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Abstract— Stochastic models of biological networks are wellS; . ,,...,S;, are calledproductsand both reactants and

established in systems biology, where the computational treatmeniphducts aremolecular speciesSuch a chemical equation

such models is often focused on the solution of the so-called chemi .
master equation via stochastic simulation algorithms. In contr, 83% resses that the left hand side of the arrow can be trans-

to this, the development of storage-efficient model representatid@émed to the right hand side of the arrow. Complex chemical
that are directly suitable for computer implementation has receivpdocesses are given by sets of such reactions. Although the

significantly less attention. Instead, a model is usually describgghichiometric coefficients specify the necessary quiaatiof

in terms of a stochastic process or a "higher-level paradigm” Wi%\d . . .
graphical representation such as e.g. a stochastic Petri net. A seri stances of each molecular species, (1) basically besaa

problem then arises due to the exponential growth of the model's stiéalitative or functional relationship. However, for a ntieal
space which is in fact a main reason for the popularity of stochastieaction to occur, typically several conditions on tempes

simulation since simulation suffers less from the state space eXF)'OSiS’{@ssure, or concentration must hold. These are usually ind
than non-simulative numerical solution techniques. In this paper - . :
present transition class models for the representation of biologi\cggtecj by adding information above or below the arrow and

network models, a compact mathematical formalism that circumvedf€ld quantitative and temporal relationships often given
state space explosion. Transition class models can also serveteams ofrates The scientific branch that studies such rates of
an interface between different higher level modeling paradigmshemical reactions is callechemical kinetics

stochastic processes and the implementation coded in a programmingy.gc, -+ types of computational mathematical models for
language. Besides, the compact model representation provides the

opportunity to apply non-simulative solution techniques thereby pré1€ description of the quantitfative behaviour of ;ystemmfi_d
serving the possible use of stochastic simulation. lllustrative examplgy¢ chemical processes exist and the specific meaning of

of transition class representations are given for an enzyme-catalyzgtes depends on the chosen model type. Though motivated

subhstrate conversion and a part of the bacteriophalgsis/lysogeny by different viewpoints the model types and thus the rates
athway. L .

P Y are of course intimately related which should not be too

'surprising since they represent the same type of systems.
A comprehensive treatment of different computational nhode

I. INTRODUCTION types can be fo.un.d in.[2]. _ .

Biological network models sianificantl fter from their Models are distinguished in terms of their states and state
ological netwo odels signiicantly sutier 1ro € %ranges téansitiony where a state consists of a collection

ﬁ\?olrmicr)lttlsr snze,n wh:(c?m;slvdlée r;olthel h'ghMCOLn pIEXIrlty hano variables that sufficiently well represents the relevant
beiz S :n?(t:o%les e?o a: dz | c;ﬁ;? :Z tecl:ﬁw' eeso wshz arameters of the original system at any time. The set of
P velop pply ys! 1ques, S states, also referred to as tetate spacemay be either

reducing the model size or, more specifically, reducing tibe .
. . iscrete, meaning only a countable number of states that can
required computer storage by providing compact formal modg

o . ] e mapped to a subset of the natural numbérser the state
descriptions has received far less attention. As stated2h [ . L .
. ) . . space may be continuous. Both in discrete and continuotes sta
the focus of current modeling tools is on simulation, but elod

. ) . ) . ace models the state transitions may occur determailigtic
development is a highly iterative process which is cur;entFp y St

. . or stochastically. For a long time the model type of choice in
only partly supported. Modelers will often end up havin y 9 P

manv different versions of one model. probably in a n mb%Pmputational systems biology was a deterministic one with
Y di versi P vy UMB&bntinuous state space, based on the law of mass action and
of different formats.

) . expressed in terms afhemical rate equationteading to a
The fundamental rule of a chemical reaction between . . . . .
S L system of nonlinear ordinary differential equations thiiémm
molecules is given by the stoichiometry o e
turns out to be quite difficult to solve.
+--5,5, (@) The stochastic approach [8], motivated by the observation
that biochemical reactions occur randomly, leads to discre
state Markov processes [7], [9], [20], or, equivalently in
other words, to continuous-time Markov chains [3], and it
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with m,¢ € N, m < ¢, wheres,,,...,s;, € N are
stoichiometric coefficientss;, ,...,S;, are calledreactants

im
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matrix consisting of reaction rates. The model’s state spaonly depends on the length of this interval and not on the
and thus the matrix dimension is determined by the numbeterval endpoints (the specific start and end times). Thus,
of involved molecular species and the number of potentialyiven a current system state, the next state in the system’s
present molecules of each species. Unfortunately, the statne evolution only depends on this current system state and
space size grows exponentially in the number of moleculaeither on the specific time nor on the history of reactioms th
species and in case of potentially infinitely many moleculdsd to the current state. Hence, the time evolution of théesys
it is even infinite. Thus, storage of the rate matrix is nas mathematically described by a stochastic pro¢ésg)).>o
suitable for models of complex biological networks. Likeei with N-dimensional state spac®C N”, and due to the just
chemical reaction equations given by the stoichiometrynate stated independence of time and history this stochastimepso
suitable for efficient modeling with regard to represeotain is a discrete-state Markov process, or equivalently in rothe
computers. words, a time-homogeneous continuous-time Markov chain
In this paper we adopt the stochastic approach and prese(€&MC). That is, for alln € N andtg < t; < --- <,
structured mathematical modeling formalism called trigorsi
class model (TCM) that is particularly well suited for imple P(X(tn) = 2n|X (tn-1) = ¥n-1, ..., X(to) = o)
mentation purposes and moreover can serve as an interface = P (X(tn) = 2n[ X (tn-1) = zn-1) - (4)

between different model types or model formats. The pay he multidimensional discrete state spatef the CTMC can

IS oLgan}zed 3s|foII;)vt\)/_s.l S(_ect:on . g|\k/eshforn;all_zatlgl;13 e mapped to the natural numbé&sand the probability that a
stochastic models of biological networks thereby INtrobge ., nqiiion from state € N to statej € N occurs within a time

terminology and notations and demonstrating the problem lerval of length > 0 is denoted by, (k). For all k. > 0

efficient storage and implementation. Transition class efeod these state transition probabilities build a transitioobability

are introduced in Section Ill, where we also outline thejf .. > P(h) = (pi;(h))s;eni. Note thatP(0) equals the unit

. . _ b) — 1] 1geN-
a_ldvantages. S?Ct"?“ IV_ contains transmon_class rept_ase atrix I, since no state transitions occur within a time interval
tions for specific biological networks, and finally Section \6f length zero

concludes the paper. It is well known [3], [6], [13] that a CTMC with state
Il. STOCHASTIC MODELING OF BIOLOGICAL NETWORKS spaceS C N" is uniquely defined by an initial probability
distribution onS and atransition rate matrix also referred to

Stochastic interpretations of chemically reacting systeMqinfinitesimal generator matrix = (¢;;); jen consisting of
date back to the 1960s [14]. A formulation on a physical bastir%nsition ratesg; ’
(VE)

has been provided in [8] and later on rigorously derived in [9

The basic assumptions are that the system is kept well dtirre O = lim P(h) — P(0) — lim l(P(h) — ). (5)

and thermally equilibrated, meaning that a well stirred tome h—0 h h—0 h

of N € N* molecular species, ..., Sy inside some fixed The relation of eact(h) to @ and an explanation for the term

volume interact at constant temperature. In the followirgy wnfinitesimal generator matrixs given by P(h) = exp(hQ).

give a brief description of the formal mathematical basis. In that wayQ generates the the transition probability matrices
by a matrix exponential function which is basically defined a

where

A. Mathematical Model Description an infinite power series. Hence, all information on traositi
The system state at any time is described by a discréobabilities is covered by the single matr@, where in
random vector biological network modeling the transition raigs correspond
to reaction rates.
X(t) = (Xa(t), ..., Xn (1), @ The temporal evolution of a CTMC can be described via
where for each specie%, i € {1,..., N} andt > 0 adiscrete a system of differential equations, the Kolmogorov forward

random variableX;(¢) describes the number &; molecules equations and the Kolmogorov and backward equations,, resp.
present at time. The conditional transient (time dependentin matrix notation given by

probability that the system is in statec NV at timet, given 9 9
that the system starts in an initial statgat timet, is denoted gp(t) = P@)Q, &P(t) =QP(t), (6)
by which yields a system of differential equations for the siant

) — — _
P (xlzo,to) = P(X(t) =2 | X(to) =z0). () gtate probabilities, in vector-matrix notation given by
The system state changes over time due to chemical reactions 9 ®
between molecules of some species. Complex reaction sets ca P =P Q, (1)

be decomposed into elementary unidirectional reactiooh su

that each reaction takes the form (1), where additionallyvﬁherep(t) denotes the vector of the transient state probabilities
reaction rate that determines the reaction speed or pmpabicorrespondlng to (_3)' The above eq_uatlons are equwaletht_ato
is assigned to each reaction. so-called thechemical master equatidi@], [20], a term that is

The _r?aCt'on rates .are mdepengnt of th? _t'me S.'nce the, transition probability matrix is also called a stochastictrixameaning
probability that a reaction occurs within a specific timemtl that all entries are probabilities and all row sums equal one.
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thus nothing else than a synonym for the general terms useding systems the stochastic simulation algorithm is only
in the theory of stochastic processes [3], [6], [13], in gatr one specific solution technique, and its popularity is mainl
Markov processes. justified by the difficulty of solving the differential equeans
Although the Kolmogorov differntial equations and thevith other techniques. Nevertheless, stochastic sinauldias
chemical master equation arise from a stochastic modet theumerous drawbacks, and in many application areas where
is no need to apply stochastic solution methods. In pagticulstochastic models are used, stochastic simulation is eften
there is a significant difference between a stochastic mant| referred to as a method of last resort.
a stochastic simulation although in the literature "thekastic One of the major drawbacks of stochastic simulation is
approach” and "the stochastic simulation algorithm” areiof the random nature of simulation results. Despite the faat th
taken as the same thing. In fact, as we have outlined abave, @illespie’s algorithm is termed exact, a stochastic sirtioma
stochastic approach leads to continuous-time Markov shaiten never be exact. Mathematically, it constitutes a $izdis
that may be analyzed by a large variety of solution techrigquesstimation procedure implying that the results are suliject
where stochastic simulation is only one of them. statistical uncertainty and in order to draw meaningful-con
clusions it is necessary to make statistically valid stztets
on the results. The exactness of Gillespie’s algorithm iy on
"in the sense that it takes full account of the fluctuationd an

Explicit algebraic solution of the Kolmogorov equationse,relations” [8] of reactions within a single simulatioanr

or in the biosystems terminology of the chemical mastgf,y Gillespie mentions that it is "necessary to make several

equation, is usually impossible, and several techniques N, jation runs from time to the chosen time, all identical

been proposed for the numerical solution of Markov chaings, each other except for the initialization of the random
see e.g. [18]. Most of these techniques both in the genefglnper generator”. In fact the reliability of simulatiorsdts
context of Markov chains and in the specific application Qtrongly depends on a sufficiently large number of simutatio

biological systems aim to solve the above system of differef,ng “and a proper determination of that number has to be
tial equation or a variant known d@okker-Planck equatian carefully done in terms of mathematical statistics.

An alternative approach to analytically cope with stoctast £ hermore, stochastic simulation is inherently cosiy.

mode!s of biological netwprks is by stochastic d'ﬁereht'a}nany cases even a single simulation run is extremely compute
equations (SDE) that gre in term.s O,f’ Icalculus ,(Wh'Ch IS time demanding and thus reducing the space complexity
also very popular €.g.n stochastic finance) equivalenhéo tcompared to numerical methods has to be paid by a significant
Fokker-PIgnck equation. i . . increase of time complexity. Serious difficulties arise e t
The. main problem that pumencal solution techniques S“ﬁEFesence of multiple time scales or stiffness. Often agprox
from is the enormous size of the state space that grofions are required to achieve simulation speed up, and as
exponentially !n the d|m9n3|onal|ty, 3 pro?'em knownséate an immediate consequence even the exactness in the sense
space explosianin particular, for biological networks the g4teq ahove gets lost. Thus, if a problem may be tackled both
state space grows exponentially in the number of involveg, iochastic simulation and by numerical analysis, theedat
molecul_ar Species, which means that even a moderate nu uld be preferred. The difficulties in numerical analysis
of species implies extremely huge state spaces that am offg,iny arise due to the state space explosion. Hence, it is
impossible to store in computers. In case of potentiallynitei highly desirable to develop compact modeling formalisras th

molecular populations the resulting state space is evemtifi o yar model representation and storage in a computeib®ssi
Several advanced solution techniques have been develoggf hat yield to numerical analysis as well

to deal with the state space explosion problem for specific
models, most of them exploiting a special structure of the
transition rate matrix and partitioning the state spaceigtdy
approximate solutions, see e.g. [4], [18], [21] and refeemsn  To avoid the problem of state space explosion, we use tran-
therein. Unfortunately, if the transition rate matrix dosst sition class models (TCMs), which are compact and strudture
have the assumed structure such approximation techniquedarmal descriptions of Markov chains. They are originally
not work. motivated by queueing network state spaces and similarity
An alternative approach that suffers less from the stateespaf state transitions in this context, but it turns out thatyth
explosion problem is stochastic simulation. As alreadjesta are also well suited for formalizing biochemically reagtin
the chemical master equation is equivalent to the Kolmogoreystems. It is not necessary, but possible, to generate the
equations. Likewise, the so-callextochastic simulation al- complete state space and the transition rate matrix eftplici
gorithm by Gillespie [8], which is often used to solve theOnce a TCM has been developed, many different solution
chemical master equation is a straightforward applicatibn techniques, including stochastic simulation, can be afpli
Monte Carlo simulation methods for Markov chains that are Algorithms have been developed to generate transitiors clas
known at the latest since the early 1950s, as indicated hy [6jodels automatically from formal Petri net and queueing net
[10], [15] and the references therein. Although often egdatwork descriptions [17], [19]. Hence, TCMs have the potdntia
with the stochastic approach to modeling biochemically rée serve as an interface between different model specditsiti

B. Difficulties in Modeling and Analysis

I1l. TRANSITION CLASS MODELS
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(queueing models, Petri nets, mixtures of them, amongsyman Definition 1: (Transition Class) A transition class (relative
others) and various solution methods. Different parts of ta some sefS) is a tripletT = (U, u, «) consisting of

model can be described by different modeling paradigms that, a seti/,

may be on different levels of abstraction, e.g. parts arergiv. .« a functionu : YNS — S, whereVz € UNS : u(z) # =,
as queueing model, other parts as Petri net, some parts may

be specified as a Markov chain on the low abstraction level of | { a functiona : 4 NS — (0,1] in discrete time,

a stochastic process, others via structured stochastionaita a functiona : 4 NS — (0,00) in continuous time.

networks as recently done for biochemically reacting syste Fora:UNS — (0,1] we speak of a discrete transition class
in [21]. Transformation into a TCM then yields a unified mOdeeDTC) and fora - ’u NS — (0,1] we speak of a continuous
description, which is moreover suitable for immediate Sotu transition class (CTC).

Fig. 1 illustrates how transition class models are integtat Next we give an interpretation for what is described by a

W'thm_ tf_]e dgvelopment of an |mplem§ntat|on for a SyStel[rrjansition class, and we introduce an appropriate terrn@yol
description, in particular showing their interface chésac

The setU{ contains states, e.g. describing a system rep-
resented by a model. These states may change when some
events (state transitions) occur. Therefore, we refet/tas
: the source state spacef 7. Note that we allow/ \ S # 0,

Real-Life System which means,/ may contain some redundant (infeasible)
- states. This makes formal model description much easier and
more efficient. Additionally, we emphasize that we need not
: explicitly specify the setS when defining concrete transition

Abstract High-Level Model(s) classes, and neither all elements of the source state spaee h
F to be enumerated nor have they to be stored completely.
The functionu gives the new state after a transition from
, one state to another state (which need not be containg] in

Transition Class Model has occured. Therefore, we calthedestination state function
F (or target state functiorwhich is more familiar in some areas).
Note that from the definition of the destination state fumrcti
: it immediately follows that the source state space of any
Implementational Model transition class does not contain absorbing states, eg¢esst
H where the system stays forever if once reached. In the déscre
case the definition additionally implies that state traosg
from a state to itself, so called self—loops, corresponding
Fig. 1 Integration of Transition Class Models within the "Modeling positive Q|agonal .enmes in the tr.ansmon. p!’Obablhtytma
to Implementation'Process when using classical Markov chain descriptions, need not to
be modeled explicitly as a transition class. Thus, an auttiti
source of storage waste is eliminated.
A. Formal Definitions and Properties Finally, a(z) denotes for a DTC the probability and for a

Although in systems biology the interest is usually il TC the rate of such a transition from statdo stateu(z).

transient state probabilities there are also relevantsoatere FOf DTC we calla thetransition probability functionand for
steady-state probabilities — probabilities for a systeredi- CTC we calla the transition rate functionWe point out, that

librium — provide important insights and are thus of interesjn many cases, when transition classes are defined properly,

It is well known from the theory of stochastic processéS & constant, i.e. it does not depend on the system state, or a
(3], [6], [7], [13], [18], [20] that steady-state probabitis the worst it is a rather S|mpk_a function on the sy_st_e_m state.
for continuous-time Markov chains can be derived via an NOW we are ready to give the formal definition of a
embedded discrete-time Markov chains, where state transit ransition class model, both for discrete and continuom i
occur only after discrete time steps according to transitio Definition 2: (Transition Class M(_)del, T_CM)

probabilities, which is sometimes easier to analyze (deipgn Let T_:: ({71,---,7},y) be a pair gon5|st|ng of a sgt of
on the chosen solution technique). Accordingly, we proviot{eanSltlon classes; = (Ui, ui, ), 1 S,’ <kanda f§a3|ble
definitions of transition class models for both the contimso Stat€y € SN (U U...UUy). ThenT is called acontinuous

time case and the discrete-time case. We follow the preserfgnsition class mode{CTCM), if eachr; is a CTC; andZ
tion in [16], where a formal definition of transition class dao 'S called adiscrete transition class mod€DTCM), if each;

els appeared for the first time. Essentially for the strieztur'S @ DTC, and
description is the notion of a transition class, which eashis k k
to interpret and model state transition events efficiergly, Veesn U Ui : ZI{xeuz}O‘i(x) <1 (8)

reactions in biological networks. =1 =1
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If in inequality (8) for statesc the condition < 1" holds, A. Enzyme-Catalyzed Substrate Conversion

then there is a positive probability of a self-loopinand  ag the first example consider a representative system that
this probability is exactly the difference to one. As we havgag peen also served as a reference example, e.g. veryjlyecent

stated earlier, self-loops are not modeled explicitly, &g ;. [4], [5], the enzyme-catalyzed substrate conversion
implicitly contained in the transition class model.

What has been gained compared to the usual Markov chain S; 4+ Sy =83 2.8 +5, )

description via a transition rate matrix? Typically, the riktay c2

chain state space grows exponentially, whereas the numbgg substrateS, into a product S, via an enzyme-substrate

of transition classes grows only linearly in the number adomplexSs;, catalyzed(accelerated) by an enzynts.

molecular species. Moreover, it is possible to describekblar  |f we assume that initially (at time) there arer&o) enzyme

chains with infinite state space by a finite number of tramsiti molecules,:réo) substrate molecules, and no molecules of the

classes. Consider for example a potentially infinite numbghzyme-substrate complex and the product are present, then

of at least one of the involved molecular species. Then thg maximum numbers of molecules §f and S5 that can

source state spaces of course become infinite, but they ganpresent at any timearexgo), and for S, and Sy they are

still be described by component characteristics meaning b{) Hence, the state space size of the corresponding Markov

characteristics of single molecular species. chain equal$S| = (xEO) +1)- (IQO) +1) which yields e.g. for
Intuitively, it seems clear, that Markov chains can be(® _ 900 andz!") = 3000 the size 0f201-3001 ~ 6-10°. If

described as transition class models, and indeed it can\Bg do not have bounds for the initial molecule population it

formally proven, that each Markov chain can be describgd infinite. In our representation we need only three tréorsit

by a TCM, and that each TCM can be interpreted as apghssesr, 7, 73 even in case of an infinite state space:

thus describes a Markov chain [16]. Formally, a transition _
: . . . T = (Z/{l,ul,al), where

class model is an abstract mathematical notation, which aet

practical meaning and a relation to other modeling paragigm * ‘1 = g(mh - %4) : 21,72 > O},

only by interpreting its components. The interpretationaas * “! N — N,

Markov chain thus yields in this sense a semantics of tiansit

class models. Each is a transition class relative to some Set

without S explicitly given in the definition. This means, thatr2 = (U2, uz, az), Where

a TCM implicitly contains the state space of the describede Us = {(z1,...,24) : 3 > 0},

Markov chain. In particular, using TCMs does neither reguir o uy : N* — N*,

any numbering of states nor explicit enumeration of theestat x +— ua(z) = (z1 + 1,22 + 1,23 — 1, 24),

space, and TCM can be stored very efficiently. e ap:N* = R, 1z as(x) = coxs;

Obviously, TCMs both in continuous and in discrete time; = (U3, us, a3), where

can be simulated in a similar manner as Markov chains by Us =Us = {(z1,...,24) : 23 > O},

repeatedly generating trajectories, as e.g. in its easiedt ug : N* — N4,

most straightforward way adopted by Gillespie in his steeha ., 4\, (2) = (21 + 1,29, 25 — 1,24 + 1),

tic simulation algorithm [8]. Again note that [8] is by no mmesa az :NY SR,

the first paper where direct Markov chain simulation appears

Moreover, although not specifically concerned with simalat

oo :N* =R, 2 ai(x) = cra1m;

x — az(z) = c3xs;
Obviously, the TCM provides a huge gain in storage re-

. . . . uirements and is well suited for immediate implementation
TCMs are well-suited for improved fast simulation method P

. . . n important point regarding computer implementationiét t
that are far more advanced than the Gillespie algorithm aﬂqd P P 9 g comp pie )
. . . . . - e state space and the transition rate matrix of the uridgrly
its variants, for instance variance reduction techniquesed

: ; . . Mark hain is implicitl ded by logical dicat d
on importance sampling [16]. Even more important wit rarkov chain 1S Implicttly coded by fogical predicates an

. ; . . _simple functions that are both easy to implement.
transition class models there is no need to resort to sttichas
simulation since non-simulative numerical techniques lsan
directly performed on TCMs. Hence, as a natural by-prodfict o B- Lambda Bacteriophage
circumventing the problem of state space explosion, tt@nsi  In this example we develop a TCM model for a part of
class models open access to a much wider range of analysis bacteriophage\ lysis/ lysogeny pathway. We focus on
methodologies. the Pr — Prw Operator regions sharing several overlapping
operator sites. The expression of theepressor genel is a
well characterized autoregulated genetic network (sed11]
and the references therein). The mutant system has operator
s&tps OR2 and OR3 where theCl dimef, denoted byX,,
binds as a transcription factor either 1)@R2, 2) atOR3 or

IV. TRANSITION CLASS REPRESENTATIONS

We demonstrate how transition class representations
concrete biological networks look like by illustrating itav
example for an ehzyme'cata_lyzed substrate conversion and HRere, gene names start with lower case letters and the coréisy
part of the bacteriophagg lysis/lysogeny pathway. proteins are denoted by upper case letters
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3) at both sites. In case 1, i.&; binds atOR2, transcription stochastic models for biological networks. Transitionssla

is enhanced whereas binding@R3 (cases 2 and 3) inhibits models provide huge gains in computer storage requirements
transcription which means that the production of prot€in are well suited for implementation and may also serve as an
is turned off. Let D denote the DNA promotor site. Theinterface between different high level modeling paradigms
stoichiometry of the model is given in Table | and since thefdoreover, they open access to a wide range of analysis
are 13 different reaction types and 6 species its TCM modekthodologies that are not feasible when using classical
requires 13 transition classes afd= N°. We assume that in Markov process descriptions. Transition class repretienta

statex = (x1, 22, . .
X, XQ,D7DX2,DX§7DX2X2 arexr; for X, x9 for X27 ceey
andxg for DX X5.

TABLE |
STOICHIOMETRY OF THELYSIS-LYSOGENY SWITCH IN BACTERIOPHAGEA

., x¢) the population sizes of the 6 speciehiave been illustrated for an enzyme-catalyzed substrate co

version and a part of the bacteriophage lysis/lysogeny
pathway. Ongoing research is concerned with improving and
extending already existing humerical solution technigines
directly work with the transition class representation afgb
with advanced stochastic simulation algorithms for tramsi

2X L:] Xo dimerization

D+Xo = DX binding 1)

D+X, = DX} binding 2)
DXs+Xo =%  DX,X»  binding 3) (1]

DX} +Xs == DXyX,  binding 3)
D &, D4+X slow transcription [21
X =0 degradation 3]

DX BER DXs+ X  enhanced transcriptior

Then, for instance, reactiodX <% X, is described by
transition classy = (U1, u1, 1) where
. L{1 = {(.731,.732,.. .71‘6) ] Z 2},
e up: N6 — NS,
- uy(z) = (21 — 2,20 + 1,23, 24, 5, T¢)
e aj: N6 SR,
x— aq(z) = 2¢127.
Since the population oD is at most one, the transition class g
of reactionD + X, 2% DXy is 75 = (Us, ug, az) Where
o Uy = {($17$2,---7376) txo > 0,23 = 1},
e uy: N6 — N6,
x = ug(x) = (1,22 — 1,0,24 + 1, 25, x6)
e a9 : N0 S R,
x = ao(T) = caa.
ReactionD X, X, < DXZ + X, is described by transition
classts = (U3, us, a3) where
. Z/{3 = {(ZBl,IL'Q,.. ,.TL()) LT = 1},
o u3: N6 — N6,
x— uz(x) = (1,22 + 1, 23,24, 25 + 1,0)
e a3:N0 SR,
x— ag(z) = cs.
The three transition classes given above should suffice f&f!
illustration. The remaining ones are built in the same mannge7]
Again, TCMs provide a huge gain in required computer
storage. It becomes clear that this gain rapidly increasés wg
the model size, because for a Markov chain description the
model size grows exponentially in the number of involvett®!
molecular species whereas the size of a transition clasglmod
grows only linearly. [20]

[10]

[11]

[12]

[13]

[14]

[15]

V. CONCLUSION [21]

class models.
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