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Abstract—Many supervised induction algorithms require dis-
crete data, even while real data often comes in a discrete
and continuous formats. Quality discretization of continuous
attributes is an important problem that has effects on speed,
accuracy and understandability of the induction models. Usually,
discretization and other types of statistical processes are applied
to subsets of the population as the entire population is practically
inaccessible. For this reason we argue that the discretization
performed on a sample of the population is only an estimate of
the entire population. Most of the existing discretization methods,
partition the attribute range into two or several intervals using
a single or a set of cut points. In this paper, we introduce a
technique by using resampling (such as bootstrap) to generate
a set of candidate discretization points and thus, improving the
discretization quality by providing a better estimation towards
the entire population. Thus, the goal of this paper is to observe
whether the resampling technique can lead to better discretiza-
tion points, which opens up a new paradigm to construction of
soft decision trees.

Index Terms—Bootstrap, discretization, resampling, soft deci-
sion trees.

I. INTRODUCTION

D ISCRETIZATION is a general purpose preprocessing

method that can be used for data exploration or data

preparation in data mining. While they are critical in the case

of decision tree methods, discretization methods can also be

used for bayesian networks, rule-set algorithms or logistic

regression. However, discretization methods have mainly been

evaluated using decision trees such as CART [2] or C4.5 [3].

Many real-world classification algorithms are hard to solve

unless the continuous attributes are discretized and Kusiak

[13] emphasized that the choice of the discretization technique

has important consequences on the induction model used.

In the Top-Down Induction of Decision Trees family, the

algorithms for discretization are based mostly on binarization

within a subset of training data [11]. A simple unsupervised

discretization procedure divides the range of a continuous

variable into equal-width intervals or equal-frequency inter-

vals. While, supervised methods use information quality or

statistical quality based measures to determine the interval

boundary points. These algorithms reduce the number of

attributed values maintaining the relationship between the class

and attribute values.

Y.Yang et al [18] and Liu et al. [14] classified discretiza-

tion methods from into different viewpoints: supervised vs.

unsupervised, static vs. dynamic, global vs. local, top-down

vs. bottom-up, Parameterized vs. Unparameterized, Disjoint

vs. Non-disjoint, Univariate vs. Multivariate, primary vs. com-

posite and Split vs. Merge. Out of these, Top-down methods

as FUSBIN and MDLPC [6], [7] start with one interval

and split intervals in the process of discretization. While,

bottom-up methods like FUSINTER[6] and Chi-Merge [5]

split completely all the continuous values of the attribute and

merge intervals in the process of discretization. In this article,

we focus on these two types of strategies in determining better

discretization points and providing comparisons in terms of

quality and prediction rates [1].

Our goal is to find a way to produce better discretization

points. Previously, various studies have been done to estimate

the discretization points from learning samples taken from the

population. Because of inaccessibility of entire populations,

we usually try to estimate statistical processes such as dis-

cretization from samples rather than the population. Signifi-

cantly, in [1], a set of learning samples are used to approximate

the best discretization points of the whole population. They

argue that the learning sample is just an approximation of the

whole population, so the optimal solution built on a single

sample set is not necessarily the global one. Taking this point

into consideration, in this paper we try to provide a better

estimate toward the entire population.

Our interpretation of the above problem leads us to use

a resampling approach [4] to determine better distribution

estimates of the data sample. Thus, we focus on obtaining

discretization points from the data sample which has a higher

probability to be the ’better estimate’ in terms of distribution

of the whole population and so, the resulting discretization

to be a better estimate as well. By doing so, we attempt to

improve on the predication accuracy of discretization and thus,

treating the discretization problem in the statistical area with

new results. We use ordinary bootstrap [9] as a method for

resampling in our approach which tries to improve on the

above mentioned problem. We argue that the recent increase in

processing power of computers has allowed us to use extensive

resampling analysis in order to find better estimates of the

larger population.

In this paper we focus on supervised discretization. In

our approach, we create a histogram density function of an

attribute Xi by repeatedly resampling the data sample and

obtaining a collective distribution of class frequencies (in

percentages), which is obtained at each value of the attribute

Xi from the entire resampled data. As a result we get an

ensemble distribution function for all the classes. By doing so

we try to obtain a better estimate of the class distribution of

the data in relation to the entire population. Next, we apply a
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smoothing procedure to this distribution function and then find

the resulting decision boundaries which, we consider as our

discretization points. This work has also enabled us to extend

this concept a step further towards soft or fuzzy discretization

[16] which, is out of scope of this paper.

In section 2, we lay out the framework for discretization

and define the various terminologies. We also discuss the

various data sets used in our experiments. In 3, we briefly

describe various existing top-down and bottom-up discretiza-

tion strategies used in our paper. Then, in section 4, we give

a detailed illustration of our proposed scheme and then in

5, we show our results by applying the explained techniques

to 10 benchmarking data sets. We also compare different

discretization strategies to ours and at the end we conclude

with observations, deductions and proposals for future work.

II. TERMINOLOGIES AND DEFINITIONS

A. Framework and Formulation

Let X(.) be an attribute value on the real set ℜ. For each

example ω of a learning set Ω, X(ω) is the value taken by the

attribute X(.) at ω. The attribute C(.) is called the endogenous

variable or class and is usually symbolic and if an example

belongs to a class c, we have C(ω) = c. We also suppose that

C(ω) is known for all ω of the learning sample set Ω. Thus,

we try to build a model, denoted by Φ, such that ideally we

have: C(.) = Φ(X1(.), ..., Xp(.)))
The discretization of X(.) consists in splitting the domain

Dx of continuous attribute X(.), into k intervals Ij , j =
1, ...., k, with k ≥ 1. We denote Ij = [dj−1, dj ] with the

d
′

j
s called the discretization points which, are determined by

taking into account the particular attribute C(.). The purpose

of the method is to build a model which can predict class C(.)
relative to X(.).

B. Resampling

We use an Ordinary Bootstrap method [?] for resampling in

which the learning and test sets overlap. In this, a prediction

rule is built on a bootstrap sample and tested on the original

sample, averaging the misclassification rates across all boot-

strap replications gives the ordinary bootstrap estimate.

1) Smoothing: We use simple moving average (SMA) as

a smoothing technique which is the unweighted mean of the

previous n data points.

2) Decision Boundary: The decision boundary DB [18] is

the intersection of any two class based distribution functions

which, (in our case) are built from resampling the sample

data and building (then smoothing) a histogram based on class

frequencies. This is illustrated in fig 1.

C. Quality of Discretization

We use three factors to analyze the quality of the obtained

discretization.

Fig. 1. (a) Decision boundaries for class 1 and 2 (Top). (b) Two class
frequency distribution before smoothing (Middle). (c) Two class frequency
distribution after smoothing (Bottom)

1) Prediction Accuracy: The goal of the discretization is

to make the class C(.) predictable by an attribute X(.). To

measure this prediction rate we define a notion of prediction

accuracy of the achieved discretization as follows:

The discretization of the attribute Xj from a sample Ωs,

provides k intervals denoted I
j

i
; i = 1, .., k. For each ω taken

from the test sample Ωt we denote I
j

i
the interval to which

it belongs after discretization of the sample Ωs. The point ω

will be labeled C(ω) = c
∗ if the majority of the points in

the Ωt that are in I
j

i
have the class c

∗. This corresponds to a

bayesian decision rule with a matrix of symmetrical costs and

prior probabilities of the classes estimated by the proportion of

the individuals belonging to each class in the Ωt. We measure

the quality of the discretization by the rate of good predictions:

τj =
card{ω∈Ωt/Ĉ(ω)=C(ω)}

card{Ωt}

We denote by τj the good prediction rate resulting from the

discretization of Xj obtained by applying a method on the

sample Ωs.

2) Complexity: In measuring the complexity of a discretiza-

tion we take into account the number of intervals Inumber

obtained in the resulting discretization. Large number of

intervals increase the complexity of the induction algorithm
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that use the discretized input and also because a large number

of intervals are likely to increase the discretization bias and

variance. Higher discretization variance effects the quality of

discretization even if the prediction accuracy is high. This

property is explained by Yang et al [18].

3) Robustness: We introduce a concept of robustness. This

is equal to the prediction accuracy in terms of the training

sample divided by the predication accuracy of the whole pop-

ulation (which is known in our experiments). This measures

the degree of accurate estimation of the population from a

small training sample.

D. Data Sets

In this article, we used 10 data sets for comparisons and

analysis taken from U.C. Irvine repository [19] shown in figure

2.

Fig. 2. Data sets and their summary.

III. EVALUATED DISCRETIZATION TECHNIQUES

We have evaluated 7 different discretization methods.

Out of these 3 methods use topdown technique such as

(MDLPC,Fusbin,BalancedGain) and 3 use bottomup (Fusin-

ter,Chimerge,MODL), while 1 is based on an optimal algo-

rithm (Fisher). A brief description of these methods is given

below, while we describe 2 of these methods in detail.

The MDLPC method is a greedy top-down split method,

whose evaluation criterion is based on the Minimum Descrip-

tion Length Principle [?]. At each step of the algorithm, the

MDLPC evaluates two hypotheses (to cut or not to cut the

interval) and chooses the hypothesis whose total encoding

cost (model plus exceptions) is the lowest. The BalancedGain

method exploits a criterion similar to the GainRatio criterion

[15]: it divides the entropy-based Information Gain criterion

by the log of the parity of the partition in order to penalize

excessive multisplits. Fusbin is a topdown method whereas,

the Fusinter method is a greedy bottom-up method. Both

exploit an uncertainty measure sensitive to the sample size.

Its criterion employs a quadratic entropy term to evaluate the

information in the intervals and is regularized by a second

term in inverse proportion of the interval frequencies. The

ChiMerge [5] method is a greedy bottom-up merge method

that locally exploits the chi-square criterion to decide whether

two adjacent intervals are similar enough to be merged. MODL

[?] algorithm is based on a bayesian approach [18]. It defines a

criterion which is minimal for the bayes optimal discretization.

Fisher’s algorithm is a dynamic programming algorithm that

tries to find the optimal partition given by W.Fisher, presented

in detail by Zighed et al [1].

IV. PROPOSED SCHEME USING RESAMPLING

A. Assumptions

(a) In each interval, the distribution of the class values is

defined by the frequencies of the class values in this interval.

(b) The attributes the conditionally independent of each other

given the class. (c) Thus, we discretize one attribute at a time

(in two dimensions).

B. Our Approach

Earlier, we argued that the learning sample is just an approx-

imation of the whole population, so the optimal discretization

solution built on a single sample set is not necessarily the

global one. Thus, our approach is based on finding a better

discretization estimate toward the entire population in terms

of discretization quality (as discussed above), using a sample

selected randomly from that population and then resampling

it. We use a ordinary bootstrap based resampling technique to

achieve this objective. Our technique is explained below:

C. Resampled Data Distribution (RDD) based Technique us-

ing Decision Boundaries

Our proposed discretization technique known as RDD com-

prises of the following steps:

• We take a random data sample Ωrs from the entire

population.

• From this data sample Ωrs, we generate a large data

sample Ωbs by repeated resampling of Ωrs, n = 1000
times by using ordinary bootstrap.

• Next, we create an ensemble histogram density function

of the attribute Xi (to be discretized). This is achieved by

merging the plots of all the class frequency histograms

(percentage frequencies) as shown in fig 1b.

• Then we apply a smoothing procedure with n = 3 to

each class frequency curve as illustrated in fig 1c.

• Finally, our discretization points are the decision bound-

aries which are the intersection of the curves of any two

or more classes. This is illustrated in fig 1a.

By building a collective histogram frequency distribution of

all the classes, we try to obtain a better estimate of the class

distribution of data relative to the entire population. Thus, this

can be termed as a prior distribution or a probabilty density

function and its application can extend also in naive bayesian

classifiers [18].

V. RESULTS - ANALYSIS AND COMPARISONS

We obtained discretization points from our approach RDD

(as explained above) and we compare this solution to the

other 6 discretization methods in the same way as above.
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The MODL, MDLPC and BalancedGain methods have an

automatic stopping rule and do not require any parameter

setting. For the Fusinter criterion, we use the regularization

parameters recommended in [1]. For the ChiMerge method,

the significance level is set to 0.95 for the chi-square test

threshold.

In order to find the add-value of our resampling based

discretization techniques and compare them with the above

mentioned top-down and bottom-up strategies, we measure

the quality of discretization and comparing the strategies

considering 10 different datasets.

For our main analysis we used 10 data sets taken from

U.C. Irvine repository (figure 2) [19] having 85 continuous

attributes denoted as (X1(ω), ..., X85(ω)) and a label C(ω).
We used random learning samples Ωrs consisting of 5 percent

of the size of original data sets. We measured the geometric

mean of number of intervals µInumber
, accuracy rate, and

robustness from discretization from 10 random samples of 5

percent of the size of the data set from all the 85 variables

using all the 7 methods discussed. Then we calculated RDD

as described above. The resulting measures and their results

are explained in the following subsections along with figures

3 to 10.

Fig. 3. Comparison of accuracy between the methods.

A. Predication Accuracy

Figure 3 shows the cumulative accuracy rates of all the

discretization methods plotted against the 85 continuous at-

tributes taken from 10 data sets of fig 2. It shows the curve

of RDD, being above all the curves of the other methods

including MDLPC from which our methods are originally built

(by resampling and obtaining selected discretization points) as

explained earlier.

As we have plotted the curves using all the attributes so

the graphical representation might not be very clear, thus we

plot the accuracy measurements as repartition functions of the

relative differences of accuracy in fig 4 and then we summarize

this comparison in the table of fig 9.

In order to analyze the relative differences of accuracy for

the 85 attributes in more details, we collect all the geometric

Fig. 4. Repartition function of the relative differences of accuracy
between RDD and other methods.

mean ratios per attribute in ascending order. Figure 4 shows

the repartition functions of the relative differences of accuracy

between RDD method and all the other discretization methods.

Each point in this repartition function is the summary of 100

discretization experiments performed on the same attribute.

Such repartition functions represent a convenient tool for the

fine grain analysis of the differences between methods, in

complement with the multi-criteria analysis (that we perform

later) carried out on the coarse dataset geometric means. A

flat curve reflects two methods that do not differentiate on any

of the experiments. A symmetric curve correspond to methods

that globally perform equally well, but with differences among

the experiences. An unbalanced curve reveals a situation of

dominance of one method over the other, with insights on the

intensity of the domination and on the size of the region of

dominance.

Fig 4 shows the repartition function of all the discretization

methods discussed above in comparison with RDD. Our

approach dominates Chimerge and Balancedgain in about

90 percent of the attributes with up to 20 percent better

accuracy. Its performance is the same with MDLPC, MODL

and FUSINTER for about 20 percent of the attributes and

dominates them in the rest of 70 percent with up to 15 percent

better accuracy. The most important point to note that in

this case Fishers optimal algorithm has somewhat of the flat

curve showing the closeness of performances in comparison

to RDD. Although, it is slightly dominated by Fisher in about

30 percent of the attributes.

B. Complexity - Number of Intervals

In this section we compare the number of intervals gener-

ated by each method. Large number of intervals contribute to

the complexity of the induction algorithm and add discretiza-

tion bias and variance as discussed before. Fig 5 shows an

asymmetric repartition function of the relative differences of

number of intervals generated by each method in comparison

to our RDD method. Fig 5 shows that RDD dominates

Chimerge and Fusbin in 75 to 90 percent of the attributes

which is the curve below the 100 percent mark. The reason
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Fig. 5. Repartition function of the relative differences of number of
intervals between RDD and other methods.

for this is that smaller number of intervals is better than a

large number. It demonstrates a flat curve for Fusinter and

Balancedgain for about 50 percent of the attributes while, is

dominated by MDLPC and MODL for about 80 percent of the

attributes.

Fig. 6. Repartition function of the relative differences of robustness
between RDD and other methods.

C. Bi-criteria Evaluations

In multi-criteria analysis, a solution dominates (or is non-

inferior to) another one if it is better for all criteria. A

solution that cannot be dominated is Pareto optimal: any

improvement of one of the criteria causes a deterioration on

another criterion. The Pareto surface is the set of all the Pareto

optimal solutions.

In order to analyze both the accuracy and robustness results,

we report the dataset geometric means on a two-criteria

plan in Figure 7, with the accuracy on the x-coordinate and

the robustness on the y-coordinate. Similarly, we report the

accuracy and the number of intervals in Figure 8. Each point

in these figures represents the summary of all the experiments.

The multi-criteria figures are thus reliable and informative:

they allow us to clearly differentiate the behavior of almost

all the methods.

Fig. 7. Bi-criteria evaluation of the methods for the accuracy and
number of intervals, using datasets geometric means.

Accuracy is certainly the most important parameter to

distinguish a discretization method so we have grouped it in

both the analysis of fig 7 and 8. Fig 7 clearly shows that

RDD clearly outperforms all the other methods in accuracy

and robustness. MDLPC and MODL are very close to each

other with Fusinter not far behind. Balancedgain has the worst

robustness but chimerge has the worst accuracy.

In fig 8, RDD again outperforms in terms of accuracy but in

terms of the number of intervals is only better than Chimerge,

Balancedgain and Fusbin. It is outperformed in this regard by

Fusinter, MDLPC and MODL. Chimerge shows a relatively

bad result here as well.

D. Comparison Summary

Fig. 8. Comparison of the critical area between all the methods.

Instead of comparing the mean accuracy of all the methods,

we measure the critical area t
∗ of the difference of each

method. The methods are compared two by two according to

the following statistical procedure. Let u and v be two methods

to compare. We form the difference Γuv between the rates of

well ordered elements of the methods u and v. This difference

is a random attribute which is roughly normal with parameters

(µ, σ). We conclude that u is better than v if µ is significantly

superior to 0.

We have n = 85 * 10 observations. The estimated mean

value µ and mean standard deviation σ are:

µuv = 1
850

∑11,21
j=1,s=1 γ

uv

js
; where, γ

uv

js
= γ

u

js
− γ

v

js

σuv =
√

1
850

∑11,21
j=1,s=1 γuv

js
− µuv
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The critical area is:

t
∗ = µuv

σuv/
√

n
> t1−α

with t1−α the critical value at the rate α of a Student’s

law with (n − 1) degrees of freedom. Since, n is large, we

have for α = 0.05, t1−α/2 = 1.96. The computed t
∗ results

are reported in figure 9. Positive values of t
∗ indicate that the

method in the row is better than the method in the column.

Aside from Chi-Merge method whose results are relatively

bad, all the other methods have relatively smaller differences.

However, RDD significantly, report much better results and

draw much closer to Fishers optimal results.

E. Time Complexity

In terms of time complexity among these methods MDLPC

seemed to be the best with a much lesser time complexity.

FUSBIN and FUSINTER also have a smaller time complex-

ity in comparison to Fisher’s optimal algorithm which is

the most computationally intensive. The time complexity of

RDD depends mainly on the number of bootstrap samples

generated, but the more bootstrap samples, the better the

discretization quality. For maximum of 500 bootstrap samples

RDD performs the best, but if the bootstrap samples are

increased the performance suffers. This is a trade-off between

time complexity and quality. But with vast improvements in

computing speeds, we argue that quality could be a much

valuable commodity.

VI. CONCLUSION

The learning sample is an approximation of the whole

population, so the optimal discretization built on a single

sample set is not necessarily the global optimal one. Our

Resampling based approach tends to give a better data dis-

tribution estimate in terms of achieving better discretization

quality. Applying our technique although suffers a little in

terms of the number of intervals, but improves robustness and

prediction accuracies and thus, aiming to arrive nearer to a

global optimal solution (Fisher’s optimal algorithm). Except

for Chi-Merge and Balancedgain, the other methods provide

small variations in terms of prediction rates. MDLPC performs

the best in terms of number of intervals and time complexity.

Also RDD is less computation intensive than Fisher and

bottom-up methods.

This work has led us to apply this technique in the context of

fuzzy or soft discretization [16] for decision trees, which has

enabled us to significantly lower the misclassification rates.

As future work, we shall apply this discretization approach

in the context of decision trees, to see whether it improves

the global performance or not. We shall also try to examine

the potential of resampling as prior distributions in naive

bayesian classifiers [18]. But, at the same time carrying out

this approach needs to answer some other questions such as

the optimal number of bootstrap samples and time complexity.
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