
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2967

Abstract—Static analysis of source code is used for auditing web

applications to detect the vulnerabilities. In this paper, we propose a
new algorithm to analyze the PHP source code for detecting LFI and
RFI potential vulnerabilities. In our approach, we first define some
patterns for finding some functions which have potential to be abused
because of unhandled user inputs. More precisely, we use regular
expression as a fast and simple method to define some patterns for
detection of vulnerabilities. As inclusion functions could be also used
in a safe way, there could occur many false positives (FP). The first
cause of these FP’s could be that the function does not use a user-
supplied variable as an argument. So, we extract a list of user-
supplied variables to be used for detecting vulnerable lines of code.
On the other side, as vulnerability could spread among the variables
like by multi-level assignment, we also try to extract the hidden user-
supplied variables. We use the resulted list to decrease the false
positives of our method. Finally, as there exist some ways to prevent
the vulnerability of inclusion functions, we define also some patterns
to detect them and decrease our false positives.

Keywords—User-supplied Variables, hidden user-supplied
variables, PHP vulnerabilities.

I. INTRODUCTION
HE World-Wide Web started in the mid 90’s as a system
to support hypertextual access to static information. Web

applications are designed to present to any user with a web
browser a system-independent interface to some dynamically
generated content. The number and the importance of Web
applications have increased rapidly in last decade. At the same
time of growing web applications, the quantity and impact of
security vulnerabilities in such applications have grown as
well.

The application may be designed with the assumption that
users will only enter valid input as the programmer intended,
in terms of both input values and ways of entering input.
However, if the user's input is not handled properly, serious
security problems can occur. This has been made possible by
the introduction of a number of mechanisms that can be used
to trigger the execution of code on both the client and the
server side. These mechanisms are the basis to implement
web-based applications. And that’s why Code reviews and

S. A. M. Heydari is with the Islamic Azad University, Taft Branch, Taft,

Yazd, Iran (corresponding author to provide phone: 00989133528600; e-mail:
Mirheidari@taftiau.ac.ir).

M. Sayadiharikandeh is with Department of Computer Engineering, Sharif
University of Technology, Tehran, Iran (e-mail: m_sayyadi@ce.sharif.edu).

security audits are part of the quality assurance phase. So,
security coding must be always considered as an important
skill in programming.

The existing approaches for decreasing threats to Web
applications can be divided into client-side and server-side
solutions. Server-side solutions have the advantage of being
able to discover a larger range of vulnerabilities and the
benefit of a security flaw fixed by the service provider is
instantly propagated by service provider to its all clients. But
on the other side, it usually makes some limitation for
applications and implicitly developers which is supposed as
one of the major disadvantages of this approach.

As mentioned before, another approach is client-side.
Client-side techniques can be further classified into dynamic
and static approaches. Dynamic tools (e.g., [1, 2, 3], and
Perl's taint mode try to detect attacks while executing the
audited program, whereas static analyzers ([4, 5, 6, 7]) scan
the Web application's source codes for vulnerabilities. From
the static point of view, applications could be statically
analyzed where it can protect applications before actually
running them, so the problem could be eliminated before
deploying the code into a sensitive environment. There were
only a few great works done in static code analysis because it
is time-consuming and complex, in some cases.

In this paper, we present a novel method for detecting LFI
and RFI vulnerabilities in PHP source codes. We chose PHP
as it is used by most of web developers.

Although, due to the complexity of PHP code, allowing
widely used dynamic code generation and multiple levels of
indirection in variable and function access, static analysis is
unable to achieve comprehensive coverage of the application
functionality, the results in many of the same projects show
that many existing problems could be eliminated by this
approach.

Among the most common of vulnerabilities are LFI and
RFI. So we focused on LFI and RFI in this paper. We will
discuss these vulnerabilities in depth in next sections.

This paper is organized as follows. In section III, we review
the related work in the area of static analysis particularly in
RFI and LFI detection on source code in web applications.
Section IV briefly describes the regular expression notations
in computer science and specially their use in programming
languages. In section V we propose our method to improve
the security of web applications in client side. Next, we
present the results of the experimental evaluation of our
algorithm. Finally, in last section there are some notes about

A New Source Code Auditing Algorithm for
Detecting LFI and RFI in PHP Programs

Seyed Ali Mir Heydari, and Mohsen Sayadiharikandeh

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2968

the future work.

II. RELATED WORKS
There already exist several techniques for source code

auditing like FIS [8] which scan the Web application's source
code for vulnerabilities. This tool first scan the source code to
find all the variables and then test each of them dynamically to
find out whether they are source of vulnerability or not.
However, the complexity of this technique is high and there
are a lot of cases, that the mentioned tool report false
vulnerability like below. The following code is a part of
microSSys application source code which has a registered
vulnerability CVE- 2008-2396.

Vulnerable code (index.php@22-25,54-55):
[22] if(isset($_REQUEST["1"])){
[23] $P=$_REQUEST["1"];}else{
[24] $P="main";
[25] }
[..]
[54] if(isset($PAGES[$P])){}else{include("TH.txt");}
[55] @include($PAGES[$P]);

FIS disadvantage is that it does not have ability to find out

the exploits like below:

http://host/index.php?1=lol&PAGES[lol]={Remote shell

script }

Analogous to the above Noxes [9] is an application-level

firewall offering protection in case of suspected cross-site
scripting (XSS) attacks that attempt to steal a user's
credentials. The mentioned tools pay no attention to LFI and
RFI as one of the most dangerous vulnerabilities.

Static approach has been also explored in WebSSARI [10]
and by Minamide [11]. WebSSARI has been used to find a
number of security vulnerabilities in PHP scripts, but has a
large number of false positives and negatives due to its
intraprocedural type-based analysis. Minamide’s system
checks syntactic correctness of HTML output from PHP
scripts and does not seem to be effective for finding security
vulnerabilities [12].

[13] proposed pixy as the first open source tool for
statically detecting taint-style vulnerabilities (in particular,
XSS and SQL injection vulnerabilities) in PHP 4 code. Pixy
features a high-precision data flow analysis engine that is
flow-sensitive, interprocedural, and context-sensitive and
performs alias analysis, literal analysis, and taint analysis.
Pixy focused on PHP as a popular language but it could be
applied only for detecting XSS and SQL injection
vulnerabilities.

[14, 15] use the static source code analysis concept with
using regular expressions in an interesting way. The major
imperfection of the two mentioned approaches is that they rely
on only some methods which could have potential
vulnerability and they do not pay attention to preventions

methods and hidden user-supplied variables. So, in cases
which developers were aware of the vulnerabilities and have
handled them skillfully, the reports of the mentioned tools
have large false positives. Even though the last two mentioned
tools are both using pattern matching to detect the PHP
weaknesses but the second tool has less false positives
because it uses regular expression more precisely than the first
one. First tool assume the user-defined functions which have
the same patterns of regular expressions like my_inlcude() as
a vulnerable function but another one just report the main
known vulnerable functions. We extend the idea to use the
patterns for prevention methods to enhance the level of
accuracy.

III. PHP VULNERABILITIES
PHP is a computer scripting language. Originally designed

for producing dynamic web pages, it has evolved to include a
command line interface capability and can be used in
standalone graphical applications. PHP is a widely used
general-purpose scripting language that is especially suited for
web development. According to NetCraft [16] there has been
huge progress in using PHP in web applications. Fig. 1 is the
diagram which indicates our point.

Fig. 1 PHP Usage in July 2007

Several vulnerabilities and a weaknesses have been

reported in PHP, where some have unknown impacts and
others can be exploited by malicious people to disclose
potentially sensitive information, bypass certain security
restrictions. Among the most common of them are RFI, LFI,
XSS, SQL Injection and RCE. According securityfocus [17]
60% of released exploits are on web applications. We
obtained some static from Milw0rm [18] which indicates 27%
of released exploits are caused by LFI and RFI vulnerability.
Fig. 2 shows a statistical analysis of released exploits from
October 2007 to February 2008 years. Our focus is on RFI
and LFI because they have wide spread uses in exploits and
they are more regular than others and we expect to be simpler
for defining patterns of vulnerabilities.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2969

0

10

20

30

40

50

60

1

SQL Injection

LFI & RFI
RCE

Other

Fig. 2 Percent of Different vulnerabilities’ Exploits released during

2007 and 2008

A. Local File Inclusion
This vulnerability is one the most dangerous and most

common ones which make it possible to access the local files.
The mentioned files could not be accessed and displayed by
users through regular access rules. Even it is possible to get
permission to CMD.exe and execute desired commands.
Followings is a list of some methods that could be misused by
giving unhandled arguments:

- Require()
- Require-once()
- Include_once()
- Include()
- Fopen()
- File_get_contents()
- …

For instance, in many situations it would be great to use
dynamic includes, where the part of the pathname is stored in
a variable. As an illustration example, take the following
example:

[...]
include("/home/lang/".$language.".php");
[...]

The $language is not declared before being used. So, an

attacker can put tainted data in this variable and include some
other files like /etc/passwd.

For example, a user can easily view another file by
modifying the value of the language in the URL. For example:

http://remote_host/bugged.php?language=../../../../etc/passw

d%00

The result of this inclusion will be:

[...]
include "/users/../../../../etc/passwd%00.php"
[...]

So a malicious user can see all contents on passwd file in

the server. ‘%00’ means a NULL character that “deletes" the
PHP extension. If we omit this NULL Byte, we will be able
to display only PHP files because the extension included is

PHP.

B. Remote File Inclusion
This is also one of the most dangerous vulnerabilities which

is knows as RFI which is also more common than the other
ones. Using this security flaw, attackers could get the whole
control of one server or one site, upload files, edit or delete
files or execute some commands. This vulnerability is also the
result of using unhanding arguments. The methods like
require, require_once and etc (stated before).

Let's take a look at some code that make the RFI exploits
possible.

[...]
include($_GET['language']);
[...]

As we can see, $page is not validated before being used so

a malicious user could include or call (as you prefer to say) his
script via the browser and gain access to the machine or view,
as before, a file. Example one: (gain access to the machine)

http://remote_host/bugged.php?language=[shell Script - our

shell located on our server]

Example two: (view files)

http://remote_host/bugged.php?language=/etc/passwd

C. Prevention Methods
In general, the best way to avoid script injection

vulnerabilities is to not pass user-supplied input, or data
derived from it, into any dynamic execution or ‘Include’
functions. If this is considered to be unavoidable for some
reason, then the relevant input should be strictly validated to
prevent any attack occurring. There are some known methods
for preventing attacks using LFI and RFI vulnerabilities. This
section will hopefully give you some ideas on how to prevent
a file inclusion exploit on your website and most importantly,
in your code. Also we will be providing the code examples in
PHP format.

One way is to use a white list of known good values (such
as a list of all the languages or locations supported by the
application), and reject any input that does not appear on this
list. After one file has been requested to be included and
displayed, the source code checks if the given file (as an
argument) is an element of the mentioned array or not. If the
result is true, it would be permitted to access to this file.

[...]
$lang = array("en", "sp", "fa", "it");
If (!in_array($lang, $language){

 Die(‘invalid page’);
}

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2970

include("/home/lang/".$llang.".php");
[...]

Another thing you could do is check that the requested file

matches a particular format:

$file = str_replace('\\', '/', realpath($page . '.php'));
if (!preg_match('%^/home/someone/public_html/[a-

z]+\.php$%',
$file)) {
die('Invalid page');
}
include $file;

Basically you need to verify that the entered information is

valid and conforms to what you expected.
For other PHP vulnerabilities, there are also many functions

that can clean the string Like htmlspecialchars(),
htmlentities(), stripslashes() and more which could be used to
prevent attacks.

IV. REGULAR EXPRESSIONS
A regular expression is a special text string for describing a

search pattern. It provides a mechanism to select specific
strings from a set of character strings and retrieve the aligning
part. Pattern matching is used to test whether some parts of
context have a desired structure or not. You can think of
regular expressions as wildcards on steroids. You are probably
familiar with wildcard notations such as ‘*.txt’ to find all text
files in a file manager.

Regular expressions are widely used in Perl, PHP, Java,
.Net languages or a multitude of other languages. As a
programmer you can save yourself lots of time and effort. You
can often accomplish with a single regular expression in one
or a few lines of code what would otherwise take dozens or
hundreds.

Since efficiency is extremely important when executing an
application, patterns should be minimized into their most basic
form.

V. PROPOSED ALGORITHM

A. Figures and Tables
Our method is a static source code analysis which its focus

is on LFI and RFI vulnerabilities and their prevention
methods. We assume that the source code has been written in
a standard style which is perfect for our package specially in
the reporting the malicious codes. As an example there is not
any multi-line part in source code. At first step we try to
distinguish the comments and not considering them. All styles
of PHP comments will be ignored and separated from the
main source code while parsing it. It is obviously necessary
because maybe comments match with one of the patterns and
direct the application to the wrong way as we see in some
scripts written in PHP and Perl found on the net. Next step is
to extract the variables which could have been supplied by

users’ input. We also find other variables which are derived
by one of the found variables at last step. After that, we try to
find the aligning parts of code based on the prepared regular
expressions. Aligning lines should have one of the variables
which have been extracted before. Finally, we try to find out if
the prevention methods were used by developer to prevent
exploits or not. The output of running this package is a report
of vulnerabilities found on given source code and some
preventions methods which were used accurately.

In the remaining of this section, we explain each step in
detail. Another supported feature is supporting included files’
analyzing. As you know, you could include a file in PHP code
and use its contents. When the package reaches the inclusion
expression (it is done by regular expression mechanism) while
processing, the process stops at the current line and the
included file will be analyzed. After it has been finished,
processing rest of the origin file starts.

In the remaining of this section we explain each step in
details.

B. Finding User-supplied Variables
In this step, we try to find special variables which get their

values from users’ input. We call these variables user-
supplied. On the other hand, if the mentioned variables have
been assigned to some others, they could also be misused for
performing unauthorized actions (Vulnerability spread). We
call these variables hidden user-supplied variables. Generally
user-supplied variables are found by special regular
expressions, but to find hidden user-supplied variables state
machine for finding assignments. We used state machine as
they are used in compliers and we had not have novel idea
about that.

As an illustration, see the below example:
[...]
$file = $_REQUEST['file'];
include($file); // <-- vulnerable code, does not sanitise user

parameter

$file2 = $_REQUEST['file3'];
include($file2); // <-- vulnerable code, does not sanitise

user parameter

 echo "</pre>\n";
[...]

In this example, ‘file2’ variable has a potential to be
abused, so it should be also included in the list of user-
supplied variables. These variables play vital rule in the report
of vulnerabilities in next sections as they decrease the false
positives a lot.

C. Detecting Vulnerable Patterns
We tried to grasp the patterns that appear within the

vulnerable PHP code. Since efficiency is extremely important
when executing an application, we tried to minimize the
pattern into their most basic form. A database of vulnerable
patterns has been prepared in order to test each of its elements

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2971

for finding the aligning parts of PHP code. Here’s an example
of a pattern for vulnerable code shown in section III.B.

Corresponding Pattern:

((?:include|require)(?:_once)?\s*\(?.*?\$.*?\)?;)

D. Detecting Prevention Patterns
The main contribution of our paper is in this part. We

extend the idea of analyzing source code to find the malicious
code to find also the prevention methods.

We tried to define patterns for known prevention methods
up to now. Like the last part, package processes the code to
find the matching parts of PHP code by one of the elements of
prevention methods array list. After being found, it checks if
the found part was in the report of last step or not. If the
answer is true, the mentioned lines will be omitted, but it will
be involved in the last report of our package which includes
the specification of vulnerable codes and its type of
prevention method. As an illustration, see the following
example which is a pattern for second part of the prevention
method stated previously in section III.C.

If(?: *|\t*)*\((?: *|\t*)\!in_array(?: *|\t*)\((?: *|\t*)\$.*,(?:

|\t)\$.*(?: *|\t*)\)
{\n*(?: *|\t*)Die(?: *|\t*)\((?: *|\t*)'.*'(?: *|\t*));\n*(?:

|\t)}

As you could find out, we need to use some techniques

more than regular expression in detecting prevention methods
like some state graph. The mentioned regular expression is the
second part of prevention method shown in section III.C.
Before that we should make sure that the first part exists in
source code. These kinds of operations are done by using state
graph.

VI. EXPERIMENTAL RESULTS
In this section, we summarize the experiments we

performed and describe the security violations we found.
To evaluate our method, we developed a PHP application

based on our algorithm and it was run on four randomly
selected open source PHP programs from 100 application on
which LFI and RFI have been reported, and TIKIWIKI
(which is one of popular and famous PHP application), to
demonstrate the feasibility of the proposed algorithm. After
that, the results were compared with the output of
DAPHPScan method and put in table which you could see it
as Table I.

In the course of our experimental validation, we discovered
and reported 4 previously unknown vulnerabilities and
detected all registered vulnerabilities (Detection Rate is
100%). Detection Rate is always high and perfect. It means all
the registered RFI or LFI vulnerabilities would be found by
applying our algorithm. Most of the other algorithms and tools
just find the use of include functions (or other vulnerable

functions) but as stated previously, our algorithm find them
when they have some conditions. The value of this field
shows that none of our filtering factors were useless and it
would not decrease the detection rate. Correct report field
shows how many number of our reported vulnerability were
right and correct.

After running the algorithm on about 5 programs, we
discovered that Number of RFI and LFI potential is about six
times less than another algorithm’s. We tried to found the
affects of three distinct factors on that, as follows.

• Defining list of user-supplied variables decreased
the report and implicitly the false positives up to
36%.

• Defining and using prevention patterns decreased
the report about 14%.

• Defining strong regular expressions (which
ignores the user defined functions like
my_include()) decreased the report about 12%.

0

5

10

15

20

25

30

35

40

1

User-Supplied Variables List

Prevention Patters

Strong Regular Expressions

Fig. 3 Effect of Different factors in decreasing FP’s

But on the other side, there could exist some non-standard

prevention methods in PHP language which affects the
number of FP’s (make it non-zero). There are also some other
reasons for this problem as follows. Consider a variable which
has been taken from user input (as a part of URL) and also it
was given as an input to one of the vulnerable methods like
‘Include’ but actually it has not potation to be used in attacks
because it was assigned through non-vulnerable manner and
then given to the include function as an input.

VII. CONCLUSION AND FUTURE WORKS
In this paper we proposed a new static analysis algorithm

which is able to detect the LFI and RFI vulnerabilities in PHP
source codes with higher precision and lower false positives.
We implemented our concepts in an application to assure the
level of accuracy and compare the results with the other
known algorithms.

Future works include the extension of this algorithm for
other common vulnerabilities like SQL injection, XSS and
RCE.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2972

TABLE I
RESULTS OF APPLYING OUR ALGORITHM TO FIVE PHP PROGRAMS

Another algorithm Our algorithm

Application
Name&Version

Number of
Files &
Folders

Number of
registered

Vulnerabilities
Number of
RFI &LFI
Potential

Correct
Report FP Detection

Rate

Number of
RFI & LFI
Potential

Correct
Report FP Detection

Rate

Tikiwiki 1.9.8 1408 & 329 2 94 2 98% 100% 17 2 88% 100%

Scwiki Beta2 111 & 25 1 47 3 94% 60% 10 5 50% 100%

Php help agent 1.1 49 & 7 1 7 2 71% 100% 2 2 0% 100%

Phportal 1.2 35 & 100 3 190 4 98% 50% 21 8 62% 100%

Pragyan 2.6.2 141 & 163 1 107 5 95% 100% 20 9 55% 100%1

1 Our algorithm considers one vulnerable multi-argument function more than one report item. So, it reports 9 items which is much more than report items in

another algorithm (DAPHPScan).

REFERENCES
[1] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai. Web application

security assessment by fault injection and behavior monitoring. In
WWW '03: Proceedings of the 12th International Conference on World
Wide Web, 2003.

[2] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans.
Automatically hardening web applications using precise tainting. In IFIP
Security 2005, 2005.

[3] T. Pietraszek and C. V. Berghe. Defending against injection attacks
through context-sensitive string evaluation. In Recent Advances in
Intrusion Detection 2005 (RAID), 2005.

[4] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. Lee, and S.-Y. Kuo.
Securing web application code by static analysis and runtime protection.
In Proceedings of the 13th InternationalWorldWideWeb Conference,
2004.

[5] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, D.
T.Lee, and Sy-Yen Kuo. Verifying web applications using bounded
model checking. In DSN, 2004.

[6] V. B. Livshits and M. S. Lam. Finding security errors in Java programs
with static analysis. In Proceedings of the 14th Usenix Security
Symposium, Aug. 2005.

[7] Y. Minamide. Static approximation of dynamically generated web pages.
In WWW '05: Proceedings of the 14th International Conference on
World Wide Web, 2005.

[8] FIS. http://www.segfault.gr
[9] Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad

Jovanovic. Noxes: A client-side solution for mitigating cross-site
scripting attacks. In The 21st ACM Symposium on Applied Computing
(SAC 2006), 2006

[10] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai
Lee, and Sy-Yen Kuo. Securing web application code by static analysis
and runtime protection. In WWW ’04: Proceedings of the 13th
International Conference on World Wide Web, 2006.

[11] Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad
Jovanovic. Noxes: A client-side solution for mitigating cross-site
scripting attacks. In The 21st ACM Symposium on Applied Computing
(SAC 2006), 2006.

[12] Yichen Xie, Alex Aiken. Static Detection of Security Vulnerabilities in

Scripting Languages. In Proceedings of the 15th USENIX Security
Symposium, pages 179-192, July 2006.

[13] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A Static
Analysis Tool for Detecting Web Application Vulnerabilities (Short
Paper). In IEEE Symposium on Security and Privacy, 2006.

[14] PHP-Sat. http://PHP-SAT.org
[15] DAPHPScan version 1.0. http://www.acid-root.new.fr
[16] http://www.netcraft.com
[17] http://www.securityfocus.com
[18] http://www.milw0rm.com

