rule 11 -3.1840 -0.8984 3.2290 -1.9703 3.5241
Rule 12 -21.0412 -13.9039 17.7967 -28.8458 37.0513
Rule 13 -1.2293 -0.2933 -0.0885 2.4198 -0.0846
Rule 14 2.8909 -1.2871 -1.6488 -2.5176 3.2357
Rule 15 3.6915 -0.4888 0.6932 -1.2407 -1.0618
Rule 16 15.0918 20.4092 -19.9707 26.8166 -31.8162

Fig. 8 Training results by the proposed HL-NFS approach.
Training data are sampled from the Mackey-Glass chaos time
series from t=124 to 623.

Fig. 9 Prediction error by the proposed HL-NFS approach in

training phase.

Fig. 10 Training results by the NFS-PSO approach. Training data
are sampled from the Mackey-Glass chaos time series from t=124

to 623.

Fig. 11 Prediction error by the NFS-PSO approach in training

phase.

Fig. 12 Testing results by the proposed HL-NFS approach.

Training data are sampled from the Mackey-Glass chaos time
series from t=624 to 1123.

150 200 250 300 350 400 450 500 550 600
0.2

0.4

0.6

0.8

1

1.2

1.4

time(t)

O
ut

pu
t

Mackey-Glass
HL-NFS

650 700 750 800 850 900 950 1000 1050 1100
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

time(t)

E
rro

r

150 200 250 300 350 400 450 500 550 600
0.2

0.4

0.6

0.8

1

1.2

1.4

time(t)

O
ut

pu
t

Mackey-Glass
NFS-PSO

150 200 250 300 350 400 450 500 550 600
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

time(t)

E
rro

r

650 700 750 800 850 900 950 1000 1050 1100
0.2

0.4

0.6

0.8

1

1.2

1.4

time(t)

O
ut

pu
t

Mackey-Glass
HL-NFS

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1155

Fig. 13 Prediction error by the proposed HL-NFS approach in

testing phase.

Fig. 14 Testing results by the NFS-PSO approach. Training data

are sampled from the Mackey-Glass chaos time series from t=624
to 1123.

Fig. 15 Prediction error by the NFS-PSO approach in testing

phase.

Fig. 16 Fuzzy sets of the proposed HL-NFS after training.

Fig. 17 Fuzzy sets of the NFS-PSO after training.

TABLE IV
PERFORMANCE COMPARISON

Method RMSE
(training)

RMSE
(testing)

Rul
es

Chen et al. [10] 0.0158 0.0163 13
Cho and Wang [11] (Table 1) 0.0096 0.0114 23
Cho and Wang [11] (Table 2) 0.0107 0.0128 21
Cho and Wang [11] (Table 3) 0.0119 0.0131 13
Jang [4] 0.0016 0.0015 16
Nauck and Kruse [12] 0.1070 0.1080 26
Paul and Kumar [13] 0.0053 0.0055 9
Paul and Kumar [13] 0.0056 0.0057 10
WNN + gradient [14] 0.0067 0.0071 N/A
WNN + hybrid [14] 0.0056 0.0059 N/A
LLWNN + gradient [14] 0.0038 0.0041 N/A
LLWNN + hybrid [14] 0.0033 0.0036 N/A
HyFIS [15] 0.0021 0.0021 16
FNT model (case 1) [16] 0.0069 0.0071 N/A
NFS-PSO 0.0113 0.0113 16
HL-NFS (proposed approach) 0.0014 0.0013 16

V. DISCUSSION AND CONCLUSION
The proposed hybrid learning neuro-fuzzy system (NFS)

approach to the problem of time series forecasting has been
presented in the paper. The NFS is used as a predictor for
time series forecasting. The new hybrid-learning method
using both the well-known PSO and the RLSE has been
applied for the adaption of the NFS in the proposed
approach. The PSO is used to update the premise
parameters and the RLSE is for the consequent parameters.
The two methods are incorporated in hybrid way for the
learning of the HL-NFS. The popularly famous

650 700 750 800 850 900 950 1000 1050 1100
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

time(t)

E
rro

r

650 700 750 800 850 900 950 1000 1050 1100
0.2

0.4

0.6

0.8

1

1.2

1.4

time(t)

O
ut

pu
t

Mackey-Glass
NFS-PSO

650 700 750 800 850 900 950 1000 1050 1100
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

time(t)

E
rro

r

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

first input, x(t-18)

M
em

be
rs

hi
p

D
eg

re
e

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

second input, x(t-12)

M
em

be
rs

hi
p

D
eg

re
e

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

third input, x(t-6)

M
em

be
rs

hi
p

D
eg

re
e

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

fourth input, x(t)

M
em

be
rs

hi
p

D
eg

re
e

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

first input, x(t-18)

M
em

be
rs

hi
p

D
eg

re
e

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

second input, x(t-12)

M
em

be
rs

hi
p

D
eg

re
e

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

third input, x(t-6)

M
em

be
rs

hi
p

D
eg

re
e

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

fourth input, x(t)

M
em

be
rs

hi
p

D
eg

re
e

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1156

Mackey-Glass chaos time series is used to test the proposed
approach. The proposed approach is then compared to
several other approaches for performance comparison.

To illustrate and contrast the forecasting performance by
the proposed approach, the NFS is first trained using the
PSO alone (denoted as NFS-PSO approach) to adapt the
system parameters of the neuro-fuzzy predictor. And then,
the NFS is trained using the proposed PSO-RLSE hybrid
learning method (denoted as HL-NFS approach). The
forecasting performances for the two learning approaches
are shown in Table IV. In the compared NFS-PSO approach,
the performance shows that it is kind of hard for the PSO to
find the optimal solution. The performance is not good
enough with only RMSE=0.0113. This happens because
there are too many parameters for the PSO to find the
optimal solution. In this case, it is more likely for the PSO
to fall into a local minimum during the learning process of
the NFS. In contrast, the proposed HL-NFS approach can
find the optimum solution easily and rapidly. The system
parameters are divided into two subsets, which are called
the premise subset and the consequent subset. The PSO is
responsible for the premise subset of parameters whose
amount is much reduced. The RLSE is used to update the
consequent subset of parameters. Thus, it is obvious that
the proposed HL-NFS approach can reach to the optimal
solution for the NFS in fast way. With the learning curves
in Figs. 6 and 7, the learning convergence of the proposed
HL-NFS approach is much faster than the NFS-PSO
approach. The experimental results by the HL-NFS
approach are shown in Figs. 8, 9, 12 and 13, in which the
Mackey-Glass time series is almost coincident with the
predicted curves in the phases of training and testing. The
performances in RMSE for training and testing are 0.0014
and 0.0013, respectively.

The proposed HL-NFS approach has shown excellent
performance in prediction of the Mackey-Glass chaos time
series. As shown in Table IV, the prediction performance by
the proposed HL-NFS for the Mackey-Glass chaos time
series is superior to other compared approaches.

ACKNOWLEDGMENT
This research work is supported by the National Science

Council, Taiwan, ROC, under the Grant contract no.
NSC98-2221-E-008-086.

REFERENCES
[1] K. E. Parsopoulos and M. N. Vrahatis, "Particle swarm

optimization method for constrained optimization problems,"
Intelligent Technologies–Theory and Application: New Trends in
Intelligent Technologies, pp. 214-220, 2002.

[2] K. E. Parsopoulos and M. N. Vrahatis, "Recent approaches to
global optimization problems through particle swarm
optimization," Natural Computing, vol. 1, pp. 235-306, 2002.

[3] Y. Shi, R. C. Eberhart, E. Center, and I. N. Carmel, "Empirical
study of particle swarm optimization," Evolutionary Computation,
1999. CEC 99. Proceedings of the 1999 Congress on, vol. 3
pp.1945-1950,1999.

[4] J. Kennedy and R. Eberhart, "Particle swarm optimization," IEEE
International Conference on Neuro Network, 1995, vol. 4, pp.
1942-1948, 1995.

[5] J. S. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference
system," IEEE transactions on systems, man, and cybernetics, vol.
23, pp.665-685, 1993.

[6] J. S. R. Jang, C. T. Sun, E. Mizutani, "Neuro-fuzzy and soft
computing: a computational approach to learning and machine
intelligence," Prentice Hall, 1997.

[7] M. Sugeno and G. T. Kang, "Structure identification of fuzzy
model," Fuzzy sets and systems, vol. 28, pp. 15-33, 1988.

[8] I. Sugiarto and S. Natarajan, "Parameter estimation using least
square method for MIMO Takagi-Sugeno neuro-fuzzy in time
series forecasting," Jurnal Teknik Elektro, pp. 82-87, vol. 7, 2008.

[9] T. A. Jilani, S. M. A. Burney, and C. Ardil, "Fuzzy metric
approach for fuzzy time series forecasting based on frequency
density based partitioning," International Journal of
Computational Intelligence, vol.4, pp. 112-117, 2007.

[10] S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least
squares learning algorithm for radial basis function networks,"
IEEE Transactions on neural networks, vol. 2, pp. 302-309, 1991.

[11] K. B. Cho and B. H. Wang, "Radial basis function based adaptive
fuzzy systems and their applications to system identification and
prediction," Fuzzy Sets and Systems, vol. 83, pp. 325-339, 1996.

[12] D. Nauck and R. Kruse, "Neuro-fuzzy systems for function
approximation," Fuzzy Sets and Systems, vol. 101, pp. 261-272,
1999.

[13] S. Paul and S. Kumar, "Subsethood-product fuzzy neural inference
system (SuPFuNIS)," IEEE Transactions on Neural Networks, vol.
13, pp. 578-599, 2002.

[14] Y. Chen, B. Yang, and J. Dong, "Time-series prediction using a
local linear wavelet neural network," Neurocomputing, vol. 69, pp.
449-465, 2006.

[15] J. Kim and N. Kasabov, "HyFIS: adaptive neuro-fuzzy inference
systems and their application to nonlinear dynamical systems,"
Neural Networks, vol. 12, pp. 1301-1319, 1999.

[16] Y. Chen, B. Yang, J. Dong, and A. Abraham, "Time-series
forecasting using flexible neural tree model," Information sciences,
vol. 174, pp. 219-235, 2005.

