
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:9, 2007

421

Specifying Strict Serializability of Iterated
Transactions in Propositional Temporal Logic

Walter Hussak

Abstract— We present an operator for a propositional linear
temporal logic over infinite schedules of iterated transactions,
which, when applied to a formula, asserts that any schedule sat-
isfying the formula is serializable. The resulting logic is suitable
for specifying and verifying consistency properties of concurrent
transaction management systems, that can be defined in terms
of serializability, as well as other general safety and liveness
properties. A strict form of serializability is used requiring that,
whenever the read and write steps of a transaction occurrence
precede the read and write steps of another transaction occur-
rence in a schedule, the first transaction must precede the second
transaction in an equivalent serial schedule. This work improves
on previous work in providing a propositional temporal logic
with a serializability operator that is of the same PSPACE-
complete computational complexity as standard propositional
linear temporal logic without a serializability operator.

Index Terms— Temporal Logic, Iterated Transactions, Serial-
izability.

I. INTRODUCTION

The model of concurrent iterated transactions, where trans-
actions repeat infinitely often, was originally considered in
[4] because of its applicability to the scheduling problem of
service processes in operating systems. The behavior of such
systems is an infinite schedule and the consistency condition
a generalization of the familiar serializability condition for
finite schedules of database transactions [3]. In fact, even in
the case of concurrent transaction management for standard
database systems, it is more accurate and assumption-free to
model the output of schedulers as sets of infinite schedules.
Infinite schedules have also acquired a greater significance
with the advent of the newer technologies of web and mobile
transactions in which transactions are continuously accessing
data items. Despite this, there have been only a few attempts
to address the problem of proving serializability of infinite
schedules. Existing approaches advocate the use of temporal
logic [12] for specifying infinite schedules generated by a
scheduler, as models of temporal logic formulae. For example,
the work [11] defines a partial-order temporal logic over
trace models for specifying properties of schedules such as
serializability. Also, the work [7] allows infinite schedules to
be specified in a linear temporal logic. The problem with both
of these approaches is that the only viable method of proof
of conditions such as serializability is one using proof rules.
In the work [11] an axiomatization is given for this purpose.
Although no explicit axiomatization is given in the work [7],
serializability is encoded into the Quantified Propositional

Walter Hussak is a lecturer in the Department of Computer Science, Lough-
borough University, UK (Email : W.Hussak@lboro.ac.uk, Tel. : +44(0)1509
222937, Fax: +44(0)1509 211586).

Temporal Logic (QPTL) which is axiomatizable - however, no
practical alternative based on a decision procedure is possible
as QPTL has non-elementary computational complexity. The
drawback of conducting proofs using proof rules is that they
require considerable expertise by the person who is to carry
out the proof manually, perhaps with the help of a ‘proof
assistant’ tool. One of the attractions of certain temporal
logics in computer science is their favorable computational
complexity as compared to classical (non-temporal) logics
that have the same expressiveness. For example, the validity
problem for Propositional Linear Temporal Logic (PTL) is
PSPACE-complete whereas the validity problem for a classical
equivalent is non-elementary. This has led to the development
of industrial-strength fully automatic theorem provers, such as
NuSMV [1] and SPIN [6], for commonly used such temporal
logics. With this in mind, the ideal solution to proving serial-
izability of infinite schedules would be one that could utilize
these logics efficiently.

Numerous variants of serializability have been proposed as
the appropriate consistency condition in various circumstances
and for various reasons in the case of finite schedules of
concurrent transactions, for example [10], [15], [13] and [8].
In the case of the infinite schedules that result from concurrent
iterated transactions an extension of conflict serializability to
unbounded schedules, based on that used for the case of finite
schedules of fixed length, is defined in [4] and weaker versions
given in the work [5]. Conflict serializability is characterized
by the commutativity of non-conflicting operations and forms
of commutativity-based serializability are discussed in [11]
and [9] with regard to the partial-order temporal logics that
can be used to specify them. Some non-commutative forms
of serializability for infinite schedules are specified in [7]
making use of propositional quantification which, however,
is responsible for the non-elementary complexity of the logic.
In this paper, we seek a notion of serializability for infinite
schedules, that can be expressed easily and efficiently in a
temporal logic for which fully automatic theorem provers
exist. To this end, we will consider the notion of ‘serializability
in the strict sense’ from [10] or ‘strict serializability’ as
we shall refer to it. Strict serializability has the following
motivation. It is observed in [10], that certain schedules have a
curious, maybe undesirable, property. Consider the following
schedule:

R1[x, y]R2[y]W2[y]R3[x, z]W3[z]W1[x]

where the R’s denote read steps, the W’s write steps, subscripts
identify transactions and the brackets denote the data items

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:9, 2007

422

accessed. This schedule serializes to the schedule:

R3[x, z]W3[z]R1[x, y]W1[x]R2[y]W2[y]

In the first schedule, transaction 2 has completed execution
before transaction 3 has even started execution, yet the only
serialized order has transaction 3 appearing before transaction
2. This undesirable property could be compounded in the case
of an infinite schedule where any number of iterations of
transaction 2 could execute before an occurrence of transaction
3, yet the only serialized order would have all those occur-
rences of transaction 2 coming after that single occurrence
of transaction 3. Strict serializability does not allow such a
serialization.

This paper is structured as follows. In section II, we
extend strict serializability to the case of infinite schedules
of infinitely repeating 2-step transactions and we give a test
for a schedule to be strictly serializable that involves selecting
an occurrence of each of the iterating transactions. This test
is improved in section III by showing that only occurrences
of a bounded subset of the iterating transactions, have to be
considered. A strict serializability operator is then defined
for propositional linear temporal logic in section IV and the
extended logic is shown to be PSPACE-complete. We give
concluding remarks in section V.

II. STRICT SERIALIZABILITY

In this section strict serializability is defined (Definitions 1-
4), a condition that provides a test for strict serializability is
given (Definitions 5,6), and then this condition is proved to
correspond to strict serializability (Lemma 7 and Theorem 8).

The assumptions and notation for our 2-step transaction
model are largely as in [7]. We assume n transactions
T1, . . . , Tn where each Ti comprises a read step and a write
step accessing finite sets of data items or variables denoted
by S(Ri) and S(Wi) such that S(Wi) ⊆ S(Ri), i.e. the write
set is a subset of the read set. If S(Ri) = {y1, . . . , yp} and
S(Wi) = {y′1, . . . , y′q} we shall display the read and write
steps as Ri[y1 . . . yp] and Wi[y′1 . . . y′q] respectively. We shall
omit the [] brackets if the variables accessed are of no interest
and use the notation Ri[x.] and Wi[x.] to indicate a step that
accesses x and may access other variables. The finite set of
all variables accessed by the T ′is will be {x1, . . . , xm}. A
schedule or history for T1, . . . , Tn is an interleaved sequence
h of the read and write steps of infinitely many occurrences
of the T ′is, such that the subsequence of h comprising steps
of Ti is the infinitely repeating sequence

RiWiRiWi . . .

Different occurrences of steps will be labelled by adding an
extra subscript as in the following history

R11R21W11W21R12R22W12W22 . . .

The occurrence Rij (respectively Wij) will be called the read
(respectively write) step of the j-th occurrence Tij of Ti. In
a history h, for each i there will be a positive integer e, not
necessarily equal to 1, such that occurrences of Ti in h are
labelled by consecutive integers starting at e. Then, Tie will

be referred to as the earliest occurrence of Ti in h. We shall
write Tij ∈ h when occurrence Tij belongs to h. For a history
h, <h will be the (irreflexive) total order between all the read
and write steps of h. If Tie is the earliest occurrence of Ti in h,
then h−Tie will denote the history with Rie and Wie removed.
The history comprising Rie followed by Wie followed by the
sequence h− Tie will be denoted Tie(h− Tie).

Strict serializability of an infinite history h means that
it is ‘equivalent’, i.e. its read steps read the same write
steps, to a serial history hS such that, if the write step of
a transaction occurrence precedes the read step of another
transaction occurrence in h, those two transaction occurrences
must be in the same order in hS . We formalize this as follows.

Definition 1 Histories h1 and h2 are equivalent, written
h1 ∼ h2, iff for x ∈ {x1, . . . , xm} and read and write
occurrences Ri1j1 and Wi2j2

seesx
h1

(Ri1j1 ,Wi2j2) iff seesx
h2

(Ri1j1 ,Wi2j2)

where seesx
h(Ri1j1 , Wi2j2) holds if h is of the form

. . .Wi2j2 [x.]︸ ︷︷ ︸
no writes to x

Ri1j1 [x.] . . .

Definition 2 A history hS is serial iff it is of the form

Ri1j1Wi1j1Ri2j2Wi2j2 . . . Rimjm
Wimjm

. . .

Definition 3 A history hS is strictly serial with respect to h
iff:
(i) hS is serial

(ii) hS has the same occurrences as h
(iii) if Wi1j1 <h Ri2j2 then Wi1j1 <hS

Ri2j2

Definition 4 A history h is strictly serializable iff there is a
strictly serial history hS such that h ∼ hS . It is easy to show
that

Ri1j1 [x.] <h Wi2j2 [x.] iff Ri1j1 [x.] <hS
Wi2j2 [x.] (1)

and

Wi1j1 [x.] <h Wi2j2 [x.] iff Wi1j1 [x.] <hS
Wi2j2 [x.] (2)

The test for serializability that is encoded into temporal
logic in [7] requires that any chosen set of occurrences of
transactions in the history h has a ‘detachable’ occurrence.
For strict serializability, the corresponding test requires
an additional condition to produce a ‘strictly detachable’
occurrence, i.e. one whose read step cannot come after a write
step in the chosen set of occurrences (see (iv) of Definition 5
below).

Definition 5 Let h be a history, p be an integer such
that 1 ≤ p ≤ n and {Ti1j1 , . . . , Tipjp} ⊆ {T1, . . . , Tn}. Then,
(the sequence of read and write steps of) Ti1j1 , . . . , Tipjp

is strictly detachable or s-detachable in h iff one of the
occurrences Tikjk

, called a s-detachable occurrence in
Ti1j1 , . . . , Tipjp is such that, for 1 ≤ g ≤ p, g 6= k,
x ∈ {x1, . . . , xm}

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:9, 2007

423

(i) ¬(Rigjg [x.] <h Wikjk
[x.])

(ii) ¬(Wigjg [x.] <h Rikjk
[x.])

(iii) ¬(Wigjg [x.] <h Wikjk
[x.])

(iv) ¬(Wigjg <h Rikjk
)

Definition 6 The condition ssercond(h) holds iff every se-
quence of occurrences Ti1j1 , . . . , Tinjn as in Definition 5, such
that {Ti1j1 , . . . , Tinjp} = {T1, . . . , Tn}, is s-detachable.

We show that ssercond is indeed a necessary and sufficient
condition for strict serializability to hold.

Lemma 7 Let h be a history with earliest occurrences
Ti1e1 , . . . , Tinen such that ssercond(h) holds. Then, for some
k with 1 ≤ k ≤ n,
(i) Tikek

is a s-detachable occurrence
(ii) h ∼ Tikek

(h− Tikek
)

(iii) ssercond(h− Tikek
) holds

Proof As ssercond(h) holds, it is immediate from Definition
5 that Tikek

satisfying (i) can be chosen. Now, let h′ =
Tikek

(h−Tikek
). To prove (ii) we show that seesx

h(Rij ,Wi′j′)
iff seesx

h′(Rij ,Wi′j′) for any read and write steps Rij and
Wi′j′ respectively. Consider the non-trivial case that x ∈
S(Wikek

). As Ti1e1 , . . . , Tinen are the earliest occurrences in
h and Tikek

is s-detachable then, by Definition 5(ii) and (iii),
h is of the form

. . . Rikek
[x.] . . .︸ ︷︷ ︸

no writes to x

Wikek
[x.] . . .

If (i, j) = (ik, ek), then ¬seesx
h(Rij ,Wi′j′) and

¬seesx
h′(Rij ,Wi′j′) as Rij is then the first step in h′.

If (i′, j′) = (ik, ek), h is of the form

. . . Rikek
[x.] . . .︸ ︷︷ ︸

no writes to x

Wikek
[x.] . . . Rij [x.]

and, as h′ only moves Rikek
[x.] and Wikek

to the left,
seesx

h′(Rij ,Wikek
) will be the same as seesx

h(Rij ,Wikek
). If

(i, j) 6= (ik, ek) and (i′, j′) 6= (ik, ek), then h cannot be of
the form

. . . Rij [x.] . . .︸ ︷︷ ︸
no writes to x

Wikek
[x.] . . .

as Tikek
is detachable and Definition 5(i) would be breached

as the read step of the earliest occurrence of Ti would precede
Rij [x.] and therefore Wikek

[x.]. So, h is of the form

.︸ ︷︷ ︸
no writes to x

Wikek
[x.] . . . Rij [x.] . . .

in which case seesx
h(Rij , Wi′j′) iff seesx

h′(Rij , Wi′j′) as h
only moves Rikek

[x.] and Wikek
[x.] to the left.

For (iii), let Ti1j1 , . . . , Tinjn be a sequence of (not necessar-
ily the earliest) occurrences of T1, . . . , Tn in h′′ = h− Tikek

.
As Tikek

/∈ {Ti1j1 , . . . , Tinjn} then, by the definition of h′′,
for 1 ≤ f < g ≤ n,

Rif jf
≤h Rigjg iff Rif jf

≤h′′ Rigjg

and
Wif jf

≤h Wigjg iff Rif jf
≤h′′ Wigjg

From this, it is clear that a s-detachable Tikjk
of

Ti1j1 , . . . , Tinjn in h is also s-detachable in h′′. It follows
that ssercond(h′′) holds.

Theorem 8 A history h is strictly serializable iff ssercond(h)
holds.

Proof Let h be strictly serializable. Choose a strictly serial
history hS such that h ∼ hS . Let Ti1j1 , . . . , Tinjn be occur-
rences in h. As h is strictly serializable then, by Definition
3, one of the occurrences Tikjk

is such that, for 1 ≤ g ≤ n,
g 6= k, Rikjk

<h Wigjg and hS is of the form

. . . Rikjk
Wikjk

. . . RigjgWigjg . . .

Thus, Tikjk
satisfies Definition 5(iv). By (1) and (2), for x ∈

{x1, . . . , xm}
Wikjk

[x.] <h Rigjg [x.],

Rikjk
[x.] <h Wigjg [x.],

Wikjk
[x.] <h Wigjg [x.]

and so the conditions Definition 5(i), (ii) and (iii) are also
satisfied. Therefore, Tikjk

is s-detachable. It follows that
ssercond(h) holds.

Conversely, suppose that ssercond(h) holds. We show that
h is strictly serializable. Define a sequence h0, . . . , hm, . . . of
histories, inductively, as follows

h0 = h, hm+1 = hm − Timk
jmk

(m ≥ 0) (3)

where Timk
jmk

is defined to be a s-detachable member of the
earliest occurrences of hm. Now define the sequence hS whose
2m-th and (2m + 1)-th (m ≥ 0) steps are

hS(2m) = Rimk
jmk

, hS(2m + 1) = Wimk
jmk

We show that hS is strictly serial by showing that conditions
(i), (ii) and (iii) of Definition 3 are satisfied. Condition (i) is
satisfied as hS is serial by construction. For condition (ii), we
need to show that hS has the same occurrences as h. Assume,
on the contrary, that there is an occurrence, Ti1j1 say, in h
that is not in hS . Without loss of generality, we can choose
j1 to be the smallest value for which Ti1j1 is in h but not in
hS , i.e.

Ti1j′1 ∈ h and Ti1j′1 /∈ hS implies j1 ≤ j′1

Now, as hS is infinite, there is some transaction, Ti2 say,
which has infinitely many occurrences in hS . Therefore, we
can choose an occurrence Ti2j2 in hS such that

Wi1j1 <h Ri2j2 (4)

By (3), Ti2j2 belongs to hS because there is an integer l ≥ 0
such that

hl+1 = hl − Ti2j2

and Ti2j2 is a s-detachable member of the earliest occurrences
of T1, . . . , Tn in hl. Consider the earliest occurrence of Ti1

in hl. As Ti1j1 is not in hS , by the inductive definition of hS

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:9, 2007

424

(3), Ti1j1 must be in hl and, as hl is a subsequence of h, the
earliest occurrence Ti1j′′1 in hl is such that

Wi1j′′1 ≤h Ri1j1 <h Wi1j1 (5)

By (4) and (5), we have that

Wi1j′′1 <h Ri2j2 (6)

But, Ti2j2 is a s-detachable member of the earliest occurrences
of T1, . . . , Tn in hl which includes the occurrence Ti1j′′1 .
Therefore, by Definition 5(iv),

¬Wi1j′′1 <h Ri2j2 (7)

The contradiction between (6) and (7) means that all occur-
rences in h will appear in hS .

To show that condition (iii) of Definition 3 holds, suppose
that

Wif jf
<h Rigjg

and assume, on the contrary, that

Rigjg <hS Wif jf
(8)

Then, there is a l ≥ 0 such that

hl+1 = hl − Tigjg
and Tif jf

∈ hl+1

If Tif j′f is the earliest occurrence of Tif
in hl then we have

that:

Wif j′f <h Wif jf
<h Rigjg

(9)

But, Tigjg is a s-detachable member of the earliest occurrences
of hl and therefore, by Definition 5(iv),

Rigjg
<h Wif j′f

contrary to (9). Thus (8) cannot hold.
We have now shown that hS is strictly serial. It remains to

show that h ∼ hS . By (3) and Lemma 7(ii), for m ≥ 0,

Rimk
jmk

Wimk
jmk

hm+1 = Timk
jmk

(hm − Timk
jmk

) ∼ hm

and so

h = h0 ∼ Ri0k
j0k

Wi0k
j0k

. . . Rimk
jmk

Wimk
jmk

hm+1 (10)

If Rij and Wi′j′ are read and write occurrences in h, choose
m sufficiently large so that in (10)

Ri0k
j0k

Wi0k
j0k

. . . Rimk
jmk

Wimk
jmk

includes both Rij and Wi′j′ . From this, it is clear that
seesh(Rij , Wi′j′) iff seeshs(Rij ,Wi′j′) and it follows that
h ∼ hS .

III. REPRESENTATIVES OF REFUTATIONS

In view of Theorem 8, a history h is strictly serializable iff
whenever occurrences of all of T1, . . . , Tn in h are selected,
the resulting subsequence of h of 2n steps is s-detachable.
Therefore, in order to prove that h is not strictly serializable,
a sequence of matching read and write steps of all of
T1, . . . , Tn in h, that is not s-detachable, has to be found.
The number of different sequences (permutations) of the 2n
steps of T1, . . . , Tn such that a read step comes before a
write step is (2n)!/2n which is greater than 2n for n > 1.
Now, strict serializability can be encoded into temporal logic
by locating all such possible sequences of steps occurring in
h and asserting their s-detachability. However, if all possible
sequences of 2n steps are encoded, the temporal logic formula
is exponential in the number of transactions n. This presents
a major obstacle to proving strict serializability in the cases of
large numbers of transactions. Fortunately, this problem can
be overcome as the number of data items places a bound on
the number of steps of sequences that have to be considered.
In this section, we define a ‘representative’ to be a sequence
of steps of transactions that occur in a history h and refute
the strict serializability of h.

Definition 9 Let h be a history, p be an integer such
that 1 ≤ p ≤ n, {i1, . . . , ip} ⊆ {1, . . . , n}, and ρ be a
bijection

ρ : {1, . . . , 2p} → {Ri1 ,Wi1 , . . . , Rip ,Wip}
Then, a subsequence Σ of h comprising the steps
Ri1 ,Wi1 , . . . , Rip

,Wip
occurring in the order

Σ = ρ(1) . . . ρ(2p)

is a representative of (a refutation of strict serializability
for) h iff there is a sequence of transaction occurrences
Ti1j1 , . . . , Tipjp

, whose steps in h occur in the order of the
steps in Σ, that is not s-detachable. The following theorem
places a bound on the number of steps of representatives
that need to be considered to refute strict serializability,
independent of n if n is sufficiently large.

Theorem 10 If n ≥ 2m+2, then a history h has a
representative with 2n steps iff h has a representative with
2m+2 steps.

Proof
If
Suppose that h has a representative Σ of 2m+2 steps. Then, by
Definition 9, there is a corresponding sequence of transaction
occurrences Ti1j1 , . . . , Tipjp , where p = 2m+1, that is not
s-detachable and whose steps occur in h in the same order
as in Σ. Choose occurrences Tip+1jp+1 , . . . , Tinjn such that
{Ti1 , . . . , Tin} = T1, . . . , Tn and that

Wigjg
<h Rif jf

(1 ≤ g ≤ p, p + 1 ≤ f ≤ n) (11)

We show that Ti1 , . . . , Tin is not s-detachable. Now, no Tikjk

such that 1 ≤ k ≤ p is s-detachable in Ti1j1 , . . . , Tinjn
as

Ti1j1 , . . . , Tipjp is not s-detachable, and so Tikjk
will not

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:9, 2007

425

satisfy (i)-(iv) of Definition 5 for 1 ≤ g ≤ p let alone for
1 ≤ g ≤ n. But, also, no Tikjk

with p + 1 ≤ k ≤ n is
s-detachable as, by (11), for 1 ≤ g ≤ p,

Wigjg <h Rikjk

and (iv) of Definition 5 cannot be satisfied by such a k. Thus,
Ti1 , . . . , Tin is not s-detachable and the representative whose
steps occur in the order that the steps of the occurrences
Ti1j1 , . . . , Tipjp , Tip+1jp+1 , . . . Tinjn occur in h is the required
representative of 2n steps.
Only if
Suppose that h has a representative of 2n steps, corresponding
to the occurrences Ti1j1 , . . . , Tinjn . Put

SR = {S(Rif
) | 1 ≤ f ≤ n}, SW = {S(Wig) | 1 ≤ g ≤ n}

Clearly, SR and SW each have at most 2m elements as there
are only 2m subsets of the set of data items {x1, . . . , xm}.
Choose

Tif1 jf1
, . . . , Tif2m jf2m

to be such that

{S(Rif1
), . . . , S(Rif2m

)} = SR (12)

and that, for all 1 ≤ f ≤ n, there is a l, with 1 ≤ l ≤ 2m,
such that

S(Rif
) = S(Rifl

) and Rifl
jfl
≤h Rif jf

(13)

Basically, (12) states that the read sets of the chosen 2m trans-
action occurrences Tif1 jf1

, . . . , Tif2m jf2m
span all the read

sets of the possibly greater number of transaction occurrences
Ti1j1 , . . . , Tinjn

. The condition (13) states that the earliest
occurrences spanning those read sets, should be chosen. In
a similar way, we can choose

Tig1 jg1
, . . . , Tig2m jg2m

to be such that

{S(Wig1
), . . . , S(Wig2m

)} = SW (14)

and that, for all 1 ≤ g ≤ n, there is a l, with 1 ≤ l ≤ 2m,
such that

S(Wig
) = S(Wigl

) and Wigl
jgl
≤h Wigjg

(15)

We show that the sequence of the 2(2m + 2m) = 2m+2 steps
in h of the occurrences

Tif1 jf1
, . . . , Tif2m jf2m

, Tig1 jg1
, . . . , Tig2m jg2m

(16)

is a representative. This means showing that the sequence
(16) is not s-detachable. Now, the sequence Ti1j1 , . . . , Tinjn

is certainly not s-detachable as its steps form a representa-
tive. Assume, on the contrary, that the sequence (16) is s-
detachable. Then, one of its occurrences, Tikjk

say, satisfies
(i)-(iv) of Definition 5. We derive the contradiction that Tikjk

is
a s-detachable occurrence of Ti1j1 , . . . , Tinjn

. Let 1 ≤ g ≤ n,
g 6= k and x ∈ {x1, . . . , xm}. We have, by (13), that, for some
l with 1 ≤ l ≤ 2m,

S(Rig
) = S(Rifl

) and Rifl
jfl
≤h Rigjg

(17)

As Tikjk
is a s-detachable occurrence in (16), then, by Defi-

nition 5(i),
Wikjk

[x.] ≤h Rifl
jfl

[x.] (18)

By (17) and (18),

Wikjk
[x.] ≤h Rigjg [x.]

Thus, Definition 5(i) is satisfied by Tikjk
for occurrences

Ti1j1 , . . . , Tinjn . Next, by (15), we have that, for some l with
1 ≤ l ≤ 2m,

S(Wig) = S(Wigl
) and Wigl

jgl
≤h Wigjg (19)

As Tikjk
is a s-detachable occurrence in (16), then, by Defi-

nition 5(ii),
Rikjk

[x.] ≤h Wigl
jgl

[x.] (20)

By (19) and (20),

Rikjk
[x.] ≤h Wigjg [x.]

Thus, Definition 5(ii) is satisfied by Tikjk
for occurrences

Ti1j1 , . . . , Tinjn . Next, as Tikjk
is a s-detachable occurrence

in (16), then, by Definition 5(iii),

Wikjk
[x.] ≤h Wigl

jgl
[x.] (21)

By (19) and (21),

Wikjk
[x.] ≤h Wigjg [x.]

Thus, Definition 5(iii) is satisfied by Tikjk
for occurrences

Ti1j1 , . . . , Tinjn
. Finally, as Tikjk

is a s-detachable occurrence
in (16), by Definition 5(iv),

Rikjk
≤h Wigl

jgl
(22)

By (19) and (22),
Rikjk

≤h Wigjg

Thus, Definition 5(iv) is satisfied by Tikjk
for occurrences

Ti1j1 , . . . , Tinjn
. We have now derived the contradiction that

Tikjk
is a s-detachable occurrence of Ti1j1 , . . . , Tinjn

. There-
fore, the assumption that (16) is detachable is untenable and
it follows that the sequence of 2m+2 steps of the occurrences
(16) is a representative as required.

IV. A TEMPORAL LOGIC

We define propositional linear temporal logic with a strict
serializability operator, and denote the logic by PTL+sser. The
alphabet of PTL+sser consists of a list of propositional sym-
bols P0, P1, . . ., a list of special read/write step propositional
symbols R1, R2, . . . and W1, W2, . . ., booleans ¬,∧,>,⊥, and
temporal operators © and U . Formulae in PTL+sser are either
‘top-level’ formulae τ or bottom-level formulae ψ generated
by:

τ ::= ¬τ | τ1 ∧ τ2 |sser(ψ)

ψ ::= Pi | Ri | Wi | ¬ψ | ψ1 ∧ ψ2 | > | ⊥ | © ψ | ψ1Uψ2

We use the standard abbreviations for ∨, ⇒ and ⇔, and

♦ψ = >Uψ, ¤ψ = ¬♦¬ψ

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:9, 2007

426

A. Semantics

The semantics for PTL+sser is given with respect to a
given set of data items X = {x1, . . . , xm} being accessed
by transactions and, for each positive integer i, a given set
of data items read by transaction i, S(Ri), and a given set
of data items written to by transaction i, S(Wi), such that
X ⊇ S(Ri) ⊇ S(Wi).

A model for PTL+sser is an assignment M of the proposi-
tions that are true at each point in time a ∈ N, i.e.

M : N→ ℘({P0, P1, . . . , R1, R2, . . . ,W1,W2, . . .})
where M(a) gives the set of propositions equal to > (true) at
time a ∈ N (℘ is the powerset constructor) such that:
(i) for each a ∈ N,

M(a) ∩ {R1, R2, . . . , W1,W2, . . .} = {Qa}
is a singleton

(ii) the sequence of (read/write) step propositions

Q0, Q1, . . . (23)

is a history for T1, . . . , Tn where Ti comprises the read
and write steps Ri and Wi (1 ≤ i ≤ n)

A model M is strictly serializable iff the history cor-
responding to the sequence of propositions (23) is strictly
serializable. The semantics of bottom-level formulae is given
as for standard propositional linear temporal logic, by the truth
relations (M, a) ² ψ (a ∈ N) defined inductively on the
construction of ψ as follows:

(M,a) ² Pi iff Pi ∈ M(a)
(M,a) ² Ri iff Ri ∈ M(a)
(M,a) ² Wi iff Wi ∈ M(a)
(M,a) ² ¬ψ iff (M,a) 2 ψ
(M,a) ² ψ1 ∧ ψ2 iff (M, a) ² ψ1 and (M, a) ² ψ2

(M,a) ² ©ψ iff (M,a + 1) ² ψ
(M,a) ² ψ1Uψ2 iff, for some b ≥ a, (M, b) ² ψ2 and,
for a ≤ c < b, (M, c) ² ψ1

A formula ψ is said to be satisfied by the model M at a iff
(M, a) ² ψ. The semantics of top-level formulae is given by
the truth relation (M, 0) ² τ defined as follows:

(M,a) ² ¬τ iff (M, a) 2 τ
(M,a) ² τ1 ∧ τ2 iff (M, a) ² τ1 and (M, a) ² τ2

(M,a) ² sser(ψ) iff (M, 0) ² ψ implies that M is
strictly serializable

A PTL+sser formula φ is valid written

² φ

iff (M, 0) ² φ for all models M . It is clear that ² sser(ψ)
asserts that all models satisfying ψ (at 0) are strictly serializ-
able.

B. An encoding of the sser operator

We encode the sser operator into plain propositional linear
temporal logic (PTL) without the sser operator, by encoding
the representatives of Theorem 10. We consider the interesting
case when n ≥ 2m+2. Suppose that ψ has the read/write

step propositions R1,W1, . . . , Rn,Wn. Let ρ be the set of
bijections:

ρ : {1, . . . , 2m+2} → {Ri1 ,Wi1 , . . . , Ri2m+1 ,Wi2m+1}
where {i1, . . . , i2m+1} ⊆ {1, . . . , n},

ρ−1(Rig) < ρ−1(Wig) (1 ≤ g ≤ 2m+1)

and such that there is no k with 1 ≤ k ≤ 2m+1 satisfying, for
1 ≤ g ≤ 2m+1, g 6= k and x ∈ {x1, . . . , xm}, the following:

(i’) ¬(ρ−1(Rig [x.]) < ρ−1(Wik
[x.]))

(ii’) ¬(ρ−1(Wig [x.]) < ρ−1(Rik
[x.]))

(iii’) ¬(ρ−1(Wig [x.]) < ρ−1(Wik
[x.]))

(iv’) ¬(ρ−1(Wig) < ρ−1(Rik
))

As (i’)-(iv’) correspond to (i)-(iv) of Definition 5, it is clear
that a model M is not strictly serializable iff, for some ρ ∈ ρ,
the read and write propositions of M are of the form

. . . , ρ(1), . . . , ρ(2), . . . , ρ(2m+2), . . . (24)

and are not of the form, for any 1 ≤ u < v ≤ 2m+1 and
1 ≤ i ≤ n,

. . . , ρ(u) = Ri, . . . , Ri, . . . , ρ(v) = Wi, . . . (25)

Condition (24) is essentially the condition that
ρ(1), . . . , ρ(2m+2) is a representative, although we need
the extra condition (25) to guarantee that if ρ(u) = Ri then
the later ρ(v) = Wi is the write step for the same occurrence
of Ti. We can now encode sser(ψ) as follows:

sser(ψ) = ψ → ¬
∨
ρ∈ρ

((26)

♦(ρ(1)U(ρ(2)U(. . . ρ(2m+2) . . .))) ∧ (27)
∧

1≤i≤n

∧

1≤u≤2m+2

∨

1≤v≤2m+2

(ρ(u) ∧Ri → ¬WiU(ρ(v) ∧Wi)))

(28)
Here, (27) and (28) encode the conditions (24) and (25)
respectively.

Theorem 11 The validity problem for PTL+sser is
PSPACE-complete.

Proof As PTL+sser contains PTL, and PTL is PSPACE-hard
[14], it follows that PTL+sser is PSPACE-hard. On the other
hand, PTL+sser can be encoded into PTL by encoding the
sser operator as above. This involves computing fewer than
(2n)!/(2n − 2m+2)!(2m+2)! ρ ∈ ρ satisfying (i’)-(iv’), i.e. a
polynomial in n number of ρ. The encoding of sser(ψ) into
PTL, as given by (26), (27) and (28) is therefore achieved
with at most a polynomial increase in the size of ψ. Thus,
any formula φ in PTL+sser containing subformulae of the
form sser(ψ) can be rewritten by a PTL formula without
any occurrences of the sser operator, incurring at worst a
polynomial increase in size of formula. Therefore, PTL+sser
is in PSPACE. It follows that PTL+sser is PSPACE-complete.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:9, 2007

427

V. CONCLUSIONS

The importance of modelling infinite schedules of con-
current transactions is growing with the appearance new
technologies such as mobile transactions. A natural way of
modelling such schedules is to use temporal logic. The few
existing approaches that have considered this problem, use
temporal logics that rely on the manual use of proof rules to
produce correctness proofs of the main consistency property
of serializability. In this paper, we have presented a version
of serializability that can be easily realized as an additional
operator to one of the most common temporal logics of all -
propositional linear temporal logic. We have shown that the
validity problem of the resulting extended logic is of the same
PSPACE-complete computational complexity. Further to this,
regarding PTL+sser model-checking, we note from [2] that the
algorithm that checks whether a finite state machine satisfies a
PTL formula has time complexity O((|S|+ |R|).2O(|f |) where
|S| is the number of states, |R| is the number of transitions and
|f | is the length of the formula. Given a PTL+sser formula g,
the encoding in section IV which removes instances of the sser
operator produces a PTL formula f whose length is a poly-
nomial in the length of g. It follows that the model-checking
algorithm for PTL+sser is of comparable time complexity to
that for PTL. Therefore, in every respect, proofs in PTL+sser
should be as efficient as proofs in plain PTL. So, the logic
PTL+sser is suitable for use with the well-known powerful
model-checkers [1] and [6]. This opens up the possibility of
conducting proofs of correctness of infinite schedules using
fully automated means avoiding the drawbacks of manual
proofs.

Further work will look to extend these results to the case
of infinite schedules of concurrent multi-step transactions.

REFERENCES

[1] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: a new
symbolic model verifier,” Lecture Notes in Computer Science, vol. 1633,
pp. 495-499, 1999.

[2] E. Clarke, O. Grumberg and D. Peled, Model Checking, MIT Press,
1999.

[3] C.J. Date, An Introduction to Database Systems, Addison Wesley, 2004.
[4] M.P. Fle and G. Roucairol, “On serializability of iterated transactions,”

Proc, 1st ACM SIGACT-SIGOPS Symp. on Principles of Distributed
Computing, pp. 194-200, 1982.

[5] M.P. Fle and G. Roucairol, “Multiserialization of iterated transactions,”
Information Processing Letters, vol. 18, pp. 243-247, 1984.

[6] G.J. Holzmann, The SPIN model checker. Addison-Wesley, 2004.
[7] W. Hussak, “Serializable Histories in Quantified Propositional Temporal

Logic,” International Journal of Computer Mathematics, vol. 81(10), pp.
1203-1211, 2004.

[8] W. Hussak and J.A. Keane, “Algebraic Specification of Serializability
for Partitioned Transactions,” International Journal of Computer Systems
Science and Engineering, vol. 1(1), pp. 60-67, 2007.

[9] S. Katz and D. Peled, “Defining conditional independence using col-
lapses,” Theoretical Computer Science, vol. 101, pp. 337-359, 1992.

[10] C. Papadimitriou, “The Serializability of Concurrent Database Updates,”
Journal of ACM, vol. 26(4), pp. 631-653, 1979.

[11] D. Peled and A. Pnueli, “Proving partial order properties,” Theoretical
Computer Science, vol. 126, pp. 143-182, 1994.

[12] A. Pnueli, “Temporal logic of programs,” Proc. 18th IEEE Symp. on
Foundations of Computer Science, pp. 46-57, IEEE Computer Society
Press, 1977.

[13] L. Sha, J.P. Lehoczky and E.D. Jensen, “Modular Concurrency Control
and Failure Recovery,” IEEE Transactions on Computers, vol. 37(2), pp.
146-159, 1988.

[14] A.P. Sistla and E.M. Clarke, “The Complexity of Propositional Linear
Temporal Logics,” Journal of the ACM, vol. 32, pp. 733-49, 1985.

[15] K. Vidyasankar, “Generalized Theory of Serializability,” Acta Informat-
ica, vol. 24, pp. 105-119, 1987.

