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Periodic solutions for a two-prey one-predator

system on time scales
Changjin Xu

Abstract—In this paper, using the Gaines and Mawhin,s contin-
uation theorem of coincidence degree theory on time scales, the
existence of periodic solutions for a two-prey one-predator system
is studied. Some sufficient conditions for the existence of positive
periodic solutions are obtained. The results provide unified existence
theorems of periodic solution for the continuous differential equations
and discrete difference equations.
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I. INTRODUCTION

The theory of calculus on time scales[1,2] was initiated

by Stefan Hilger in his PhD in 1998[3] in order to unify

continuous and discrete analysis, and it has a tremendous po-

tential applications and has recently considerable attention[4-

9] since his foundational work. In 2009, Baek[10] investigated

the species extinction and permanence of the following two-

prey one predator system with seasonal effects.
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ẋ1(t) = x1(t)
[

a1 + γ1 sin(θ1t) − b1x1(t) − c1x2(t)

− σ1y(t)
1+d1x1(t)+e1x2(t)+µ1y(t)

]

,

ẋ2(t) = x2(t)
[

a2 + γ2 sin(θ2t) − b2x2(t) − c2x1(t)

− σ2y(t)
1+d2x1(t)+e2x2(t)+µ2y(t)

]

,

ẏ(t) = y(t)
[

− a3 + σ3x1(t)
1+d1x1(t)+e1x2(t)+µ1y(t)

+ σ4x2(t)
1+d2x1(t)+e2x2(t)+µ2y(t)

]

,

(1)

where x1(t), x2(t) denote the population densities of the two

prey and the predator at time t, respectively. The constant

ai(i = 1, 2) is the intrinsic growth rates of the prey population,

bi(i = 1, 2) are the coefficients of intra-specific competition,

ci(i = 1, 2) denote the parameters representing competitive ef-

fects between the two prey,σi(i = 1, 2) are the per-capita rates

of the predation of the predator, di(i = 1, 2) and ei(i = 1, 2)
represent the half-saturation constants, the constant a3 is the

death rate of the predator, the terms µi(i = 1, 2) scale the

impact of the predator interference, σi(i = 3, 4) are the rates

of the conversing prey into predator.

It is well known that any biological or environmental

parameters are naturally subject to fluctuation in time. It is

necessary and important to consider models with periodic

ecological parameters. Thus the assumption of periodicity of

the parameters is a way of incorporating the periodicity of
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the environment. Based on the viewpoint, we modify (1) as

follows
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

ẋ1(t) = x1(t)
[

a1(t) + γ1(t) sin(θ1(t)t) − b1(t)x1(t)

−c1(t)x2(t) −
σ1(t)y(t)

1+d1x1(t)+e1x2(t)+µ1y(t)

]

,

ẋ2(t) = x2(t)
[

a2(t) + γ2(t) sin(θ2(t)t) − b2(t)x2(t)

−c2(t)x1(t) −
σ2(t)y(t)

1+d2x1(t)+e2x2(t)+µ2y(t)

]

,

ẏ(t) = y(t)
[

−a3(t) + σ3(t)x1(t)
1+d1x1(t)+e1x2(t)+µ1y(t)

+ σ4(t)x2(t)
1+d2x1(t)+e2x2(t)+µ2y(t)

]

,

(2)

The principle object of this article is to consider the model
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



u∆
1 (t) = a1(t) + γ1(t) sin(θ1(t)t) − b1(t)e

u1(t)

− c1(t)e
u2(t) − σ1(t)e

u3(t)

1+d1eu1(t)+e1eu2(t)+µ1eu3(t) ,

u∆
2 (t) = a2(t) + γ2(t) sin(θ2(t)t) − b2(t)e

u2(t)

− c2(t)e
u1(t) − σ2(t)e

u3(t)

1+d2eu1(t)+e2eu2(t)+µ2eu3(t) ,

u∆
3 (t) = −a3(t) + σ3(t)e

u1(t)

1+d1eu1(t)+e1eu2(t)+µ1eu3(t)

+ σ4(t)e
u2(t)

1+d2eu1(t)+e2eu2(t)+µ2eu3(t) .
(3)

Remark 1.1. Let x1(t) = eu1(t), x2(t) = eu2(t), y(t) =
eu3(t). If T = R, then (1.3) reduces to the model (2). If T = Z,

then (3) is reformulated as
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



x1(t + 1) = x1(t) exp
{

a1(t) + γ1(t) sin(θ1(t)t) − b1(t)x1(t)

− c1(t)x2(t) −
σ1(t)y(t)

1+d1x1(t)+e1x2(t)+µ1y(t)

}

,

x2(t + 1) = x2(t) exp
{

a2(t) + γ2(t) sin(θ2(t)t) − b2(t)x2(t)

− c2(t)x1(t) −
σ2(t)y(t)

1+d2x1(t)+e2x2(t)+µ2y(t)

}

,

y(t + 1) = y(t) exp
{

− a3(t) + σ3(t)x1(t)
1+d1x1(t)+e1x2(t)+µ1y(t)

+ σ4(t)x2(t)
1+d2x1(t)+e2x2(t)+µ2y(t)

}

.

(4)

In order to obtain the main results of our paper, throughout

this paper, we assume

(H1) ai(t), σj(t), bl(t), cl(t), γl(t)(i = 1, 2, 3; j = 1, 2, 3, 4;
l = 1, 2) are positive continuous ω-periodic functions for

model (3).

The remainder of the paper is organized as follows: in

Section 2, we present some preliminary definitions, notations

and some basic knowledge for dynamic system on time scales.

In Section 3, a sufficient condition for the existence of positive

solutions of system (3) is obtained.
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II. PRELIMINARY RESULTS ON TIME SCALES

In order to make an easy and convenient reading of this

paper, we present some definitions and notations on time scales

which can be found in the literatures[1,12].

Definition 2.1. A time scale is an arbitrary nonempty closed

subset T of R, the real numbers. The set T inherits the

standard topology of R.

Definition 2.2. The forward jump operator σ : T → T,

the backward jump operator σ : T → T, and the graini-

ness µ : T → R
+ = [0,∞) are defined, respectively, by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s <
t}, µ(t) = σ(t) − t for t ∈ T. If σ(t) = t, then t is called

right-dense (otherwise: right-scattered), and if ρ(t) = t, then

t is called left-dense (otherwise: left-scattered).

Definition 2.3. A function f : T → R is said to be rd-

continuous if it is continuous at right-dense points in T and

its left-sides limits exists(finite) at left-dense points in T. The

set rd-continuous functions is shown by C1
rd = Crd(T) =

Crd(T, R).

Definition 2.4. For f : T → R and t ∈ R, we define f∆(t),
the delta-derivative of f at t, to be the number(provided it

exists) with the property that, given any ε > 0, there is a

neighborhood U of t in T such that

|[f(σ(t))−f(s)]−f∆(t)[σ(t)−s]| ≤ ε|σ(t)−s| for all s ∈ U.

Thus f is said to be delta-differentiable if its delta-derivative

exists. The set of functions f : T → R that are delta-

differentiable and whose delta-derivative are rd-continuous

functions is denoted by Crd = C1
rd(T) = C1

rd(T, R).

Definition 2.5. A function F : T → R is called a delta-

antiderivative of f : T → R provided F∆(t) = f(t), for all

t ∈ T. Then we write
∫ s

r
f(t)∆t := F (s)−F (r) for all s, t ∈

T.

For the usual time scales T = R, rd-continuous coincides

with the usual continuity in calculus. Moreover, every rd-

continuous function on T has a delta-antiderivative[9]. For

more information about the above definitions and their related

concepts, one can see [1,11-12].

III. EXISTENCE OF PERIODIC SOLUTIONS

For convenience and simplicity in the following discussion,

we always use the notations below throughout the paper.

Let T be ω-periodic, that is, t ∈ T implies t + ω ∈ T,
κ = min{R+∩T}, Iω = [κ, κ+ω]∩T, ḡ = 1

ω

∫

Iω
g(s)∆s =

1
ω

∫ κ+ω

κ
g(s)∆s, where g ∈ Crd(T) is an ω-periodic real

function, i.e., g(t + ω) = g(t) for all t ∈ T.

In order to explore the existence of positive periodic solu-

tions of (3) and for the reader,s convenience, we shall first

summarize below a few concepts and results without proof,

borrowing from [13].

Let X, Y be normed vector spaces, L : DomL ⊂ X → Y
is a linear mapping, N : X → Y is a continuous mapping.

The mapping L will be called a Fredholm mapping of index

zero if dimKerL = codimImL < +∞ and ImL is closed in

Y . If L is a Fredholm mapping of index zero and there exist

continuous projectors P : X → X and Q : Y → Y such

that ImP = KerL, ImL = KerQ = Im(I − Q), It follows

that L | DomL ∩ KerP : (I − P )X → ImL is invertible. We

denote the inverse of that map by KP . If Ω is an open bounded

subset of X , the mapping N will be called L−compact on Ω̄
if QN(Ω̄) is bounded and KP (I−Q)N : Ω̄ → X is compact.

Since ImQ is isomorphic to KerL, there exist isomorphisms

J : ImQ → KerL.

Lemma 3.1. ([13]Continuation Theorem ) Let L be a

Fredholm mapping of index zero and let N be L−compact

on Ω̄. Suppose

(a) For each λ ∈ (0, 1), every solution x of Lx = λNx is

such that x /∈ ∂Ω;
(b) QNx 6= 0 for each x ∈ KerL

⋂

∂Ω, and

deg{JQN, Ω
⋂

KerL, 0} 6= 0;

Then the equation Lx = Nx has at least one solution lying

in DomL
⋂

Ω̄.

Lemma 3.2. [3] Let t1, t2 ∈ Iω and t ∈ T. If g : T → R is

ω-periodic, then

g(t) ≤ g(t1) +

∫ κ+ω

κ

|g∆(s)|∆s,

and

g(t) ≥ g(t2) −

∫ κ+ω

κ

|g∆(s)|∆s.

Lemma 3.3. If the condition (H1) holds, then the following

equations







ā1 − b̄1e
u1 = 0,

ā2 − b̄2e
u2 = 0,

−ā3 + σ̄3eu1

1+d1eu1+e1eu2+µ1eu3(t) = 0
(5)

has a unique solution (u∗

1, u
∗

2, u
∗

3)
T .

The proofs of Lemma 3.3 are trivial, so we omitted the details

here.

Theorem 3.1. Let S1, S1, S2 and S2 be defined by

(15),(28),(19) and (32), respectively. In addition to (H1),

suppose that

(H2) ā3 > max
{

σ̄3e
S1 , σ̄4e

S1

}

, σ̄3e
S2 > ā3

(

1 + d1e
S2 + e1e

S1

)

hold, then (3) has at least one ω-periodic solution.

Proof. Define X = Z = {(u1, u2, u3)
T ∈ C(T, R3)|ui ∈

Crd, ui(t + ω) = ui(t), i = 1, 2, 3},

||(u1, u2, u3)
T || =

3
∑

i=1

max
t∈Iω

|ui(t)|, (u1, u2, u3)
T ∈ X(or Z).

DomL = {x = (u1, u2, u3)
T ∈ X|ui ∈ Crd, i = 1, 2, 3}.

It is easy to see that X and Z are both Banach spaces if they

are endowed with the above norm ||.||. For (u1, u2, u3)
T ∈ X ,



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:12, 2011

1911

we define

N





u1

u2

u3



 (t) =





f1(t)
f2(t)
f3(t)



 , L





u1

u2

u3



 (t) =





u∆
1 (t)

u∆
2 (t)

u∆
3 (t)



 ,

P





u1

u2

u3



 (t) = Q





u1

u2

u3



 (t) =







1
ω

∫ κ+ω

κ
u1(t)∆t

1
ω

∫ κ+ω

κ
u2(t)∆t

1
ω

∫ κ+ω

κ
u3(t)∆t






,

where

f1(t) = a1(t) + γ1(t) sin(θ1(t)t) − b1(t)e
u1(t) − c1(t)e

u2(t)

−
σ1(t)e

u3(t)

1 + d1eu1(t) + e1eu2(t) + µ1eu3(t)
,

f2(t) = a2(t) + γ2(t) sin(θ2(t)t) − b2(t)e
u2(t) − c2(t)e

u1(t)

−
σ2(t)e

u3(t)

1 + d2eu1(t) + e2eu2(t) + µ2eu3(t)

f3(t) = −a3(t) +
σ3(t)e

u1(t)

1 + d1eu1(t) + e1eu2(t) + µ1eu3(t)

+
σ4(t)e

u2(t)

1 + d2eu1(t) + e2eu2(t) + µ2eu3(t)
.

Then

KerL = {(u1, u2, u3)
T ∈ X|(u1(t), u2(t), u3(t))

T

= (h1, h2, h3)
T ∈ R

3 for t ∈ T},

ImL = {(u1, u2, u3)
T ∈ X|

∫ κ+ω

κ

ui(t)∆t = 0,

(i = 1, 2, 3) for t ∈ T}.

Then dim KerL = 3 = codim ImL. Since ImL is closed in Z,

L is a Fredholm mapping of index zero, it is easy to show that

P and Q are continuous projections and ImP = KerL, ImL =
KerQ = Im(I − Q). Clearly, QN and Kp(I − Q)N are

continuous. It can be shown that N is L-compact on Ω̄ for

every open bounded set, Ω ⊂ X.
Now we are at the point to search for an appropriate open,

bounded subset Ω for the application of the continuation theo-

rem. Corresponding to the operator equation L(u1, u2, u3)
T =

λN(u1, u2, u3)
T , λ ∈ (0, 1), we have







u∆
1 (t) = λf1(t),

u∆
2 (t) = λf2(t),

u∆
3 (t) = λf2(t).

(6)

Suppose that x(t) = (u1(t), u2(t), u3(t))
T ∈ X is an arbitrary

solution of system (6) for a certain λ ∈ (0, 1), Integrating (6)

over the set Iω, we obtain














































ā1ω +
∫ κ+ω

κ
γ1(t) sin(θ1(t)t)∆t =

∫ κ+ω

κ
b1(t)e

u1(t)∆t

+
∫ κ+ω

κ
c1(t)e

u2(t)∆t +
∫ κ+ω

κ

σ1(t)e
u3(t)

1+d1eu1(t)+e1eu2(t)+µ1eu3(t) ∆t,

ā2ω +
∫ κ+ω

κ
γ2(t) sin(θ2(t)t)∆t =

∫ κ+ω

κ
b2(t)e

u2(t)∆t

+
∫ κ+ω

κ
c2(t)e

u1(t)∆t +
∫ κ+ω

κ

σ2(t)e
u3(t)

1+d2eu1(t)+e2eu2(t)+µ2eu3(t) ∆t,

ā3ω =
∫ κ+ω

κ

σ3(t)e
u1(t)

1+d1eu1(t)+e1eu2(t)+µ1ey(t) ∆t

+
∫ κ+ω

κ

σ4(t)e
u2(t)

1+d2eu1(t)+e2eu2(t)+µ2eu3(t) ∆t

(7)

Since (u1, u2, u3)
T ∈ X , there exists ξi, ηi ∈ [κ, κ + ω], i =

1, 2, 3 such that

ui(ξi) = min
t∈[κ,κ+ω]

{ui(t)}, ui(ηi) = max
t∈[κ,κ+ω]

{ui(t)}.

It follows from (6) and (7) that
∫ κ+ω

κ

|u∆
1 (t)|∆t < 2(ā1 + γ̄1)ω, (8)

∫ κ+ω

κ

|u∆
2 t|∆(t) < 2(ā2 + γ̄2)ω, (9)

∫ κ+ω

κ

|u∆
3 t|∆(t) < 2ā3ω. (10)

From the first equation of (7), it follows that

(ā1 + γ̄1)ω >

∫ κ+ω

κ

b1(t)e
u1(t)∆t

≥

∫ κ+ω

κ

b1(t)e
u1(ξ1)∆t = b̄1ωeu1(ξ1)

and

(ā1 + γ̄1)ω >

∫ κ+ω

κ

c1(t)e
u2(t)∆t

≥

∫ κ+ω

κ

c1(t)e
u2(ξ2)∆t = c̄1ωeu2(ξ1).

Then

u1(ξ1) < ln

[

ā1 + γ̄1

b̄1

]

:= m1, u2(ξ2) < ln

[

ā1 + γ̄1

c̄1

]

:= m2.

(11)

In the sequel, we consider two cases.

(i) If u1(η1) ≥ u2(η2), then it follows from the third equation

of (7) that

ā3ω ≤

∫ κ+ω

κ

σ3(t)e
u1(t)∆t +

∫ κ+ω

κ

σ4(t)e
u2(t)∆t

≤

∫ κ+ω

κ

σ3(t)e
u1(η1)∆t +

∫ κ+ω

κ

σ4(t)e
u2(η2)∆t

≤

∫ κ+ω

κ

σ3(t)e
u1(η1)∆t +

∫ κ+ω

κ

σ4(t)e
u1(η1)∆t

= (σ̄3 + σ̄4)ωeu1(η1)

which leads to

u1(η1) > ln

[

ā3

σ̄3 + σ̄4

]

:= M1. (12)

Based on (8), (11) and (12), using the Lemma 3.2, we get

u1(t) ≤ u1(ξ1) +

∫ κ+ω

κ

|u∆
1 (t)|∆t

≤ m1 + 2(ā1 + γ̄1)ω =: B1, (13)

u1(t) ≥ u1(η1) −

∫ κ+ω

κ

|u∆
1 (t)|∆t

≥ M1 − 2(ā1 + γ̄1)ω =: B2. (14)

Thus

max
t∈Iω

|x1(t)| ≤ max{|B1|, |B2|} := S1. (15)
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From the third equation of (7), it follows that

ā3ω ≤

∫ κ+ω

κ

σ3(t)e
u1(t)∆t +

∫ κ+ω

κ

σ4(t)e
u2(t)∆t

≤

∫ κ+ω

κ

σ3(t)e
S1∆t +

∫ κ+ω

κ

σ4(t)e
u2(η2)∆t

≤ σ̄3ωeS1 +

∫ κ+ω

κ

σ4(t)e
u2(η2)∆t

= σ̄3ωeS1 + σ̄4ωeu2(η2).

Then

u2(η2) ≥ ln

[

ā3 − σ̄3e
S1

σ̄4

]

:= M2. (16)

From (9),(11) and (16) and using the Lemma 3.2, we obtain

u2(t) ≤ u2(ξ2) +

∫ κ+ω

κ

|u∆
2 (t)|∆t

≤ m2 + 2(ā2 + γ̄2)ω =: B3, (17)

u2(t) ≥ u2(η2) −

∫ κ+ω

κ

|u∆
2 (t)|∆t

≥ M2 − 2(ā2 + γ̄2)ω =: B4. (18)

It follows from (17) and (18) that

max
t∈Iω

|u2(t)| ≤ max{|B3|, |B4|} := S2. (19)

In view of the third equation of (7), we get

ā3ω >

∫ κ+ω

κ

σ3(t)e
u1(t)

1 + d1eu1(t) + e1eu2(t) + µ1eu3(t)
∆t

≥

∫ κ+ω

κ

σ3(t)e
−S1

1 + d1eS1 + e1eS2 + µ1eu3(η3)
∆t

=
σ̄3ωe−S1

1 + d1eS1 + e1eS2 + µ1eu3(η3)
.

Then

u3(η3) > ln

[

σ̄3e
−S1 − ā3(1 + d1e

S1 + e1e
S2)

ā3µ1

]

:= M3.

(20)

According to the third equation of (7), we also have

ā3ω <

∫ κ+ω

κ

σ3(t)e
u1(t)

µ1eu3(t)
∆t +

∫ κ+ω

κ

σ4(t)e
u2(t)

µ2eu3(t)
∆t

≤
σ̄3e

S1ω

µ1eu3(ξ3)
+

σ̄4e
S2ω

µ2eu3(ξ3)
.

Hence

u3(ξ3) ≤ ln

[

σ̄3µ2e
S1 + σ̄4µ1e

S2

ā3µ1µ2

]

:= m3. (21)

From (10),(20) and (21) and using the Lemma 3.2, we obtain

u3(t) ≤ u3(ξ3) +

∫ κ+ω

κ

|u∆
3 (t)|∆t

≤ m3 + 2ā3ω =: B5, (22)

u3(t) ≥ u3(η3) −

∫ κ+ω

κ

|u∆
3 (t)|∆t

≥ M3 − 2ā3ω =: B6. (23)

It follows from (22) and (23) that

max
t∈Iω

|u3(t)| ≤ max{|B5|, |B6|} := S3. (24)

(ii) If u1(η1) < u2(η2), then it follows from the third equation

of (7) that

ā3ω ≤

∫ κ+ω

κ

σ3(t)e
u1(t)∆t +

∫ κ+ω

κ

σ4(t)e
u2(t)∆t

≤

∫ κ+ω

κ

σ3(t)e
u1(η1)∆t +

∫ κ+ω

κ

σ4(t)e
u2(η2)∆t

≤

∫ κ+ω

κ

σ3(t)e
u2(η2)∆t +

∫ κ+ω

κ

σ4(t)e
u2(η2)∆t

= (σ̄3 + σ̄4)ωeu2(η2)

which leads to

u2(η2) > ln

[

ā3

σ̄3 + σ̄4

]

:= M1. (25)

Based on (9), (11) and (25), using the Lemma 3.2, we get

u2(t) ≤ u2(ξ2) +

∫ κ+ω

κ

|u∆
2 (t)|∆t

≤ m2 + 2(ā2 + γ̄2)ω =: B1, (26)

u2(t) ≥ u2(η2) −

∫ κ+ω

κ

|u∆
2 (t)|∆t

≥ M1 − 2(ā2 + γ̄2)ω =: B2. (27)

Thus

max
t∈Iω

|u2(t)| ≤ max{|B1|, |B2|} := S1. (28)

From the third equation of (7), it follows that

ā3ω ≤

∫ κ+ω

κ

σ3(t)e
u1(t)∆t +

∫ κ+ω

κ

σ4(t)e
u2(t)∆t

≤

∫ κ+ω

κ

σ3(t)e
u1(η1)∆t +

∫ κ+ω

κ

σ4(t)e
S1∆t

≤

∫ κ+ω

κ

σ3(t)e
u1(η1)∆t + σ̄4ωeS1

= σ̄3ωeu1(η1) + σ̄4ωeS1 .

Then

u1(η1) ≥ ln

[

ā3 − σ̄4e
S1

σ̄3

]

:= M2. (29)

From (8),(11) and (29) and using the Lemma 3.2, we obtain

u1(t) ≤ u1(ξ1) +

∫ κ+ω

κ

|u∆
1 (t)|∆t

≤ m1 + 2(ā1 + γ̄1)ω =: B3 (30)

u1(t) ≥ u1(η1) −

∫ κ+ω

κ

|u∆
1 (t)|∆t

≥ M2 − 2(ā1 + γ̄1)ω =: B4. (31)

It follows from (30) and (31) that

max
t∈Iω

|u1(t)| ≤ max{|B3|, |B4|} := S2. (32)
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In view of the third equation of (7), we get

ā3ω >

∫ κ+ω

κ

σ3(t)e
u1(t)

1 + d1eu1(t) + e1eu2(t) + µ1eu3(t)
∆t

≥

∫ κ+ω

κ

σ3(t)e
−S2

1 + d1eS2 + e1eS1 + µ1eu3(η3)
∆t

=
σ̄3ωe−S2

1 + d1eS2 + e1eS1 + µ1eu3(η3)
.

Then

u3(η3) > ln

[

σ̄3e
−S2 − ā3(1 + d1e

S2 + e1e
S1)

ā3µ1

]

:= M3.

(33)

According to the third equation of (7), we also have

ā3ω <

∫ κ+ω

κ

σ3(t)e
u1(t)

µ1eu3(t)
∆t +

∫ κ+ω

κ

σ4(t)e
u2(t)

µ2eu3(t)
∆t

≤
σ̄3e

S2ω

µ1eu3(ξ3)
+

σ̄4e
S1ω

µ2eu3(ξ3)
.

Hence

u3(ξ3) ≤ ln

[

σ̄3µ2e
S2 + σ̄4µ1e

S1

ā3µ1µ2

]

:= m̄3. (34)

From (10),(33) and (34) and using the Lemma 3.2, we obtain

u3(t) ≤ u3(ξ3) +

∫ κ+ω

κ

|u∆
3 (t)|∆t

≤ m̄3 + 2ā3ω =: B5, (35)

u3(t) ≥ u3(η3) −

∫ κ+ω

κ

|u∆
3 (t)|∆t

≥ M3 − 2ā3ω =: B6. (36)

It follows from (35) and (36) that

max
t∈Iω

|u3(t)| ≤ max{|B5|, |B6|} := S3. (37)

Obviously, Si, Si(i = 1, 2, 3) are independent of the choice

of λ ∈ (0, 1). Take M = max{S1, S2} + max{S2, S1} +
max{S3, S3} + S0, where S0 is taken sufficiently large

such that S0 ≥ |m1| + |m2| + |m3| + max{|M1|, |M2|} +
max{|M2|, |M1|} + max{|M3|, |M3|}.

Now we define Ω := {(u1, u2, u3)
T ∈ X : ||u|| < M}. It

is clear that Ω verifies the requirement (a) of Lemma 3.1. If

(u1, u2, u3)
T ∈ ∂Ω

⋂

KerL = ∂Ω
⋂

R
3, then (u1, u2, u3)

T is

a constant vector in R
3 with ||(u1, u2, u3)

T || = |u1| + |u2| +
|u3| = M . Then

QN





u1

u2

u3



 =





P1

P2

P3



 6=





0
0
0



 ,

where

P1 = ā1 − b̄1e
u1 − c̄1e

u2 −
σ̄1e

u3

1 + d1eu1 + e1eu2 + µ1eu3

−
1

ω

∫ κ+ω

κ

γ1(t) sin(θ1(t)t)∆t,

P2 = ā2 − b̄2e
u2 − c̄2e

u1 −
σ̄2e

u3

1 + d2eu1 + e2eu2 + µ2eu3

−
1

ω

∫ κ+ω

κ

γ2(t) sin(θ2(t)t)∆t,

P3 = −ā3 +
σ̄3e

u1

1 + d1eu1 + e1eu2 + µ1eu3(t)

+
σ̄4e

u2

1 + d2eu1 + e2eu2 + µ2eu3
.

Now let us consider homotopic φ(u1, u2, u3, µ) = µQNx +
(1 − µ)Gx, µ ∈ [0, 1], u = (u1, u2, u3)

T , where

Gx =





ā1 − b̄1e
u1

ā2 − b̄2e
u2

−ā3 + σ̄3eu1

1+d1eu1+e1eu2+µ1eu3(t)



 .

Letting J be the identity mapping. By direct calculation, we

derive

deg
[

JQN(u1, u2, u3)
T ; Ω

⋂

KerL; 0
]

= deg
[

QN(u1, u2, u3)
T ; Ω

⋂

KerL; 0
]

= deg
[

φ(u1, u2, u3, 1); Ω
⋂

KerL; 0
]

= deg
[

φ(u1, u2, u3, 0); Ω
⋂

KerL; 0
]

= sign
[

−(b̄1b̄2µ1σ̄3)e
(2u∗

1+u∗

2+u∗

3)
]

= −1 6= 0,

where deg(., ., ., ) is the Brower degree. Thus we have proved

that Ω verifies all requirements of Lemma 3.1, then it follows

that Lx = Nx has at least one solution in DomL ∩ Ω. The

proof is complete.
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